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Abstract

Offline-to-online reinforcement learning has re-
cently been shown effective in reducing the on-
line sample complexity by first training from of-
fline collected data. However, this additional data
source may also invite new poisoning attacks that
target offline training. In this work, we reveal such
vulnerabilities by proposing a novel data poison-
ing attack method, which is stealthy in the sense
that the performance during the offline training re-
mains intact, but the online fine-tuning stage will
suffer a significant performance drop. Our method
leverages the techniques from bi-level optimiza-
tion to promote the distribution shift under offline-
to-online reinforcement learning. Experiments on
four environments confirm the satisfaction of the
new stealthiness requirement, and can be effective
in attacking with only a small budget and without
having white-box access to the victim model.

1 INTRODUCTION

Offline reinforcement learning (RL) has recently opened
up new opportunities of leveraging offline batch data to
improve the RL algorithms, significantly reducing the on-
line sample complexity of interacting with the environment
(Levine et al., 2020). It is particularly valuable for many
applications where directly applying an automated policy
can be dangerous, expensive, or unethical. For example,
educational assistants, autonomous driving, and healthcare.

However, due to the limited coverage of offline data or
the suboptimality of the demonstrator (Fu et al., 2020), a
purely offline trained model is generally not effective when
deployed online, and a common wisdom is to fine-tune it via
additional online interactions, whose sample complexity is
expected to be saved thanks to the initialization from offline
training.

Interestingly, such a direct offline-to-online transfer (O2O)
is often plagued with catastrophic performance drop at on-
line transfer, which poses safety challenges for the real
system such as driving and therapy. This is primarily due
to the distributional shift of the state (Fujimoto et al., 2019;
Kumar et al., 2019; Fu et al., 2019; Kumar et al., 2020a),
and the Q-value has not been well estimated for the state-
actions lying outside the offline distribution (Farahmand
et al., 2010; Munos, 2005).

Fortunately, previous research (Kumar et al., 2020b;
Kostrikov et al., 2022; Lee et al., 2022; Nakamoto et al.,
2023) shows that improved O2O RL methods can signifi-
cantly control the distribution shift while retaining the on-
line sample efficiency. Typical solutions include endowing
conservatism on offline Q-function approximation (Kumar
et al., 2020b; Nakamoto et al., 2023), or regularizing the
divergence between the learned policy and the behavior pol-
icy (Nair et al., 2020). Lee et al. (2022) directly manipulates
the replay buffer to ensure the data sampled from the buffer
are likely on-policy, thereby avoiding the inaccurate approx-
imation for OOD data. Instead of directly transferring the
offline critic to online, Yu & Zhang (2023) introduces an
addition step which aligns the critic with the actor upon the
end of offline training, ensuring that the critic would not
differ much from the actor, hence avoiding severe online
policy change caused by poor value estimation. Zhang et al.
(2022) and Wang et al. (2023) both consider training a set of
policies rather than a single one, as such redundancy could
avoid the risk of unrecoverable performance drop of a single
policy, facilitated by their choice of policy selector.

There is still a long list O2O methods that emerged re-
cently (Wagenmaker & Pacchiano, 2023; Chen & Wen,
2023; Mark et al., 2023; Lei et al., 2023, etc.). Among
the aforementioned works, surgery on the Q-function is one
of the most prevalent principles to address O2O. As O2O
heavily depends on a “well-behaved”Q-function, it also cre-
ates vulnerability in such scenarios, as one may manipulate
Q-functions in a malicious way.
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The key question we investigate in this paper is

Are the O2O algorithms robust to reward poison-
ing on the offline batch data?

Since offline data often comes from crowd-sourcing or other
third parties, it may carry malicious poisons that catastrophi-
cally damage the online fine-tuning while remaining stealthy
by keeping the offline performance competitive.

In general, poison attack is performed on the training data,
such that the models trained with it will perform poorly
on the test scenarios. In O2O RL, the attacker may alter
the state, action, or reward of the offline data. In this paper,
we focus on poisoning of rewards, and aim to achieve two
objectives:

• Effectiveness: after offline training on the poisoned
data, the agent will suffer a catastrophic performance
drop at the beginning of the online fine-tuning, com-
pared with its (online) performance at the end of the
offline training.

• Stealthiness: during the offline training, the perfor-
mance as measured by interacting with the environ-
ment (but not using it to update the model) should be
similar to that achieved by a clean trained agent. This
is in addition to the standard ℓp norm constraints on
the magnitude of reward modification.

These definitions of stealthiness and effectiveness are partic-
ular realistic. As O2O RL is a two-phase learning scheme,
attacks that aim to undermine the offline performance may
be of less risk to the system because the victim can detect
the low performance of the offline model. However, an at-
tacker that is stealthy offline but effective online could be
more surprising and harmful. Therefore, understanding such
vulnerability of O2O RL is essential towards robust O2O
transfer.

Our contribution is to achieve these goals, revealing the
vulnerability of O2O RL to data poisoning attack. Our inno-
vations can be summarized as follows:

• We propose the first poisoning attack on O2O RL that
promotes the distributional shift and Q-function over-
estimation.

• We achieve the poisoning through an efficient bi-level
optimization technique.

• Our approach requires no access to the victim agent or
the online environment.

We applied our poisoner to Frozen Lake and three loco-
motion environments from D4RL (Fu et al., 2020). The
stealthiness is clearly verified, and it is shown more effec-
tive in compromising online fine-tuning performance than
other baselines.

2 RELATED WORK

The vulnerability to various types of attacks has been well
studied in supervised learning field. Evasion attack (Good-
fellow et al., 2015) assumes the attacker can manipulate
testing inputs after the victim model is trained. Data poison-
ing attack, on the other hand, is performed on the training
inputs. The attacker may insert (Chen et al., 2017) or modify
the training inputs (Biggio et al., 2012; Shafahi et al., 2018)
to undermine the performance of the trained victim model.

Attacks in Online RL Huang et al. (2017) and Sun et al.
(2020) studied evasion attacks in online RL that apply mod-
ifications on the "critical point" of the input state to fool a
pre-trained online RL agent. Xu et al. (2021) proposed a
data poisoning attack in online RL by using a malicious RL
agent as an attacker to find the minimal change on the envi-
ronment dynamic in order for the victim agent to choose the
target action on a target state. Zhang et al. (2020) achieved
a similar goal by altering only the training reward. They
performed the attack by constructing a target Q table such
that at the target state, theQ value is maximized at the target
action chosen by the attacker. The attacker then modifies
the training reward so the victim agent will learn such a Q
table. Rakhsha et al. (2021) further extended the attack to a
black-box setting by additionally explore the environment
uniformly. They then used the explored data to simulate the
victim agent and perform the poisoning attack.

Attacks in Offline RL Ma et al. (2019) is one of the first
works that try to perform targeted data poisoning attack in
offline RL. They model the attack as a convex optimization
problem on the training reward and forced the victim to
learn a targeted policy. Gong et al. (2022) proposed the
first backdoor attack in offline RL by altering the training
observations. After training on the poisoned data, the victim
model will perform normally on clean testing data, while
choosing the low-reward actions on observations with pre-
designed triggers. More recently, Wu et al. (2023) designed
a data poising attack specifically on multi-agent RL so that
the victim agents will learn a policy targeted by the attacker.

However, existing attacks in online RL require access to
online environment and are therefore infeasible in many
practical scenarios. On the other hand, offline RL attacks
leads to poor performance during the validation and can be
detected before online fine-tuning. None of them can be di-
rectly applied to O2O RL settings to achieve our objectives.

3 PROBLEM SETUP

In this section, we set up the three participants in the O2O
poisoning problem: the environment, the victim agent, and
the attacker.
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3.1 PRELIMINARY

We formulate the RL process via the standard Markov De-
cision Process (MDP)M = (S,A,P,R, γ, µ0). Here S is
the state space,A is the action space,P : S×A×S → [0, 1]
is the transition function, R : S × A → R is the reward
function, γ ∈ [0, 1) is the discount factor, and µ0 : S → R
is the initial state distribution.

For the victim agent, we define its policy π(a|s) as a prob-
ability distribution of taking action a at state s. The agent’s
goal is to find the optimal policy that maximizes the ex-
pected return π∗ = argmaxπ Eπ[

∑∞
t=0 γ

trt].

In offline RL, there is a batch of transitions D =
{(s, a, r, s′)} that are obtained by applying an unknown
behavior policy on the environment. In the O2O literature, it
has been shown that offline conservative Q-learning (CQL,
Kumar et al., 2020b) followed by an off-policy algorithm—
often soft actor critic (SAC, Haarnoja et al., 2018)—for
online fine-tuning is a strong yet simple baseline (Lee
et al., 2022; Yu & Zhang, 2023). Intuitively, it is effec-
tive because CQL provides a good Q-function initialization
that suppresses Q-values for out-of-distribution (OOD) ac-
tions, avoiding poor online exploration led by false over-
estimation. And using off-policy algorithm online allows
faster learning as the Q-function is now freed from conser-
vative constraints/penalties.

As CQL+SAC has served as a common baseline in O2O
literature (Lee et al., 2022; Nakamoto et al., 2023; Yu &
Zhang, 2023), we used the same CQL+SAC scheme as our
victim O2O agent for most of the experiments except the
one on the FrozenLake environment, whose action space is
discrete. This is because the discrete variant of CQL does not
parameterize its policy but induces it from the Q-function
via a soft-max. In contrast, the discrete SAC parameterizes
its policy via a network, making it infeasible to perform
O2O transfer due to the lack of offline policy network. As
a result, we used DoubleDQN (Van Hasselt et al., 2016) as
the online algorithm in the FrozenLake environment.

Soft Actor Critic SAC is an actor-critic algorithm based
on the maximum entropy framework. Akin to canonical
actor-critic, it includes actor update and critic update, as
shown in (2) and (1), respectively. In particular, we em-
ployed SAC-v2 (Haarnoja et al., 2018), an alternative im-
plementation that automatically adjusts the entropy of the
policy, via the Lagrangian dual formulation, where the La-
grangian multiplier is often called the temperature α, and
its update rule is given in (3).

LSAC
Q (ψ,D) := E

(s,a,r,s′)∼D

[
(Qψ(s, a)− y(r, s′))

2
]

y(r, s′) :=r+γ E
a′∼πθ(s′)

[Qψ̄(s
′, a′)−α logπθ(a

′|s′)]
(1)

LSAC
π (θ,D) := E

s∼D
E

a∼πθ(s)
[αlogπθ(a|s)−Qψ(s, a)] (2)

LSAC
temp(α,D) :=−α E

s∼D
E

a∼πθ(s)
[log πθ(a|s)− H̄]. (3)

Here the expectation Ea∼πθ(s) could be directly evaluated
for discrete action spaces and be stochastically approxi-
mated for continuous action spaces.

The actor update (2) aims to maximize the Q-values hence
maximizing the cumulative rewards alongside the policy’s
entropy. The critic update (1) aims to find a better soft Q-
function approximation by minimizing the squared tempo-
ral difference error, where ψ̄ stands for target network, a
commonly used trick in RL literature to stabilize RL train-
ing. It can be often updated using the Polyak averaging
(or exponential moving averaging), which is essentially
ψ̄ ← τψ+(1− τ)ψ̄, where τ ∈ (0, 1) is a hyper-parameter
that controls how fast the target network ψ̄ evolves towards
the current Q-network ψ. The temperature update (3) au-
tomatically tunes α > 0 to ensure that the entropy of the
policy is lower bounded by a target entropy H̄.

Distribution shift It has been well known that directly
applying off-policy algorithms such as SAC to offline RL
often leads to poor performance as off-policy RL methods
can have arbitrarily poor value estimations (especially over-
estimations) for OOD states/actions (Lee et al., 2022; Zhang
et al., 2022; Yu & Zhang, 2023; Nakamoto et al., 2023).
We next elaborate on the corresponding distribution shift
issue, which will serve as the key motivation of our attacking
algorithm.

Firstly, at training time, the target value for Bellman backups
of critic update in (1) uses actions a′ sampled from the
learned policy πθ, while the Q function was trained only
on actions produced by the offline data under the behavior
policy (the expectation overD in (1)). As a result, the offline
learned Q function typically over-estimates the value of
Q(s, a) for an OOD action a, i.e., when a is never applied
at state s in the offline data. A similar issue also plagues the
actor update in (2), where Qψ is evaluated on a ∼ πθ(s).

Secondly, during online fine-tuning, the agent runs into an
OOD state and the bootstrap error wipes out the offline
learned policy that performed well.

A great deal of effort has been devoted to this problem in
O2O RL, by, e.g., regularizing the Q-function (Kumar et al.,
2020b), importance sampling (Laroche et al., 2019), and
behavior cloning regularization (Kostrikov et al., 2022).

Conservative Q-Learning CQL is a popular choice for
offline and O2O RL that combats the distribution shift issue.
The central idea is to regularize the Q-values of actions that
are not observed in the offline dataset. Such regularity avoids
over-estimations of OOD actions that may have a low return
in the real environment. We also provide an illustration of
such conservative estimation in our toy example in Figure 1.
Specifically, we consider a commonly used variant of CQL,
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Algorithm 1 O2O: CQL (offline) + SAC (online)

1: Input: offline dataset D = {(s, a, r, s′)}
2: # offline training phase with CQL.
3: initialize CQL parameters θ, ψ, ψ̄
4: for number of offline iterations do
5: sample mini-batch from offline dataset D
6: update ψ with (4)
7: update θ with (5)
8: ψ̄ ← τψ + (1− τ)ψ̄
9: end for

10: # online training phase with SAC.
11: load parameters θ, ψ, ψ̄ for SAC
12: initialize temperature α for SAC
13: for number of online iterations do
14: # environmental step
15: a ∼ πθ(a|s), r ∼ R(s, a), s′ ∼ P(s′|s, a)
16: D ← D

⋃
{(s, a, r, s′)}

17: # gradient step
18: sample mini-batch from online buffer D
19: update ψ with (1)
20: update θ with (2)
21: update α with (3)
22: ψ̄ ← τψ + (1− τ)ψ̄
23: end for
24: Output: network parameters ψ, θ

namely CQL(H), whose regularizer is given in (4) along
with the squared loss. In addition, CQL(H) follows (5) to
update policy for continuous action spaces, while in discrete
space the policy is induced greedily from Qψ .

LCQL
Q (ψ,D) := E

(s,a,r,s′)∼D

[
(Qψ(s, a)− y(r, s′))

2
]

+ λ E
s∼D

[
log

∑
aexp(Qψ(s, a))− E

a∼πθ(s)
[Qψ(s, a)]

]
︸ ︷︷ ︸

=: JCQL
Q (ψ,D)

discrete: y(r, s′) :=r+γQψ̄(s
′, argmaxa′Qψ(s

′, a′))

continuous: y(r, s′) :=r+γ E
a′∼πθ(s′)

[Qψ̄(s
′, a′)]

(4)

LCQL
π (θ,D) := E

s∼D
E

a∼πθ(s)
[Qψ(s, a)]. (5)

Here, the expectation Ea∼π(s) and the log-sum-exp
log

∑
aexp(Qψ(s, a)) are tractable for discrete action

spaces and can be stochastically approximated for continu-
ous spaces.

The entire O2O algorithm that uses CQL for offline training
and SAC for online fine-tuning is summarized in Algo-
rithm 1.

3.2 A TOY EXAMPLE

We provide a toy bandit example in Figure 1 to demon-
strate our motivation. The key idea of this example is that
uniformly lifting the Q-values can achieve both stealthi-
ness and effectiveness, because a uniform over-estimation
would not change the policy, as demonstrated in Figure 1a;
and it can promote online distributional shift, as shown in
Figure 1b.

While the toy example simply assumes that the Q-function
can be directly manipulated to achieve a uniform over-
estimation, this is however infeasible in a poisoning attack
setting. In Section 4, we show that one could achieve it by
formulating it as a bi-level optimization.

4 THE ATTACK ALGORITHM

We consider the vulnerability of O2O RL under data poison-
ing during offline training. Since the attacker is not allowed
to perform any attack during the online fine-tuning phase,
the victim will eventually recover from any offline attack
given infinite online training resource. Thus, we set the
attacker’s goal to be such that the victim model, when fine-
tuned online, suffers as much performance drop—both in
magnitude and duration—at the initial phase as possible.

4.1 THE THREAT MODEL

Following the standard poisoning attack protocol, we as-
sume that the victim may not access clean demonstrations
during offline training. Key to our threat model is the re-
quirement that the victim model must retain good online
performance when offline training concludes, because
otherwise the attack would be detected and the model it
would be precluded from online fine-tuning. Here the “on-
line performance” is evaluated by hypothetically applying
the policy to an online environment, but without updating
the policy (as opposed to online training). In reality, nei-
ther the agent nor the attacker can really run this evaluation.
However, given that offline policy evaluation is notorious
for its high variance, we define offline performance in this
way, noting that its value is not used by either the agent’s
RL algorithm or the attacker’s poisoning algorithm.

Although reward, state, and action are all feasible targets of
poisoning on the offline batch data, we restrict our attention
to reward because it is a single scalar and carries less struc-
ture than states and actions, hence allowing more stealthy
poisoning. The attacker is not allowed to access the victim
model, such as its policy network or value functions. Follow-
ing the common practice such as Witche’s Brew (Geiping
et al., 2021) and continual input-aware poisoning (Kang
et al., 2023), the attacker may internally train a surrogate
RL agent and queries it to construct the poisons.
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(a) Offline phase: Suppose Q, Q̂ and Q̃ stands for the ground
truth Q-function, CQL approximation without being poisoned,
and an uniformly poisoned Q-function, respectively. The bar plot
illustrates the number of observed data for the corresponding action.
It can be observed that Q̂ well approximates in-distribution actions
{−1, 0, 1} and under-estimates OOD actions as expected. The
poisoned Q̃ is stealthy as a uniform increase does not change the
policy but breaks the conservatism which would lead to poor online
performance.
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(b) Online phase: Suppose we initialize an online agent with the
offline poisoned Q̃. After some online interactions, which are clean
as the poisoning is only done in offline phase, one could observe
that the majority of iterations are in-distribution because they have
higher Q̃-values at the beginning. However, by providing many
clean data for in-distribution actions, their Q̃ estimations converge
to ground truth. As a result, the Q̃ estimations become dominant
because they were updated less frequently, hence promoting online
distributional shift.

Figure 1: A toy bandit example, with 11 actions and
Gaussian-like reward function, to demonstrate the intuition
that maximizing Q-values (uniformly) can achieve both
stealthiness and effectiveness.

In addition to the aforementioned stealthiness constraints,
we also impose the standard ℓp norm constraints on the
reward perturbations. For example, the ℓ0 norm constraints
specifying how many offline transitions can be perturbed,
and ℓ1 norm constraints on the total or average amount of
perturbation. For a vector x, its ℓ1 norm is ∥x∥1 :=

∑
i |xi|,

and its ℓ∞ norm is ∥x∥∞ := maxi |xi|.

4.2 THE POISONING ALGORITHM

Due to the stealthy requirement, the poisoning algorithms
for offline RL such as Gong et al. (2022) cannot serve our

purpose as it would lead to poor online performance for
the offline trained model. Our inspiration originates from
the distribution shift phenomenon, which shows that over-
estimation of the Q-function will lead to poor online per-
formance, while keeping the performance during offline
training competitive. Thus, we seek to poison the reward
by promoting the resulting Q values at OOD actions, hence
maximally exacerbate the over-estimation problem.

We first uniformly sample from D a small portion of can-
didate transitions to be poisoned cp := {(sp, ap, rp, s′p)}.
The cardinality depends on the ℓ0 norm and our experi-
ment uses 2% of the size of D. Then we perturb the re-
ward on these transitions to construct a poisoned buffer
Dp = {(sp, ap, rp + δr, s

′p)}. Finally we combine it with
the rest of clean transitions to construct the poisoned training
dataset

Dt := Dp ∪ (D \ cp). (6)

Conceptually, our poisoner solves the following constrained
bi-level optimization for δr:

max
δr

E
s∼D

E
a
[Qψ∗(s, a)]− βJCQL

Q (ψ∗,D) (7)

s.t. ∥δr∥1 / |D
p| ≤ ϵ1 and ∥δr∥∞ ≤ ϵ∞ (8)

ψ∗, θ∗ ← Victim-Offline-RL(Dt). (9)

Note in the first term of the outer objective, we do not
require a to be from the offline data, i.e., it does not have
to be what was taken at state s. This exactly serves our
purpose of simulating OOD actions, and promoting their
Q values. It is similar in spirit to the log-sum-exp term
in (4). When the action space is discrete and finite, it is
natural to use a uniform distribution here. When the action
space is continuous, we endow a proper distribution that
also allows efficient sampling, e.g., uniform for bounded
spaces or Gaussian for unbounded spaces.

Furthermore, we included the conservative training regular-
izer JCQL

Q from CQL in (4). This places the offline perfor-
mance on par with CQL, achieving the stealthiness require-
ment.

In practice, the expectations on s and a can both be evalu-
ated by sampling in (7). However, different from common
training objectives, our optimization problem is bi-level,
which poses additional computational cost and becomes
unstable once the objective is evaluated stochastically. As a
result, we resort to pre-sampling s and a, and fixing them
throughout the entire optimization process.

In particular, we defineDr as the set of (state, action) where
the states encompass those from Dp, but the actions are
randomly generated. Note that neither the states nor the
actions were poisoned in Dp. We could replace Dp with
another random subset of D, and we reuse it here just for
convenience.
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Algorithm 2 Update δr with IFT

1: Input: offline buffer D = {(s, a, r, s′)}, poison δr,
surrogate critic parameters ψ, step size η

2: v1← ∂Lδr

∂ψ |δr,ψ , where Lδr is the outer objective in (7)

3: v2 ← InverseHVP(v1,
∂LQ(ψ,D)

∂ψ ) with LQ from (4).

4: v3 ← ∂2LQ(ψ,D)
∂δr∂ψ

v2. In PyTorch, it can be implemented

by v3 = grad(∂LQ(ψ,D)
∂δr

, ψ, grad_outputs = v2)
5: Output: Updated δr = δr+ ηv3 as (7) is maximization

To summarize, our poisoner solves

max
δr

E
(s,a)∼Dr

[Qψ∗(s, a)]− βJCQL
Q (ψ∗,Dp) (10)

s.t. (8) and (9). (11)

Here we also changed the argument of JCQL
Q from D in (7)

to Dp. This approximation is unbiased, and significantly
accelerates the optimization as Dp is much smaller than D.

4.3 SOLVING THE BI-LEVEL OPTIMIZATION

To solve (10), a key quantity needed is the derivative of the
outer objective with respect to δr, which in turn needs the
derivative of Qψ∗ with respect to δr. This is challenging be-
cause their dependence is through an offline RL algorithm.
The fundamental mathematical solution is the implicit func-
tion theorem (IFT), based on which a number of techniques
with improved computational and spatial complexity have
been widely used in previous works on hyper-parameter
tuning (Bengio, 2000; Maclaurin et al., 2015; Shaban et al.,
2019; Lorraine et al., 2020). Here, we utilize these tech-
niques in a similar way as described in Algorithm 2, where
instead of tuning the hyper-parameter, we update δr. In par-
ticular, we follow Lorraine et al. (2020) and approximate
the Inverse Hessian Vector Product (HVP) by using the
Neumann approximation.

Equipped with the gradient in δr, we could simply perform
gradient based updates such as ADAM. However, this is very
expensive because IFT-style algorithms require solving the
inner offline RL to the optimal. For computational efficiency,
we only run offline RL for a few steps in each iteration, and
use the suboptimal ψ to update δr via Algorithm 2. The
entire procedure is summarized in Algorithm 3, illustrating
how the attacker generates the poison. We will refer to it as
O2O poisoner (O2OP).

It is noteworthy that the attacker does not require accessing
the victim agent’s model, neither the policy nor the value
functions. Instead, it trains its own surrogate agent based on
which the poison is constructed. Surrogate models are quite
commonly used (Geiping et al., 2021; Kang et al., 2023;
Souri et al., 2022; Cherepanova et al., 2021; Goldblum et al.,
2023), and its effectiveness is far from trivial because RL

Algorithm 3 O2OP: Poison Generation via Surrogate Model

1: Input: clean offline dataset D = {(s, a, r, s′)}
2: randomly pick a set of transitions cp for poisoning
3: initialize surrogate CQL model parameters θp, ψp, ψ̄p
4: initialize poisoned dataset Dp={(sp, ap, rp+ δr, s

′p)}
5: combine clean and poisoned dataset into the training

dataset Dt = Dp
⋃
D \ cp

6: for iter = 1 ... number of offline iterations do
7: sample a mini-batch B from Dt
8: for each gradient step do
9: Update ψ, ψ̄, θ using B according to (4) and (5)

10: if step = multiple of IFT frequency then
11: Update δr via Algorithm 2 using ψ
12: end if
13: end for
14: if iter = multiple of verification frequency then
15: Perform verification with online environment
16: end if
17: end for
18: Output: δr

is well known for high variance. With different seed and
different mini-batches sampled, the surrogate agent can be
quite different from the real agent, making it nontrivial for
the learned poison to remain effective.

5 EXPERIMENTS

We now empirically verify that our proposed poisoner O2OP
fulfills the aforementioned objectives. We tested on Frozen
Lake, Hopper, Half Cheetah, and Walker 2D environments
from the D4RL dataset (Fu et al., 2020). For each experi-
ment, we used CQL for offline training, and SAC for online
fine-tuning. SAC was not used for offline training because
it performs poorly in online fine-tuning even without attack
(Yu & Zhang, 2023). Following the common protocol, we
repeated experiments on each environment with 5 random
seeds, and then plotted the mean return from the 5 trials.

5.1 FROZEN LAKE: DISCRETE ENVIRONMENT

Frozen Lake is a discrete text environment. The environment
consists a 4-by-4 or 8-by-8 grid, each location is labeled as
road or hole. The bot starts from one location in the grid.
Figure 2 visualized a typical 4-by-4 Frozen Lake environ-
ment. At each time step, the agent can observe the location
of the bot, and choose to take an action among moving up,
down, left, or right. The agent receives a reward of 1 if the
bot gets to the goal, and receives 0 reward for reaching a
road or hole.

We trained an offline discrete CQL agent for 100 epochs,
with 500 steps in each epoch. The online discrete SAC
model was trained for 50 epochs on clean online environ-
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Figure 2: Visualization for Frozen Lake environment

ment, with a buffer carried over from their offline phase. For
this environment, we included all offline transitions D in
our candidate set Dp, and tested ϵ1 ∈ {0.1, 0.02} from (8),
leaving ϵ∞ unconstrained. O2OP first generated δr from a
surrogate model as described in Algorithm 3, and used it
to poison a new victim which was trained by CQL with a
different initialization and mini-batch sampling seed.

Baselines Since there is no existing algorithm addressing
our task, we adopted a uniform poisoner which sets all δr to
ϵ1. To study the performance drop due to the use of surrogate
models, we also compared with an attacker which has white-
box access to the victim model. These two methods will
be referred to as poison-uniform and poison-wb,
respectively.

Results Figure 3 shows the average online return during
the offline training (left) and online fine-tuning (right), both
at ϵ = 0.1. All poisoned victims perform similarly to the
clean trained agent during the offline phase, fulfilling the
stealthiness objective. However, our O2OP drove down the
online return from 0.65 to 0.3, which is only slightly higher
than that of the white-box poisoner (0.25). In contrast, the
online return of the uniform baseline stayed above 0.45. We
also aggregated the average returns over all offline or online
steps by taking their mean. This is provided in the legend.

We further reduced our budget to ϵ1 = 0.02 in Figure 4.
Here, the stealthiness remains satisfied offline. During on-
line fine-tuning, the uniform poisoned victim agent has a
minimum average return above 0.5, while our O2OP drives
it below 0.35, which is almost the same as the white-box
attacker. This confirms the effectiveness of our O2OP and
its transferability across different model initialization.

Figure 3: O2O return in offline phase (left) and online phase
(right) for Frozen Lake with ϵ1 = 0.1

Figure 4: O2O return in offline phase (left) and online phase
(right) for Frozen Lake with ϵ1 = 0.02

5.2 CONTINUOUS ENVIRONMENTS

We next move on to illustrate the attack effectiveness in a
continuous space, using the environments of Hopper, Half
Cheetah, and Walker2d. The difficulty level is medium. The
continuous CQL agents were trained for 600 epochs offline,
with 500 gradient steps per epoch. The online continuous
SAC agents were trained for 100 epochs. We reduced the
poison ratio to 2% for more realistic attacks.

Hopper As the Hopper environment has rewards ranging
in (0, 6), we increased our poison’s ℓ1 norm budget to ϵ1 =
4. To improve stealthiness, we enforced constraint ∥δr∥∞ ≤
ϵ∞ = 5. Accordingly, the same modification was made
on poison-uniform. Despite the slightly high values of
ϵ1 and ϵ∞, we only poison 2% of the transitions, which is
consistent with poisoning or backdoor attacks in supervised
learning.

Figure 5 shows that, analogously to Frozen Lake, all the
three poisoners perform similarly to the clean unpoisoned
case in terms of the offline performance, which again con-
firms the stealthiness of O2OP. During online fine-tuning,
however, O2OP achieves a performance drop from 3000
to 2600 (when online iteration is around 46000), while the
white-box version can further slash it to 2000. In contrast,
poison-uniform can hardly degrade the online return,
if at all. This shows that O2OP remains effective in this
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Figure 5: O2O return in offline phase (left) and online phase
(right) for Hopper with 2% poison

Figure 6: O2O return in offline phase (left) and online phase
(right) for Half Cheetah with 2% poison

continuous space with a small poison ratio.

Half Cheetah The reward in Half Cheetah lies between
−3 and 9, with the mean around 5. We again only poi-
soned 2% transitions, and set ϵ1 = 4 and ϵ∞ = 5. Sim-
ilarly to Hopper, Figure 6 shows our O2OP effectively
created a return drop during the online fine-tuning, while
poison-uniform is again nearly harmless to the vic-
tim at the same ratio and budget. The offline stealthiness is
evidenced once more as the four methods achieve similar
offline returns.

Walker2d This environment has similar reward range as
Half Cheetah, and we thus used identical settings to it. As
shown in Figure 7, the poisoned offline return remains com-
parable to the clean offline return, i.e., stealthy. Although
the online return seems less stable than in the previous ex-
periments, O2OP managed to curtail the return from 3800 to
2500, while the clean and poison-uniform baselines
produce returns fluctuating between 3200 and 4000.

5.3 IMPACT OF ℓp NORM BUDGET

We also tested with different budget of ϵ1 and ϵ∞ on Hopper.
As Figure 8 shows, different budgets do not affect the offline
return too much. On the other hand, the amount of online
performance drop does vary significantly with the budgets.

Figure 7: O2O return in offline phase (left) and online phase
(right) for Walker2d with 2% poison

Figure 8: O2O return in offline phase (left) and online phase
(right) on Hopper with varying ϵ1 and ϵ∞ budgets

In general, a larger poison budget leads to a greater drop.

6 CONCLUSION AND FUTURE WORK

We proposed a novel poisoning attack that reveals the vulner-
ability of the offline-to-online reinforcement learning. While
keeping the offline performance almost intact, the online
fine-tuning suffers a significant performance drop before
it asymptotically recovers. Our approach takes advantage
of the distribution shift phenomenon by promoting the Q-
value for out of distribution actions. In future work, we will
extend our attack to other O2O RL algorithms, and will
explore possible defense strategies towards a more robust
O2O training pipeline.
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