

Intro to Info Security

CS 594 Special Topics/Kent Law School:

Computer and Network Privacy and Security: Ethical, Legal, and Technical Consideration

Security & Privacy

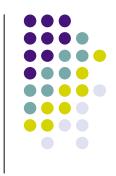
- Name of single most prestigious conference in area
- What we expect at home. Our issues there:
 - Burglars & c.
 - Natural Disaster
 - Set house on fire cooking
 - Police visit
 - Unwanted Commercial Intrusion
- Grew up w/crypto; now related but distinct

MALICE MISCHANCE ERROR

GOVERNMENT

Responses: Home design

- Opaque walls
- Window coverings
- Locks
- Child-safe stove knobs
- Many special issues vis-à-vis government (4th Amendment)
- Some special issues vis-à-vis commercial speech (1st Amendment?)


Economic issues

- Many security issues have economic tradeoffs:
- Almost always want medium-plus strength deadbolt lock on your doors
- Whether more expensive superb door lock depends on existence of 1st floor window locks, alarms, etc., and neighborhood

Special issues

- Many domains have their own special security issues:
 - Banks
 - Military Base
 - Military Base with nukes
 - Hospitals
 - Installations w/classified materials

The two books

- Security Illuminated:
 - 30,000 foot view in Chapters 1–2.1; 3; 7.9
 - Smart bird's eye view: Prof. Venkat's CS 491 (to be renumbered to 487?)
- Anderson's Security Engineering
 - Overview in Chapter 1
 - Sundry management issues including risk management in 22.1–22.2, 22.5.

Security Overview

- Key players:
 - Organization: Entity whose security is being protected
 - Attackers: Entities *intentionally* trying to "get past" security
- Colors:
 - White hats: organization's security guardians
 - Black hats: attackers
 - Red team: Simulated attack to test defenses.

What is security?

"A computer is secure if you can depend on it and its software to behave as you expect." —Garfinkle and Spafford

Though a computer scientist probably wants to pull out *correctness* issues:

- Bugs in software
- Misbehavior by *trusted* individuals beyond what was contemplated. (I.e., untrustworthy trusted individuals)

Key security concerns

- 1. People
- 2. Trust
- 3. Limiting Trust
- Traditional names of parties; Alice, Bob, Charlie
- People are very complicated, hard/impossible to model:
 - What will Alice do?
 - How does Bob constrain Alice's behavior?

Three fundamental goals

- **Confidentiality**—secrecy, control of information flow. *Preventing the unauthorized release of information*.
- Integrity—Preventing the unauthorized alteration of information.
- Availability—Keep system available for use. Preventing denial of use to those authorized to use system.
- Inverse: Disclosure, Alteration (by hacker or head crash), Denial

CIA Triad Examples

- My credit card: confidentiality—but not my photos
- My files: integrity for all; confidentiality for many
- Ability to append to class blog limited to those in the class
- System available 99.8% of time 6:30 a.m. eastern to 1:00 a.m. Pacific, and at least 70% rest of week, mean response time < 1 sec; 99% of responses < 5 sec.

Computer Security Policies

- Security policies are the goals.
- Independent of mechanism/implementation
- Intended to ensure sufficient confidentiality, integrity, and availability of organization's information assets.
- Those assets = information (data) + hardware (computers, networks)
- Protection mechanism/implementation and attacks vary by system

"System" is ambiguous

- 1. Single Component or product
 - a) Stand-alone computer
 - Historically important; still a (the?) basic building block requiring high trustworthiness
 - b) Any other single component or product
 - E.g., smart card *or* a cryptographic protocol
- 2. Networked computers
 - a) where one still knows all entities & connections
 - Organization's LAN
 - b) Distributed systems: ≥2 entities with widely varying levels of trust

System today also. . .

- IT staff, internal users (staff, management), external users (public)
- Then Broad environment:
 - Media, regulators, politicians
 - Competitors
 - Malicious teens from Romania
 - Malicious profit-driven mobsters based in Russia

• . . .

Overall Goals: Avoid

- Vulnerability: System property—weakness.
 - E.g., Windows Machine w/no antivirus software.
- Threat: External (or malicious insider?) that might allow a vulnerability to be exploited.
 - E.g., any given virus.
- Vulnerability + Threat = RISK
- Risk = potential; Security failure = actual violation of security policy

Risk Analysis

- Large, somewhat specialized area, whose value some question.
- Do need Kindergarten version in back of mind:
 - 1. Identify & Value Assets
 - 2. Identify Risks
 - Then assess risks' probability, frequency
 - 3. Decide what to do—risk management

Risk management & analysis (cont.)

- Risk analysis is general purpose; occurs elsewhere in software engineering (Therac-25), Transportation (Hindenburg), etc.
- Risk management should be done for organization as a whole
- Typically calculate **Annualized Loss Expectancy**
 - Using WAG for amount & frequency of loss, especially for very rare very big loss

Most common threats in Information Security

- 1. Hackers/crackers/malicious outsiders
- 2. Malware/malicious code objects
- 3. Malicious insiders

Reminder: Security = Tradeoffs

- Security is never absolute, and security costs money
- Goal is enough security that
 - Cost-benefit ratio makes sense
 - Always achieved once info sec is no longer the weakest link

Players in Security

Much of literature speaks blithely of "subjects," the active entities.

But 2 sets of thorny issues re exactly what subject is.

First, is Alice the human I trust, or a logon session of Alice, or a process of Alice?

Rich source of subtle bugs

Anderson list of players

Subject = Physical person Person = Physical or legal (i.e., company/corp) Principal = Any one entity Group = Set of principals Role = Function assumed by 1 or more persons

General-purpose security: the 3 pieces

1.Physical security—Limiting (or preventing) physical access to computer hardware

2.Administrative or Personnel Security—Vetting at hiring, role change. Also training, user monitoring. Key issue: How do you decide whom to trust, and how much? Sufficiently serious position: oaths, investigations, lie detectors, references, credit reports....

3rd Component: Technical

 Logical or Technical or Procedural controls. Typically implemented via software/OS, and main thing that most computer scientists think about as security.
E.g., User ID and authentication, crypto.
Based on organization's rules and/or laws, professional standards.

A Very Delicate Balance

If technical security is too onerous, it will be bypassed.

If technical security is too lax, it will be ineffective.

Goals of technical security

- Prevent certain types of attacks
- Detect security breaches
- Stop further occurrences
- Identify the bad guy(s)
- Punish the bad guy(s)

Some general Principles

Defense in depth: The physical security of a high-value destination, e.g., military installation with nukes will have, e.g.:

- Fences
- . Alarms
- Locks
- Armed Guards

Other key principles

- Separation of duties/privileges
- Least privilege

Examples of attacks

- Stand-alone: Buffer overflow, authentication attacks
- Networked: Injecting bogus packets, reading packets not intended for the node
- Distributed System: Distributed Denial of Service (DDoS)