
Access Control
CS 594 Special Topics/Kent Law School:

Computer and Network Privacy and Security: Ethical, Legal, and 

1



What is access control?

• In its broadest sense: “The prevention of 
unauthorized use of a resource, including 
the prevention of use of a resource in an 
unauthorized manner.” (ITU-T 
Recommendation X.800)

• Often used to mean this same issue 
restricted to one computer: Which 
principals are allowed to perform which 

2



Relation to other 
security pieces

• Authentication comes first before access 
control is an issue (i.e., logon).

• Authorization is the meta-level thing of 
deciding what your access rights are

• Audit is independent review of everything 
else.

3



History

• Old subject as part of single-computer 
Operating System (OS); 1970s or earlier

• Same issues for centuries in physical 
world; also same issues in databases

• Historic heart of computer security; e.g., 
distinguishes field from cryptography

4



Operating Systems

• The special computer program that is 
always running on any computer, and that is 
responding to keystrokes, mouse clicks, etc.

• I.e., provides user (programs) with 
controlled access to hardware 
components.

• Today, overwhelmingly, general computers 
(laptops, desktops, servers) running OS 

5



All OS contain bugs

• OS is very large; there will be a certain bug 
rate

• Issue: in last 10–15 years, the kernel, the 
part that really controls access to 
hardware, has grown hugely. Once upon a 
time, at least the kernel might have had 
very few bugs that were security 
vulnerabilities.

6



Unix

• Operating System developed in the 1970s 
at AT&T Bell labs, also slightly later U. C. 
Berkeley.

• Today, two main strains:

1. Linux

2. Mac OS X

• Generally considered more secure, better 

7



Access control types

• Traditionally distinguish Mandatory 
Access Control (MAC) from 
Discretionary Access Control 
(DAC)

• MAC: Also known as Multi-Level Security; 
concerned especially with classified 
information (Mil Sec) at different levels on 
one computer. 

8



DAC: Access (Control) 
Matrix

• (Lampson ‘71)

• Principals (processes? users?) perform 
operations on objects (files? files and other 
resources like comm ports?)

• Intuitively, giant matrix of Principals vs. 
objects with entries showing which 
operations will be allowed.

9



Access matrix (cont)

• I.e., access matrix a contains in entry a[i,j] 
the set of permissions that Principal i has 
for operating on object j.

• Permission is right to perform an operation, 
typically read, write, execute, append

• Access matrix sparse and/or uniform. I.e., 
either most entries blank, or tons of entries 
all just say “read”

10



Example

File 1 File 2 Device P1

P1 read,write,
execute, own

read read control

P2 read write wakeup

11



To complete a system

• What rules decide how the access matrix evolves 
over time?

• E.g., each object is born with exactly one owner, 
and owner can fill in its column

• Various rules have been studied; can get quite 
complex. (At surprisingly low level complexity of 
rules, the analysis of what might happen gets very 
complicated.)

12



Access matrix issues

• Might want a third dimension of “With 
what program?” I.e., I can write the 
Research Funds database with the 
accounting program, but not a text editor

• Even in 2 D, will not scale well to 10,000 
users and 1 million objects

• In practice, keep rows (“capabilities”) or 
columns (“access control list—ACL”) and 

13



Unix and DAC

• Permissions kept per object; effectively 
ACL. 

• 3 kinds of permission: read, write, execute 
(also an owner)

• Only 3 different classes of users: Owner, 
group, other (all other users on this 
computer)

14



SUID Vulnerability

• Notice access control mentions only users and objects, no mention 
of which program the user runs (3rd dimension).

• Problem: I want to change my password. I should not be allowed to 
alter the password file, but I should be able to run the password-
changing program and it should be able to change the file.

• Solution: Certain programs run with privileges of program owner, 
typically root, not privileges of user running the program. Mechanism 
is called “set user ID (SUID)”.

15



Windows File System 
Security

• NTFS: NT File System, inspired by Unix.

• Much like Unix, but more total distinct 
permissions

• Many additional issues and features with 
Windows Server; will not cover.

16



Intermezzo: MAC

• Variously known (and with subtle 
differences) as “multi-level security,” 
mandatory access control, lattice-based 
access control.

• Classic example is Mil Sec: unclassified, 
confidential, secret, top secret, with 
extreme concern re information flow.

• Tolerably well understood; not the center 

17



OS: What goes wrong

• Typically Black Hats consider it easy to gain 
super user access to a machine once they 
have gotten ordinary user access

• One (among several) excellent ways to do 
so is the infamous buffer overflow, aka buffer 
overrun aka smashing the stack.

18



Smashing the stack

• Can view the computer’s memory (say 
RAM) as a very big collection of slots each 
of which holds one word (1, 2, 4, or 8 
bytes).

• Both data storage and the actual program 
instructions all live somewhere in there.

• One section is set aside for managing the 
running of currently executing program, 

19



Stack smashing (cont.)

• One thing that definitely goes in run-time 
stack are arguments to programs.

• E.g., the “Ichabod” part of 
lookup(“Ichabod”)

• Programmer has to say how much space to 
leave for this argument. For an arbitrary 
string that is supposed to be a person’s 
name, might allocate 32 characters, or 256 

20



Buffer overflow (cont.)

• The 100,000 characters bleed over much of 
the memory, and the end of them wind up 
in the section of the memory where 
program instructions live. 

• E.g., write 30,000 “No op” lines (to allow 
for missing in lining thing up) followed by 
short program to (1) create new 
superuser account with empty password, 

21



What’s C got to do 
with it?

• Many OS are written in C, great new 
language of the late 1970s.

• By default, C does not check length of 
inputs to character arrays in, e.g., strcpy.

• Can check this using C; it’s just not 
automatic.  (strncpy with length, not 
strcpy).

22



History of buffer 
overflow

• According to Anderson, well known 
weakness in 1960s.

• Vulnerability exploited by Robert Morris 
Internet Worm of 1988.  (Day without 
Internet.)

• > 1/2 of early 2000s course MCS 494 on 
Unix security holes of DJB.

23



Environmental creep 
again

• Unix was created for environment with 
trusted competent users who occasionally 
messed up at Bell Labs in the 1970s.

• This still mostly described users and the 
young Internet of the mid 1980s.

• Today, mostly technically incompetent users 
(drivers not automotive engineers) and 
some malicious.

24



Contrarian view

• We are moving back to one computer per 
person. Access control not necessarily 
important.

• Access control is to separate different 
users from one another on one machine.

• And machines that are not one user are 
instead one purpose (e.g., web server).

25


