é@ MORGAN & CLAYPOOL PUBLISHERS

R

Lifelo ne g
Ma c h | n e

..

Second Edltlom N}

Zhiyuan Chen
Bing Liu

SYynNTHESIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND M ACHINE L.EARNING

Ronald J. Brachman and Peter Stone, Series Editors

Lifelong Machine Learning

Second Edition

Synthesis Lectures on Artificial
Intelligence and Machine
Learning

Editors
Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
Peter Stone, University of Texas at Austin

Lifelong Machine Learning, Second Edition
Zhiyuan Chen and Bing Liu
2018

Strategic Voting
Reshef Meir
2018

Predicting Human Decision-Making: From Prediction to Action
Ariel Rosenfeld and Sarit Kraus
2018

Game Theory for Data Science: Eliciting Truthful Information
Boi Faltings and Goran Radanovic
2017

Multi-Objective Decision Making
Diederik M. Roijers and Shimon Whiteson
2017

Lifelong Machine Learning
Zhiyuan Chen and Bing Liu
2016

Statistical Relational Artificial Intelligence: Logic, Probability, and Computation
Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole
2016

Representing and Reasoning with Qualitative Preferences: Tools and Applications
Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar

2016

Metric Learning
Aurélien Bellet, Amaury Habrard, and Marc Sebban
2015

Graph-Based Semi-Supervised Learning
Amarnag Subramanya and Partha Pratim Talukdar
2014

Robot Learning from Human Teachers
Sonia Chernova and Andrea L.. Thomaz
2014

General Game Playing
Michael Genesereth and Michael Thielscher
2014

Judgment Aggregation: A Primer
Davide Grossi and Gabriella Pigozzi
2014

An Introduction to Constraint-Based Temporal Reasoning
Roman Bartik, Robert A. Morris, and K. Brent Venable
2014

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms
Rina Dechter
2013

Introduction to Intelligent Systems in Traffic and Transportation
Ana L.C. Bazzan and Franziska Kligl
2013

A Concise Introduction to Models and Methods for Automated Planning
Hector Geffner and Blai Bonet
2013

Essential Principles for Autonomous Robotics
Henry Hexmoor

2013

Case-Based Reasoning: A Concise Introduction

Beatriz Lépez
2013

iii

iv

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
2012

Planning with Markov Decision Processes: An Al Perspective
Mausam and Andrey Kolobov
2012

Active Learning
Burr Settles
2012

Computational Aspects of Cooperative Game Theory
Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge
2011

Representations and Techniques for 3D Object Recognition and Scene Interpretation
Derek Hoiem and Silvio Savarese

2011

A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice
Francesca Rossi, Kristen Brent Venable, and Toby Walsh
2011

Human Computation
Edith Law and Luis von Ahn
2011

Trading Agents
Michael P. Wellman
2011

Visual Object Recognition
Kristen Grauman and Bastian Leibe

2011

Learning with Support Vector Machines
Colin Campbell and Yiming Ying
2011

Algorithms for Reinforcement Learning
Csaba Szepesvari

2010

Data Integration: The Relational Logic Approach
Michael Genesereth
2010

Markov Logic: An Interface Layer for Artificial Intelligence
Pedro Domingos and Daniel Lowd
2009

Introduction to Semi-Supervised Learning
XiaojinZhu and Andrew B.Goldberg
2009

Action Programming Languages
Michael Thielscher
2008

Representation Discovery using Harmonic Analysis
Sridhar Mahadevan
2008

Essentials of Game Theory: A Concise Multidisciplinary Introduction
Kevin Leyton-Brown and Yoav Shoham
2008

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence
Nikos Vlassis
2007

Intelligent Autonomous Robotics: A Robot Soccer Case Study
Peter Stone
2007

Copyright © 2018 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations

in printed reviews, without the prior permission of the publisher.

Lifelong Machine Learning, Second Edition
Zhiyuan Chen and Bing Liu

www.morganclaypool.com

ISBN: 9781681733029 paperback
ISBN: 9781681733036 ebook
ISBN: 9781681733999 epub
ISBN: 9781681733043 hardcover

DOI 10.2200/500832ED1V01Y201802AIMO037

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Lecture #38

Series Editors: Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
Peter Stone, University of Texas at Austin

Series ISSN

Print 1939-4608 Electronic 1939-4616

www.morganclaypool.com

Lifelong Machine Learning

Second Edition

Zhiyuan Chen
Google, Inc.

Bing Liu
University of Illinois at Chicago

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING #38

L\@ MORGAN CLAYPOOL PUBLISHERS

ABSTRACT

Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning
paradigm that continuously learns by accumulating past knowledge that it then uses in future
learning and problem solving. In contrast, the current dominant machine learning paradigm
learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset
to produce a model that is then used in its intended application. It makes no attempt to retain the
learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn
effectively with only a few examples precisely because our learning is very knowledge-driven:
the knowledge learned in the past helps us learn new things with little data or effort. Lifelong
learning aims to emulate this capability, because without it, an Al system cannot be considered
truly intelligent.

Research in lifelong learning has developed significantly in the relatively short time since
the first edition of this book was published. The purpose of this second edition is to expand the
definition of lifelong learning, update the content of several chapters, and add a new chapter
about continual learning in deep neural networks—which has been actively researched over the
past two or three years. A few chapters have also been reorganized to make each of them more
coherent for the reader. Moreover, the authors want to propose a unified framework for the
research area. Currently, there are several research topics in machine learning that are closely
related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-
learning—because they also employ the idea of knowledge sharing and transfer. This book brings
all these topics under one roof and discusses their similarities and difterences. Its goal is to intro-
duce this emerging machine learning paradigm and present a comprehensive survey and review
of the important research results and latest ideas in the area. This book is thus suitable for stu-
dents, researchers, and practitioners who are interested in machine learning, data mining, natural
language processing, or pattern recognition. Lecturers can readily use the book for courses in
any of these related fields.

KEYWORDS

lifelong machine learning; lifelong learning; continuous learning; continual learn-
ing; meta-learning, never-ending learning; multi-task learning; transfer learning

ZLhiyuan dedicates this book to his wife, Vena Li, and his parents.

Bing dedicates this book to his wife, Yue He; his children,
Shelley and Kate; and his parents.

Contents

Preface xvii
Acknowledgments xix
Introduction L 1
1.1 Classic Machine Learning Paradigm 1
1.2 Motivating Examples 3
1.3 A Brief History of Lifelong Learning 6
1.4 Definition of Lifelong Learning 9
1.5 Types of Knowledge and Key Challenges 14
1.6 Evaluation Methodology and Role of Big Data 16
1.7 Outlineof the Book o i i 18
Related Learning Paradigms 21
2.1 Transfer Learning........ i i i 21
2.1.1 Structural Correspondence Learning 22
2.1.2 Naive Bayes Transfer Classifier.................... 23
2.1.3 Deep Learning in Transfer Learning 24
2.1.4 Difference from Lifelong Learning, 25
2.2 Multi-Task Learning e 26
2.2.1 Task Relatedness in Multi-Task Learning 26
2.2.2 GO-MTL: Multi-Task Learning using Latent Basis 27
2.2.3 Deep Learning in Multi-Task Learning. 29
2.2.4 Difference from Lifelong Learning 30
23 OnlineLearning............. . 31
2.3.1 Difference from Lifelong Learning, 31
2.4 Reinforcement Learning i 32
2.4.1 Difference from Lifelong Learning 33
25 Metalearning 33
2.5.1 Difference from Lifelong Learning 34

2.6 SUINIMALY ..ttt ettt ettt e ettt e e 34

Lifelong Supervised Learning 35

3.1 Definition and Overview oL, 36
3.2 Lifelong Memory-Based Learning i i, 37
3.2.1 Two Memory-Based Learning Methods 37
3.2.2 Learning a New Representation for Lifelong Learning 37
3.3 Lifelong Neural Networksot 38
331 MTLNet ... 38
3.3.2 Lifelong EBNN 39
3.4 ELLA: An Efficient Lifelong Learning Algorithm 40
3.4.1 Problem Setting......... ... 41
3.4.2 Objective Function 41
3.4.3 Dealing with the First Inefficiency 42
3.4.4 Dealing with the Second Inefficiency........................... 44
3.4.5 Active Task Selection ... 45
3.5 Lifelong Naive Bayesian Classification 46
3.5.1 Naive Bayesian Text Classification 46
3.5.2 Basicldeas of LSC 48
3.5.3 LSCTechniqueot 49
3.54 Discussionsiiiiii i 50
3.6 Domain Word Embedding via Meta-Learning 51
3.7 Summary and Evaluation Datasets 53
Continual Learning and Catastrophic Forgetting 55
4.1 Catastrophic Forgetting i i 55
4.2 Continual Learning in Neural Networks..........., 57
4.3 Learning without Forgetting 59
4.4 Progressive Neural Networks i, 61
4.5 Elastic Weight Consolidation oiiiiina... 62
4.6 iCaRL: Incremental Classifier and Representation Learning.............. 64
4.6.1 Incremental Training........ i 64
4.6.2 Updating Representationoiiiiia.... 65
4.6.3 Constructing Exemplar Sets for New Classes 66
4.6.4 Performing ClassificationiniCaRL 67
47 ExpertGate ... 67
4.7.1 Autoencoder Gate.............. i 68

4.7.2 Measuring Task Relatedness for Training 69

4.7.3 Selecting the Most Relevant Expert for Testing 69
4.7.4 Encoder-Based Lifelong Learning 70
4.8 Continual Learning with Generative Replay 70
4.8.1 Generative Adversarial Networks 70
4.8.2 Generative Replay 71
4.9 Evaluating Catastrophic Forgetting.................................. 72
4.10 Summary and Evaluation Datasets 73
Open-World Learning L. 77
51 Problem Definition and Applications, 78
5.2 Center-Based Similarity Space Learning 79
5.2.1 Incrementally Updating a CBS Learning Model.................. 79
5.2.2 Testing a CBS Learning Model 81
5.2.3 CBS Learning for Unseen Class Detection 82
53 DOC: Deep Open Classificationc.couiuuiniiueennennnn.. 85
5.3.1 Feed-Forward Layers and the 1-vs.-Rest Layer................... 85
5.3.2 Reducing Open-Space Risko o L. 86
5.3.3 DOC for Image Classification 88
5.3.4 Unseen Class Discovery i ... 88
5.4 Summary and Evaluation Datasets o i, 89
Lifelong TopicModeling, 91
6.1 Main Ideas of Lifelong Topic Modeling 91
6.2 LTM: A Lifelong Topic Model oo, 94
6.21 LTM Model i 95
6.2.2 Topic Knowledge Mining oo i 96
6.2.3 Incorporating Past Knowledge 97
6.2.4 Conditional Distribution of Gibbs Sampler...................... 99
6.3 AMC: A Lifelong Topic Model for Small Data....................... 100
6.3.1 Overall Algorithm of AMCt 100
6.3.2 Mining Must-link Knowledge 101
6.3.3 Mining Cannot-link Knowledge 103
6.3.4 Extended Pélya Urn Model 104
6.3.5 Sampling Distributions in Gibbs Sampler 106
6.4 Summary and Evaluation Datasets o . 108

Lifelong Information Extraction 111
7.1 NELL: A Never-Ending Language Learner 111
7.1.1 NELL Architecture. ... 114
7.1.2 Extractors and Learningin NELL 114
7.1.3 Coupling Constraintsin NELL 117
7.2 Lifelong Opinion Target Extraction 117
7.2.1 Lifelong Learning through Recommendation 118
722 AERAlgorithm i 119
7.2.3 Knowledge Learningo i i 120
7.2.4 Recommendation using Past Knowledge 121
7.3 LearningontheJob il 123
7.3.1 Conditional Random Fields 123
7.3.2 General Dependency Feature, 124
7.3.3 The L-CRF Algorithmo ... 126
7.4 Lifelong-RL: Lifelong Relaxation Labeling 127
7.4.1 Relaxation Labeling 127
7.4.2 Lifelong Relaxation Labeling 128
7.5 Summary and Evaluation Datasets 129
Continuous Knowledge Learning in Chatbots 131
8.1 LiLi: Lifelong Interactive Learning and Inference 132
8.2 BasicIdeasof Lili......... oo i i il 134
8.3 Componentsof Lillio i 136
84 ARunning Example i 137
8.5 Summary and Evaluation Datasets 138
Lifelong Reinforcement Learning 139
9.1 Lifelong Reinforcement Learning through Multiple Environments 141
9.1.1 Acquiring and Incorporating Bias 141
9.2 Hierarchical Bayesian Lifelong Reinforcement Learning. 142
9.2.1 Motivation oottt 142
9.2.2 Hierarchical Bayesian Approach........................... ... 143
9.2.3 MTRL Algorithm.......... oo i 143
9.2.4 Updating Hierarchical Model Parameters 144
9.2.5 Samplingan MDP 146
9.3 PG-ELLA: Lifelong Policy Gradient Reinforcement Learning 146

10

9.3.1 Policy Gradient Reinforcement Learning 147
9.3.2 Policy Gradient Lifelong Learning Setting 148
9.3.3 Objective Function and Optimization 149
9.3.4 Safe Policy Search for Lifelong Learning. 150
9.3.5 Cross-domain Lifelong Reinforcement Learning 151
9.4 Summary and Evaluation Datasets 152
Conclusion and Future Directions 153
Bibliography 159

Authors’ Biographies o o 187

Preface

'The purpose of writing this second edition is to extend the definition of lifelong learning, to
update the content of several chapters, and to add a new chapter about continual learning in
deep neural networks, which has been actively researched for the past two to three years. A few
chapters are also reorganized to make each of them more coherent.

'The project of writing this book started with a tutorial on /ifelong machine learning that
we gave at the 24th International Joint Conference on Artificial Intelligence (IJCAI) in 2015.
At that time, we had worked on the topic for a while and published several papers in ICML,
KDD, and ACL. When Morgan & Claypool Publishers contacted us about the possibility of
developing a book on the topic, we were excited. We strongly believe that lifelong machine
learning (or simply lifelong learning) is very important for the future of machine learning and
artificial intelligence (AI). Note that lifelong learning is sometimes also called continual learning
or continuous learning in the literature. Our original research interest in the topic stemmed from
extensive application experiences in sentiment analysis (SA) in a start-up company several years
ago. A typical SA project starts with a client who is interested in consumer opinions expressed
in social media about their products or services and those of their competitors. There are two
main analysis tasks that an SA system needs to do: (1) discover the entities (e.g., iPhone) and
entity attributes/features (e.g., battery life) that people talked about in opinion documents such
as online reviews and (2) determine whether the opinion about each entity or entity attribute is
positive, negative, or neutral [Liu, 2012, 2015]. For example, from the sentence “iPhone is really
cool, but its battery life sucks,” an SA system should discover that the author is (1) positive about
iPhone and (2) negative about iPhone’s baztery life.

After working on many projects in many domains (which are types of products or services)
for clients, we realized that there is a great deal of sharing of information across domains and
projects. As we see more and more, new things get fewer and fewer. Itis easy to see that sentiment
words and expressions (such as good, bad, poor, terrible, and cost an arm and a leg) are shared
across domains. There is also a great deal of sharing of entities and attributes. For example,
every product has the attribute of price, most electronic products have battery, and many of them
also have screen. It is silly not to exploit such sharing to significantly improve SA to make it much
more accurate than without using such sharing but only working on each project and its data
in isolation. The classic machine learning paradigm learns exactly in isolation. Given a dataset,
a learning algorithm runs on the data to produce a model. The algorithm has no memory and
thus is unable to use the previously learned knowledge. In order to exploit knowledge sharing,
an SA system has to retain and accumulate the knowledge learned in the past and use it to help

future learning and problem solving, which is exactly what /ifelong learning aims to do.

xviii PREFACE

It is not hard to imagine that this sharing of information or knowledge across domains
and tasks is generally true in every field. It is particularly obvious in natural language processing
because the meanings of words and phrases are basically the same across domains and tasks and
so is the sentence syntax. No matter what subject matter we talk about, we use the same language,
although each subject may use only a small subset of the words and phrases in a language. If that
is not the case, it is doubtful that a natural language would have ever been developed by humans.
'Thus, lifelong learning is generally applicable, not just restricted to sentiment analysis.

'The goal of this book is to introduce this emerging machine learning paradigm and to
present a comprehensive survey and review of the important research results and latest ideas in
the area. We also want to propose a unified framework for the research area. Currently, there
are several research topics in machine learning that are closely related to lifelong learning, most
notably, multi-task learning and transfer learning, because they also employ the idea of knowl-
edge sharing and transfer. This book brings all these topics under one roof and discusses their
similarities and differences. We see lifelong learning as an extension to these related paradigms.
Through this book, we would also like to motivate and encourage researchers to work on life-
long learning. We believe it represents a major research direction for both machine learning and
artificial intelligence for years to come. Without the capability of retaining and accumulating
knowledge learned in the past, making inferences about it, and using the knowledge to help
future learning and problem solving, achieving artificial general intelligence (AGI) is unlikely.

Two main principles have guided the writing of this book. First, it should contain strong
motivations for conducting research in lifelong learning in order to encourage graduate students
and researchers to work on lifelong learning problems. Second, the writing should be accessible
to practitioners and upper-level undergraduate students who have basic knowledge of machine
learning and data mining. Yet there should be sufficient in-depth materials for graduate students
who plan to pursue Ph.D. degrees in the machine learning and/or data mining fields.

'This book is thus suitable for students, researchers, and practitioners who are interested in
machine learning, data mining, natural language processing, or pattern recognition. Lecturers
can readily use the book in class for courses in any of these related fields.

Zhiyuan Chen and Bing Liu
August 2018

Acknowledgments

We would like to thank the current and former graduate students in our group and our collabo-
rators: Geli Fei, Zhigiang Gao, Estevam R. Hruschka Jr., Wenpeng Hu, Minlie Huang, Yong-
bing Huang, Doo Soon Kim, Huayi Li, Jian Li, Lifeng Liu, Qian Liu, Guangyi Lv, Sahisnu
Mazumder, Arjun Mukherjee, Nianzu Ma, Lei Shu, Tao Huang, William Underwood, Hao
Wang, Shuai Wang, Hu Xu, Yueshen Xu, Tim Yin, Tim Yuan, and Yuanlin Zhang, for their
contributions of numerous research ideas and helpful discussions over the years. We are espe-
cially grateful to the two expert reviewers of the first edition, Eric Eaton and Matthew E. Taylor.
Despite their busy schedules, they read the first draft of the book very carefully and gave us so
many excellent comments and suggestions, which were not only insightful and comprehensive,
but also detailed and very constructive. German I. Parisi reviewed Chapter 4 of this second edi-
tion and gave us many valuable comments. Their suggestions have helped us improve the book
tremendously.

On the publication side, we thank the editors of Synthesis Lectures on Artificial Intel-
ligence and Machine Learning, Ronald Brachman, William W. Cohen, and Peter Stone, for
initiating this project. The President and CEO of Morgan & Claypool Publishers, Michael Mor-
gan, and his staff, Christine Kiilerich, and C.L. Tondo have given us all kinds of help promptly
whenever requested, for which we are very grateful.

Our greatest gratitude go to our own families. Zhiyuan Chen would like to thank his wife
Vena Li and his parents. Bing Liu would like to thank his wife Yue, his children Shelley and
Kate, and his parents. They have helped in so many ways.

'The writing of this book was partially supported by two National Science Foundation
(NSF) grants I1S-1407927 and I11S-1650900, an NCI grant R0O1CA 192240, a research gift from
Huawei Technologies, and a research gift from Robert Bosch GmbH. The content of the book
is solely the responsibility of the authors and does not necessarily represent the official views
of the NSF, NCI, Huawei, or Bosch. The Department of Computer Science at the University
of Illinois at Chicago provided computing resources and a very supportive environment for this
project. Working at Google has also given Zhiyuan Chen a broader perspective on machine
learning.

Zhiyuan Chen and Bing Liu
August 2018

CHAPTER 1

Introduction

Machine learning (ML) has been instrumental for the advance of both data analysis and artificial
intelligence (AI). The recent success of deep learning brought ML to a new height. ML algo-
rithms have been applied in almost all areas of computer science, natural science, engineering,
social sciences, and beyond. Practical applications are even more widespread. Without effective
ML algorithms, many industries would not have existed or flourished, e.g., Internet commerce
and Web search. However, the current ML paradigm is not without its weaknesses. In this chap-
ter, we first discuss the classic ML paradigm and its shortcomings, and then introduce Lifelong
ML (or simply Lifelong Learning (LL)) as an emerging and promising direction to overcome
those shortcomings with the ultimate goal of building machines that learn like humans.

1.1 CLASSIC MACHINE LEARNING PARADIGM

'The current dominant paradigm for ML is to run an ML algorithm on a given dataset to gen-
erate a model. The model is then applied in real-life performance tasks. This is true for both
supervised learning and unsupervised learning. We call this paradigm iso/ated learning because
it does not consider any other related information or the previously learned knowledge. The
fundamental problem with this isolated learning paradigm is that it does not retain and accu-
mulate knowledge learned in the past and use it in future learning. This is in sharp contrast to
our human learning. We humans never learn in isolation or from scratch. We always retain the
knowledge learned in the past and use it to help future learning and problem solving. With-
out the ability to accumulate and use the past knowledge, an ML algorithm typically needs a
large number of training examples in order to learn effectively. The learning environments are
typically static and closed. For supervised learning, labeling of training data is often done man-
ually, which is very labor-intensive and time-consuming. Since the world is too complex with
too many possible tasks, it is almost impossible to label a large number of examples for every
possible task or application for an ML algorithm to learn. To make matters worse, everything
around us also changes constantly, and the labeling thus needs to be done continually, which is
a daunting task for humans. Even for unsupervised learning, collecting a large volume of data
may not be possible in many cases.

In contrast, we humans learn quite differently. We accumulate and maintain the knowl-
edge learned from previous tasks and use it seamlessly in learning new tasks and solving new
problems. That is why whenever we encounter a new situation or problem, we may notice that
many aspects of it are not really new because we have seen them in the past in some other con-

2 1. INTRODUCTION

texts. When faced with a new problem or a new environment, we can adapt our past knowledge
to deal with the new situation and also learn from it. Over time we learn more and more, and
become more and more knowledgeable and more and more effective at learning. Lifelong ma-
chine learning or simply /ifelong learning (LL) aims to imitate this human learning process and
capability. This type of learning is quite natural because things around us are closely related and
interconnected. Knowledge learned about some subjects can help us understand and learn some
other subjects. For example, we humans do not need 1,000 positive online reviews and 1,000
negative online reviews of movies as an ML algorithm needs in order to build an accurate clas-
sifier to classify positive and negative reviews about a movie. In fact, for this task, without a
single training example, we can already perform the classification task. How can that be? The
reason is simple. It is because we have accumulated so much knowledge in the past about the lan-
guage expressions that people use to praise or to criticize things, although none of those praises
or criticisms may be in the form of online reviews. Interestingly, if we do not have such past
knowledge, we humans are probably unable to manually build a good classifier even with 1,000
training positive reviews and 1,000 training negative reviews without spending an enormous
amount of time. For example, if you have no knowledge of Arabic and someone gives you 2,000
labeled training reviews in Arabic and asks you to build a classifier manually, most probably you
will not be able to do it without using a translator.

To make the case more general, we use natural language processing (NLP) as an example.
It is easy to see the importance of LL to NLP for several reasons. First, words and phrases have
almost the same meaning in all domains and all tasks. Second, sentences in every domain follow
the same syntax or grammar. Third, almost all natural language processing problems are closely
related to each other, which means that they are inter-connected and affect each other in some
ways. The first two reasons ensure that the knowledge learned can be used across domains and
tasks due to the sharing of the same expressions and meanings and the same syntax. That is
why we humans do not need to re-learn the language (or to learn a new language) whenever we
encounter a new application domain. For example, assume we have never studied psychology,
and we want to study it now. We do not need to learn the language used in the psychology text
except some new concepts in the psychology domain because everything about the language itself
is the same as in any other domain or area. The third reason ensures that LL can be used across
different types of tasks. For example, a named entity recognition (NER) system has learned
that iPhone is a product or entity, and a data mining system has discovered that every product
has a price and the adjective “expensive” describes the price attribute of an entity. Then, from
the sentence “The picture quality of iPhone is great, but it is quite expensive,” we can safely extract
“picture quality” as a feature or attribute of iPhone, and detect that “it” refers to iPhone not the
picture quality with the help of those pieces of prior knowledge. Traditionally, these problems are
solved separately in isolation, but they are all related and can help each other because the results
from one problem can be useful to others. This situation is common for all NLP tasks. Note that
we regard anything from unknown to known as a piece of knowledge. Thus, a learned model is a

1.2. MOTIVATING EXAMPLES 3

piece of knowledge and the results gained from applying the model are also knowledge, although
they are different kinds of knowledge. For example, iPhone being an entity and picture quality
being an attribute of iPhone are two pieces of knowledge.

Realizing and being able to exploit the sharing of words and expressions across domains
and inter-connectedness of tasks are still insufficient. A large quantity of knowledge is often
needed in order to help the new task learning effectively because the knowledge gained from
one previous task may contain only a tiny bit or even no knowledge that is applicable to the
new task (unless the two tasks are extremely similar). Thus, it is important to learn from a large
number of diverse domains to accumulate a large amount of diverse knowledge. A future task
can pick and choose the appropriate past knowledge to use to help its learning. As the world
also changes constantly, the learning should thus be continuous or lifelong, which is what we
humans do.

Although we used NLP as an example, the general idea is true for any other area because
again things in the world are related and inter-connected. There is probably nothing that is
completely unrelated to anything else. Thus, knowledge learned in the past in some domains can
be applied in some other domains with similar contexts. The classic isolated learning paradigm
is unable to perform such LL. As mentioned earlier, it is only suitable for narrow and restricted
tasks in closed environments. It is also probably not sufficient for building an intelligent system
that can learn continually to achieve close to the human level of intelligence. LL aims to make
progress in this very direction. With the popularity of robots, intelligent personal assistants, and
chatbots, LL is becoming increasingly important because these systems have to interact with
humans and/or other systems, learn constantly in the process, and retain the knowledge learned
in their interactions in the ever-changing environments to enable them to learn more and to
function better over time.

1.2 MOTIVATING EXAMPLES

In the above, we motivated LL from the perspective of human learning and NLP. In this sec-
tion, we use some concrete examples, i.e., sentiment analysis, self-driving cars, and chatbots, to
turther motivate LL. Our original motivation for studying LL actually stemmed from extensive
application experiences in sentiment analysis (SA) in a start-up company several years ago. There
are two main tasks that an SA system needs to perform: The first task is usually called aspect
extraction, which discovers the entities (e.g., iPhone) and entity attributes/features (e.g., battery
life) that people talked about in an opinion document such as an online review. These entities
and entity attributes are commonly called aspects in SA. The second task is to determine whether
an opinion about an aspect (entity or entity attribute) is positive, negative, or neutral [Liu, 2012,
2015]. For example, from the sentence “iPhone is really cool, but its battery life sucks,” an SA
system should discover that the author is positive about iPhone but negative about iPhone’s
battery life.

4 1. INTRODUCTION

'There are two main types of application scenarios. The first type is to analyze consumer
opinions about one particular product or service (or a small number of products or services),
e.g., iPhone or a particular hotel. This kind of application is highly focused and usually not very
difficult. The second type is to analyze consumer opinions about a large number of products or
services, e.g., opinions about all products sold on Amazon’s or Best Buy’s websites. Although
compared to the first type, the second type is just a quantity change, in fact, it leads to a sea
quality change because the techniques used for the first type may no longer be practical for the
second type. Let us look at both the supervised and the unsupervised approaches to performing
these tasks.

We first analyze the supervised approach. For the first type of application, it is reasonable
to spend some time and effort to manually label a large amount of data for aspect extraction and
sentiment classification. Note that these are very different tasks and require different kinds of
labeling or annotations. With the labeled training data, we can experiment with different ML
models, tune their parameters, and design different features in order to build good models for
extraction and for classification. This approach is reasonable because we only need to work on
opinions about one product or service. In the unsupervised approach, the common method is
to use syntactic rules compiled by humans for aspect extraction. For sentiment classification,
the common approach is to use a list sentiment words and phrases (e.g., good, bad, beautiful,
bad, horrible, and awful) and syntactic analysis to decide sentiments. Although these methods
are called unsupervised, they are not completely domain independent. In different domains, ex-
traction rules could be different because people may have somewhat different ways to express
opinions. For sentiment classification, a word may be positive in one domain or even in one par-
ticular context but negative in another domain. For example, for the word “quiet,” the sentence
“this car is very quiet” in the car domain is positive, but the sentence “this earphone is very quiet”
is negative in the earphone domain. There are also other difficult issues [Liu et al., 2015b]. If we
only need to deal with one or two domains (products or services), we can spend time to hand-
craft rules and identify those domain specific sentiments in order to produce accurate extraction
and classification systems.

However, for the second type of application, these two approaches become problematic
because they cannot scale up. Amazon.com probably sells hundreds of thousands, if not more,
of different products. To label a large amount of data for each kind of product is a daunting task,
not to mention new products are launched all the time. It is well known that labeled training
data in one domain does not work well for another domain. Although transfer learning can help,
it is inaccurate. Worse still, transfer learning usually requires the human user to provide similar
source and target domains; otherwise, it can result in negative transfer, and generate poorer
results. Although crowdsourcing may be used for labeling, the quality of the labeled data is an
issue. More importantly, most products sold on the Web do not have a lot of reviews, which
is insufficient for building accurate classifiers or extractors. For the unsupervised approach, the
problem is the same. Every type of product is different. For a human to handcraft extraction

1.2. MOTIVATING EXAMPLES 5

rules and identify sentiment words with domain-specific sentiment polarities is also an almost
impossible task.

Although the traditional approach is very difficult for the second type of application, it
does not mean there is no possible solution. After working on many projects for clients in a start-
up company, we realized that there are a significant amount of sharing of knowledge for both
aspect extraction and sentiment classification across domains (or different types of products).
As we see reviews of more and more products, new things get fewer and fewer. It is easy to
notice that sentiment words and expressions (such as good, bad, poor, terrible, and cost an arm
and a leg) are shared across domains. There is also a great deal of sharing of aspects (entities
and attributes). For example, every product has the attribute of price, most electronic products
have batteries, and many of them also have a screen. It is silly not to exploit such sharing to
significantly improve SA to make it much more accurate than without using such sharing but
only working on the reviews of each product in isolation.

'This experience and intuition led us to try to find a systematic way to exploit the knowl-
edge learned in the past. LL is the natural choice as it is a paradigm that learns continually,
retains the knowledge learned in the past, and uses the accumulated knowledge to help future
learning and problem solving. LL can be applied to both supervised and unsupervised learning
approaches to SA. It can enable sentiment analysis to scale up to a very large number of domains.
In the supervised approach, we no longer need a large number of labeled training examples. In
many domains, no training data is needed at all because they may already be covered by some
other/past domains and such similar past domains can be automatically discovered. In the unsu-
pervised approach, it also enables the system to perform more accurate extraction and sentiment
classification because of the shared knowledge. It is also possible to automatically discover those
domain-specific sentiment polarities of words in a particular domain. We will see some of the
techniques in this book.

Interestingly, this application of LL led to two critical problems, i.e., the correctness of
knowledge and the applicability of knowledge. Before using a piece of past knowledge for a
particular domain, we need to make sure that the piece of past knowledge is actually correct.
If it is correct, we must also make sure that it is applicable to the current domain. Without
dealing with these two problems, the results in the new domain can get worse. In the later part
of the book, we will discuss some methods for solving these problems in both the supervised
and unsupervised settings.

For self-driving cars, the situation is similar. There are again two basic approaches to learn-
ing to drive: rule-based approach and learning-based approach. In the rule-based approach, it is
very hard to write rules to cover all possible scenarios on the road. The learning-based approach
has a similar issue because the road environment is highly dynamic and complex. We use the
perception system as an example. For the perception system to detect and recognize all kinds of
objects on the road in order to predict potential hazards and dangerous situations, it is extremely
hard to train a system based on labeled training data. It is highly desirable that the system can

6 1. INTRODUCTION

perform continuous learning during driving and in the process identify unseen objects and learn
to recognize them, and also learn their behaviors and danger levels to the vehicle by making use
of the past knowledge and the feedback from the surround environment. For example, when the
car sees a black patch on the road that it has never seen before, it must first recognize that this
is an unseen object and then incrementally learn to recognize it in the future, and to assess its
danger level to the car. If the other cars have driven over it (environmental feedback), it means
that the patch is not dangerous. In fact, on the road, the car can learn a great deal of knowledge
from the cars before and after it. This learning process is thus self-supervised (with no external
manual labeling of the data) and never ends. As time goes by, the car becomes more and more
knowledgeable and smarter and smarter.

Finally, we use the development of chatbots to further motivate LL. In recent years, chat-
bots have become very popular due to their widespread applications in performing goal-oriented
tasks (like assisting customers in buying products, booking flight tickets, etc.) and accompanying
humans to get rid of stress via open-ended conversations. Numerous chatbots have been devel-
oped or are under development, and many researchers are also actively working on techniques
for chatbots. However, there are still some major weaknesses with the current chatbots that limit
the scope of their applications. One serious weakness of the current chatbots is that they cannot
learn new knowledge during conversations, i.e., their knowledge is fixed beforehand and cannot
be expanded or updated during the conversation process. This is very different from our human
conversations. We human beings learn a great deal of knowledge in our conversations. We either
learn from the utterances of others, or by asking others if we do not understand something. For
example, whenever we encounter an unknown concept in a user question or utterance, we try to
gather information about it and reason in our brain by accessing the knowledge in our long-term
memory before answering the question or responding to the utterance. To gather information,
we typically ask questions to the persons whom we are conversing with because acquiring new
knowledge through interaction with others is a natural tendency of human beings. The newly
acquired information or knowledge not only assists the current reasoning task, but also helps
future reasoning. Thus, our knowledge grows over time. As time goes by, we become more and
more knowledgeable and better and better at learning and conversing. Naturally, chatbots should
have this LL or continuous learning capability. In Chapter 8, we will see an initial attempt to
make chatbots learn during conversations.

1.3 A BRIEF HISTORY OF LIFELONG LEARNING
The concept of lifelong learning (LL) was proposed around 1995 in Thrun and Mitchell [1995].

Since then it has been pursued in several directions. We give a brief history of the LL research
in each of the directions below.

1. Lifelong Supervised Learning. Thrun [1996b] first studied lifelong concept learning, where
each previous or new task aims to recognize a particular concept or class using binary clas-
sification. Several LL techniques were proposed in the contexts of memory-based learning

1.3. ABRIEF HISTORY OF LIFELONG LEARNING 7

and neutral networks. The neural network approach was improved in Silver and Mercer
[1996, 2002] and Silver et al. [2015]. Ruvolo and Eaton [2013b] proposed an efficient
lifelong learning algorithm (ELLA) to improve the multi-task learning (MTL) method
in Kumar et al. [2012]. Here the learning tasks are independent of each other. Ruvolo and
Eaton [2013a] also considered LL in an active task selection setting. Chen et al. [2015]
proposed an LL technique in the context of Naive Bayesian (NB) classification. A theo-
retical study of LL was done by Pentina and Lampert [2014] in the PAC-learning frame-
work. Shu et al. [2017b] proposed a method to improve a conditional random fields (CRF)
model during model application or testing. It is like learning on the job, which other exist-
ing models cannot do. Mazumder et al. [2018] worked along a similar line in the context
of human-machine conversation to enable chatbots to continually learn new knowledge
in the conversation process.

. Continual Learning in Deep Neural Networks. In the past few years, due to the popularity of
deep learning, many researchers studied the problem of continually learning a sequence of
tasks in the deep learning context [Parisi et al., 2018a]. Note that LL is also called continual
learning in the deep learning community. The main motivation of continual learning in
deep learning is to deal with the problem of cazastrophic forgetting when learning a series
of tasks [McCloskey and Cohen, 1989]. The focus has been on incrementally learning
each new task in the same neural network without causing the neural network to forget
the models learned for the past tasks. Limited work has been done on how to leverage the
previously learned knowledge to help learn the new task better. This is in contrast to the
other LL. methods, which emphasize leveraging the past knowledge to help new learning.

. Open-world Learning. Traditional supervised learning makes the closed-world assumption
that the classes of the test instances must have been seen in training [Bendale and Boult,
2015, Fei and Liu, 2016]. This is not suitable for learning in open and dynamic envi-
ronments because in such an environment, there are always new things showing up. That
is, in the model testing or application, some instances from unseen classes may appear.
Open-world learning deals with this situation [Bendale and Boult, 2015, Fei et al., 2016,
Shu et al., 2017a]. That is, an open-world learner must be able to build models that can
detect unseen classes during testing or the model application process, and also learn the
new classes incrementally based on the new classes and the old model.

. Lifelong Unsupervised Learning. Papers in this area are mainly about lifelong topic model-
ing and lifelong information extraction. Chen and Liu [2014a,b] and Wang et al. [2016]
proposed several lifelong topic modeling techniques that mine knowledge from topics pro-
duced from many previous tasks and use it to help generate better topics in the new task.
Liu et al. [2016] also proposed an LL approach based on recommendation for information
extraction in the context of opinion mining. Shu et al. [2016] proposed a lifelong relax-

8 1. INTRODUCTION

ation labeling method to solve a unsupervised classification problem. These techniques are
all based on meta-level mining, i.e., mining the shared knowledge across tasks.

5. Lifelong Semi-Supervised Learning. 'The work in this area is represented by the NELL
(Never-Ending Language Learner) system [Carlson et al., 2010a, Mitchell et al., 2015],
which has been reading the Web continuously for information extraction since Jan-
uary 2010, and it has accumulated millions of entities and relations.

6. Lifelong Reinforcement Learning. Thrun and Mitchell [1995] first proposed some LL al-
gorithms for robot learning which tried to capture the invariant knowledge about each
individual task. Tanaka and Yamamura [1997] treated each environment as a task for LL.
Ring [1998] proposed a continual-learning agent that aims to gradually solve complicated
tasks by learning easy tasks first. Wilson et al. [2007] proposed a hierarchical Bayesian
lifelong reinforcement learning method in the framework of Markov Decision Process
(MDP). Fernindez and Veloso [2013] worked on policy reuse in a multi-task setting. A
nonlinear feedback policy that generalizes across multiple tasks is proposed in Deisenroth
et al. [2014]. Bou Ammar et al. [2014] proposed a policy gradient efficient LL algorithm
following the idea in ELLA [Ruvolo and Eaton, 2013b]. This work was further enhanced
with cross-domain lifelong reinforcement learning [Bou Ammar et al., 2015a] and with
constraints for safe lifelong reinforcement learning [Bou Ammar et al., 2015¢].

LL techniques working in other areas also exist. Silver et al. [2013] wrote an excellent
survey of the early LL research published at the AAAI 2013 Spring Symposium on LL.

As we can see, although LL has been proposed for more than 20 years, research in the area
has not been extensive. There could be many reasons. Some of the reasons may be as follows.
First, the ML research community for the past 20 years has focused on statistical and algorithmic
approaches. LL typically needs a systems approach that combines multiple components and
learning algorithms. Systems approaches to learning were not in favor. This may partially explain
that although the LL research has been limited, closely related paradigms of transfer learning
and MTL have been researched fairly extensively because they can be done in a more statistical
and algorithmic fashion. Second, much of the past ML research and applications focused on
supervised learning using structured data, which are not easy for LL because there is little to be
shared across tasks or domains. For example, the knowledge learned from a supervised learning
system on a loan application is hard to be used in a health or education application because they
do not have much in common. Also, most supervised learning algorithms generate no additional
knowledge other than the final model or classifier, which is difficult to use as prior knowledge
for another classification task even in a similar domain. Third, many effective ML methods such
as SVM and deep learning cannot easily use prior knowledge even if such knowledge exists.
These classifiers are black boxes and hard to decompose or interpret. They are generally more
accurate with more training data. Fourth, related areas such as transfer learning and MTL were
popular partly because they typically need only two and just a few similar tasks and datasets and

1.4. DEFINITION OF LIFELONG LEARNING 9

do not require retention of explicit knowledge. LL, on the other hand, needs significantly more
previous tasks and data in order to learn and to accumulate a large amount of explicit knowledge
so that the new learning task can pick and choose the suitable knowledge to be used to help the
new learning. This is analogous to human learning. If one does not have much knowledge, it is
very hard for him/her to learn more knowledge. The more knowledge that one has, the easier it
is for him/her to learn even more. For example, it is close to impossible for an elementary school
pupil to learn graphical models. Even for an adult, if he has not studied probability theory, it is
in-feasible for him to learn graphical models either.

Considering these factors, we believe that one of the more promising areas for LL is NLP
due to its extensive sharing of knowledge across domains and tasks and inter-relatedness of NLP
tasks as we discussed above. The text data is also abundant. Lifelong supervised, unsupervised,
semi-supervised, and reinforcement learning can all be applied to text data.

1.4 DEFINITION OF LIFELONG LEARNING

The early definition of LL is as follows [Thrun, 1996b]. At any point in time, the system has
learned to perform N tasks. When faced with the (N + 1)th task, it uses the knowledge gained
from the past N tasks to help learn the (N + 1)th task. We extend this definition by giving
it more details and additional features. First, an explicit knowledge base (KB) is added to retain
the knowledge learned from previous tasks. Second, the ability to discover new learning tasks
during model application is included. Third, the ability to learn while working (or to learn on
the job) is incorporated.

Definition 1.1 Lifelong learning (LL) is a continuous learning process. At any point in time,
the learner has performed a sequence of N learning tasks, 71, 7, ..., Tn. These tasks, which
are also called the previous tasks, have their corresponding datasets Dy, D, ..., Dy. The tasks
can be of different #ypes and from different domains. When faced with the (N + 1)th task Ty 41
(which is called the new or current task) with its data Dy 11, the learner can leverage the past
knowledge in the knowledge base (KB) to help learn Ty 1. The task may be given or discovered
by the system itself (see below). The objective of LL is usually to optimize the performance of
the new task Ty 1, but it can optimize any task by treating the rest of the tasks as the previous
tasks. KB maintains the knowledge learned and accumulated from learning the previous tasks.
After the completion of learning Tx 41, KB is updated with the knowledge (e.g., intermediate
as well as the final results) gained from learning 7y 1. The updating can involve consistency
checking, reasoning, and meta-mining of higher-level knowledge. Ideally, an LL learner should

also be able to:

1. learn and function in the open environment, where it not only can apply the learned model
or knowledge to solve problems but also discover new tasks to be learned, and

2. learn to improve the model performance in the application or testing of the learned model.
This is like that after job training, we still Jearn on the job to become better at doing the job.

10 1. INTRODUCTION

We can see that this definition is neither formal nor specific because LL is an emerging field and
our understanding of it is still limited. For example, the research community still cannot define
what knowledge is formally. We believe that it may be better to leave the definition of LL at the
conceptual level rather than having it fixed or formalized. Clearly, this does not prevent us from
giving a formal definition when we solve a specific LL problem. Below, we give some additional
remarks.

1. 'The definition indicates five key characteristics of LL:

(a) continuous learning process,

(b) knowledge accumulation and maintenance in the KB,

(c) the ability to use the accumulated past knowledge to help future learning,
(d) the ability to discover new tasks, and

(e) the ability to learn while working or to learn on the job.

These characteristics make LL different from related learning paradigms such as transfer
learning [Jiang, 2008, Pan and Yang, 2010, Taylor and Stone, 2009] and multi-task learn-
ing (MTL) [Caruana, 1997, Chen et al., 2009, Lazaric and Ghavamzadeh, 2010], which
do not have one or more of these characteristics. We will discuss these related paradigms
and their differences from LL in detail in Chapter 2.

Without these capabilities, an ML system will not be able to learn in a dynamic open
environment by itself, and will never be truly intelligent. By open environment, we mean
that the application environment may contain novel objects and scenarios that have not
been learned before. For example, we want to build a greeting robot for a hotel. At any
point in time, the robot has learned to recognize all existing hotel guests. When it sees
an existing guest, it can call him/her by his/her first name and chat. It must also detect
any new guests that it has not seen before. On seeing a new guest, it can say hello, ask for
his/her name, take many pictures, and learn to recognize the guest. Next time when it sees
the new guest again, it can call him/her by his/her first name and chat like an old friend.
'The real-world road environment for self-driving cars is another very typical dynamic and
open environment.

2. Since knowledge is accumulated and used in LL, this definition forces us to think about
the issue of prior knowledge and the role it plays in learning. LL thus brings in many
other aspects of Artificial Intelligence to ML, e.g., knowledge representation, acquisition,
reasoning, and maintenance. Knowledge, in fact, plays a central rule. It not only can help
improve future learning, but can also help collect and label training data (self-supervision)
and discover new tasks to be learned in order to achieve autonomy in learning. The integra-
tion of both data-driven learning and knowledge-driven learning is probably what human
learning is all about. The current ML focuses almost entirely on data-driven optimization

1.4. DEFINITION OF LIFELONG LEARNING 11

learning, which we humans are not good at. Instead, we are very good at learning based
on our prior knowledge. It is well-known that for human beings, the more we know the
more we can learn and the easier we can learn. If we do not know anything, it is very hard
to learn anything. ML research should thus pay more attention to knowledge and build
machines that learn like humans.!

3. We distinguish two types of tasks.

(a) Independent tasks: Each task 7T; is independent of the other tasks. This means that each
task can be learned independently, although due to their similarities and sharing of
some latent structures or knowledge, learning 7; can leverage the knowledge gained
from learning previous tasks.

(b) Dependent tasks: Each task T; has some dependence on some other tasks. For example,
in open-world learning (Chapter 5)[Fei et al., 2016], each new supervised learning
task adds a new class to the previous classification problem, and needs to build a new
multi-class classifier that is able to classify data from all previous and the current
classes.

4. 'The tasks do not have to be from the same domain. Note that there is still no unified
definition of a domain in the literature that is applicable to all areas. In most cases, the
term is used informally to mean a setting with a fixed feature space where there can be
multiple different tasks of the same type or of different types (e.g., information extraction,
coreference resolution, and entity linking). Some researchers even use domain and task
interchangeably because there is only one task from each domain in their study. We also
use them interchangeably in many cases in this book due to the same reason but will
distinguish them when needed.

5. 'The shift to the new task can happen abruptly or gradually, and the tasks and their data
do not have to be provided by some external systems or human users. Ideally, a lifelong
learner should also be able to find its own learning tasks and training data in its interaction
with humans and the environment or using its previously learned knowledge to perform
open-world and self-supervised learning.

6. The definition indicates that LL may require a systems approach that combines multiple
learning algorithms and different knowledge representation schemes. It is unlikely that a
single learning algorithm is able to achieve the goal of LL. LL, in fact, represents a large
and rich problem space. Much research is needed to design algorithms to achieve each
capability or characteristic.

f a learning system can do both data-driven optimization and human-level knowledge-based learning, we may say that it
has achieved some kind of super learning capability, which may also mean that it has reached some level of artificial general

intelligence (AGI) because we humans certainly cannot do learning based on large scale data-driven optimization or remember
a large quantity of knowledge in our brain as a machine can.

12 1. INTRODUCTION

Based on Definition 1.1, we can outline a general process of LL and an LL system archi-
tecture, which is very different from that of the current isolated learning paradigm with only a
single task 7" and dataset D. Figure 1.1 illustrates the classic isolated learning paradigm, where
the learned model is used in its intended application.

Task
T
Dl
— Yy v N
Learner y/ Mod 1\ (Avolicati W\’
(ML algorithm) \ ode 4 ™ 2R 1cat10n’~>
~_ ~—»_.\/‘/_/

Figure 1.1: 'The classic machine learning paradigm.

'The new LL system architecture is given in Figure 1.2. Below, we first describe the key
components of the system and then the LL process. We note that this general architecture is
tor illustration purposes. Not all existing systems use all the components or sub-components. In
fact, most current systems are much simpler. Moreover, there is still not a generic LL system that
can perform LL in all possible domains for all possible types of tasks. In fact, we are still far from
that. Unlike many ML algorithms such as SVM and deep learning, which can be applied to any
learning task as long as the data is represented in a specific format required by these algorithms,
current LL algorithms are still specific to some types of tasks and data.

1. Knowledge Base (KB): It is mainly for storing the previously learned knowledge. It has a

tew sub-components.

(a) Past Information Store (P1S): It stores the information resulted from the past learning,
including the resulting models, patterns, or other forms of outcome. PIS may involve
sub-stores for information such as (1) the original data used in each previous task,
(2) intermediate results from each previous task, and (3) the final model or patterns
learned from each previous task. As for what information or knowledge should be
retained, it depends on the learning task and the learning algorithm. For a particular
system, the user needs to decide what to retain in order to help future learning.

(b) Meta-Knowledge Miner (MKM). It performs meta-mining of the knowledge in the
PIS and in the meta-knowledge store (see below). We call this meta-mining because
it mines higher-level knowledge from the saved knowledge. The resulting knowledge
is stored in the Meta-Knowledge Store. Here multiple mining algorithms may be
used to produce different types of results.

1.4. DEFINITION OF LIFELONG LEARNING 13

e N\
Task Manager New _ |
Task
., T ... Tne Thet ---
Previously Learned Tasks Future Learning Tasks
D Discovered
N+l New Tasks
P /"\\/\
Task-based Knowledge-based / \ — N’\
. — > Model) Application)
Knowledge Miner Learner _
[o -
Past Retained Knowledge
Knowledge Knowledge in Results
. .
Knowledge Base J

Figure 1.2: 'The lifelong machine learning system architecture.

(¢) Meta-Knowledge Store (MKS): It stores the knowledge mined or consolidated from
PIS and also from MKS itself. Some suitable knowledge representation schemes are
needed for each application.

(d) Knowledge Reasoner (KR): It makes inference based on the knowledge in MKB
and PIS to generate more knowledge. Most current systems do not have this sub-
component. However, with the advance of LL, this component will become increas-
ingly important.

Since the current LL research is still in its infancy, as indicated above, none of the existing
systems has all these sub-components.

2. Knowledge-Based Learner (KBL): For LL, it is necessary for the learner to be able to use
prior knowledge in learning. We call such a learner a knowledge-based learner, which can
leverage the knowledge in the KB to learn the new task. This component may have two
sub-components: (1) Zusk knowledge miner (TKIM), which makes use of the raw knowl-
edge or information in the KB to mine or identify knowledge that is appropriate for the
current task. This is needed because in some cases, KBL cannot use the raw knowledge
in the KB directly but needs some task-specific and more general knowledge mined from
the KB [Chen and Liu, 2014a,b], and (2) the Jearner that can make use of the mined

knowledge in learning.

14 1. INTRODUCTION

3. Task-based Knowledge Miner (TKM): This module mines knowledge from the KB
specifically for the new task.

4. Model: This is the learned model, which can be a prediction model or classifier in su-
pervised learning, clusters or topics in unsupervised learning, a policy in reinforcement
learning, etc.

5. Application: This is the real-world application for the model. It is important to note that
during model application, the system can still learn new knowledge (i.e., “knowledge in
results”), and possibly discover new tasks to be learned. Application can also give feedback
to the knowledge-based learner for model improvement.

6. Task Manager (TM): It receives and manages the tasks that arrive in the system, handles
the task shift, and presents the new learning task to the KBL in a lifelong manner.

Lifelong Learning Process: A typical LL process starts with the Task Manager assigning a new
task to the KBL (the task can be given or discovered automatically). KBL then works with the
help of the past knowledge stored in the KB to produce an output model for the user and also
send the information or knowledge that needs to be retained for future use to the KB. In the
application process, the system may also discover new tasks and learn while working (learn on
the job). Some knowledge gained in applications can also be retained to help future learning.

1.5 TYPES OF KNOWLEDGE AND KEY CHALLENGES

Definition 1.1 does not give any detail about what knowledge or its representation form is in the
KB. This is mainly due to our limited understanding. There is still no well-accepted definition
of knowledge or its general representation scheme. In the current LL research, past knowledge
usually serves as some kind of prior information (e.g., prior model parameters or prior proba-
bilities) for the new task. Each existing paper uses one or two specific forms of knowledge that
are suitable for its proposed techniques and intended applications. For example, some methods
use a set of shared latent parameters [Ruvolo and Eaton, 2013b, Wilson et al., 2007] as knowl-
edge. Some directly use model parameters of previous tasks as knowledge [Chen et al., 2015,
Shu et al., 2016]. Some use previous model application results as knowledge, e.g., topics from
topic modeling [Chen and Liu, 2014a, Chen et al., 2015] and items extracted from previous
information extraction models [Liu et al., 2016, Shu et al., 2017b]. Some even use past relevant
data as knowledge to augment the new task data [Xu et al., 2018]. Knowledge is usually rep-
resented based on how it is used in individual algorithms. There are still no general knowledge
representation schemes that can be used across different algorithms or different types of tasks.
Definition 1.1 also does not specify how to maintain or update the KB. For a particular LL algo-
rithm and a particular form of shared knowledge, one needs to design a KB and its maintenance
or updating methods based on the algorithm and its knowledge representation need.
There are mainly two types of shared knowledge that are used in learning the new task.

1.5. TYPES OF KNOWLEDGE AND KEY CHALLENGES 15

1. Global knowledge: Many existing LL. methods assume that there is a global latent struc-
ture among tasks that is shared by all tasks [Bou Ammar et al., 2014, Ruvolo and Eaton,
2013b, Thrun, 1996b, Wilson et al., 2007] (Sections 3.2, 3.4, 9.1, 9.2, and 9.3). This global
structure can be learned and leveraged in the new task learning. The approaches based on
global knowledge transfer and sharing mainly grew out of or inspired by MTL, which
jointly optimizes the learning of multiple similar tasks. Such knowledge is more suitable
for similar tasks in the same domain because such tasks are often highly correlated or have
very similar distributions.

2. Local knowledge: Many other methods do not assume such a global latent structure among
tasks [Chen and Liu, 2014a,b, Chenetal., 2015, Feietal., 2016, Liuetal., 2016, Shu et al.,
2016, Tanaka and Yamamura, 1997] (Sections 3.5, 5.2, 6.2, 6.3, 7.1, 7.2, 7.3, and 7.4).
Instead, during the learning of a new task they pick and choose the pieces of knowl-
edge learned from previous tasks to use based on the need of the current task. This means
that different tasks may use difterent pieces of knowledge learned from different previous
tasks. We call such pieces of knowledge the /ocal knowledge because they are local to their
individual previous tasks and are not assumed to form a coherent global structure. Local
knowledge is likely to be more suitable for related tasks from different domains because
the shared knowledge from any two domains may be small. But the prior knowledge that
can be leveraged by the new task can still be large because the prior knowledge can be from
many past domains.

LL methods based on local knowledge usually focus on optimizing the current task performance
with the help of past knowledge. They can also be used to improve the performance of any
previous task by treating that task as the new/current task. The main advantage of these methods
is their flexibility as they can choose whatever pieces of past knowledge that are useful to the
new task. If nothing is useful, the past knowledge will not be used. The main advantage of
LL methods based on global knowledge is that they often approximate optimality on all tasks,
including the previous and the current ones. This property is inherited from MTL. However,
when the tasks are highly diverse and/or numerous, this can be difficult.

As the previous learned knowledge is involved, apart from the classic issues about knowl-
edge discussed above (e.g., what knowledge to retain, how to represent and use the knowledge,
and how to maintain the KB), there are two other fundamental challenges about knowledge in
LL. We will describe how some existing techniques deal with these challenges later in the book.

1. Correctness of knowledge: Clearly, using incorrect past knowledge is detrimental to the new
task learning. In a nutshell, LL can be regarded as a continuous bootstrapping process.
Errors can propagate from previous tasks to subsequent tasks to generate more and more
errors. We humans seem to have a good idea of what is correct or what is incorrect. But
there is still no satisfactory technique for detecting wrong knowledge. Many existing pa-

pers do not deal with this challenge [Silver and Mercer, 2002, Silver et al., 2015, Thrun,

16 1. INTRODUCTION

1996b] or deal with it implicitly to some extent [Ruvolo and Eaton, 2013b, Wilson et al.,
2007]. There are also many papers that deal with the challenge explicitly [Chen and Liu,
2014a,b, Chen et al., 2015, Liu et al., 2016, Mitchell et al., 2015, Shu et al., 2016]. For
example, one strategy is to find those pieces of knowledge that have been discovered in
many previous tasks/domains [Chen and Liu, 2014a,b, Chen et al., 2015, Shu et al., 2016].
Another strategy is to make sure that the piece of knowledge is discovered from differ-
ent contexts using different techniques [Mitchell et al., 2015]. Although these and other
strategies are useful, they are still not satisfactory because of two main issues. First, they
are not foolproof because they can still produce wrong knowledge. Second, they have low
recall because most pieces of correct knowledge cannot pass these strategies and thus can-
not be used subsequently, which prevents LL from producing even better results. We will
detail these strategies when we discuss the related papers.

2. Applicability of knowledge. Although a piece of knowledge may be correct in the context of
some previous tasks, it may not be applicable to the current task. Application of inappro-
priate knowledge has the same negative consequence as the above case. Again, we humans
are quite good at recognizing the right context for the application of a piece of knowledge,
which is very difficult for automated systems. Again, many papers do not deal with the
challenge, however, some do, e.g., Chen and Liu [2014a], Chen et al. [2015], Shu et al.
[2016], and Xu et al. [2018]. We will describe them when we discuss these papers as they

are quite involved.

Clearly, the two challenges are closely related. It is seemingly that we only need to be
concerned with the applicability challenge regardless whether the knowledge is correct or not
because if a piece of knowledge is not correct, it cannot be applicable to the new task. This is
often not the case because in deciding applicability, we may just be able to decide whether a new
task or domain context is similar to some older tasks or domain contexts. If so, we can use the
knowledge gained from those older tasks. Then we must make sure that the knowledge from
those older tasks is correct.

1.6 EVALUATION METHODOLOGY AND ROLE OF BIG
DATA

Unlike the classic isolated learning where the evaluation of a learning algorithm is based on
training and testing using data from the same task/domain, LL needs a different evaluation
methodology because it involves a sequence of tasks and we want to see improvements in the
learning of new tasks. Experimental evaluation of an LL algorithm in the current research is
commonly done using the following steps.

1. Run on the data from the previous tasks: We first run the algorithm on the data from a
set of previous tasks, one at a time in a given sequence, and retain the knowledge gained

1.6. EVALUATION METHODOLOGY AND ROLE OF BIG DATA 17

in the KB. Obviously, there can be multiple variations or versions of the algorithm (e.g.,
with different types of knowledge used and more or less knowledge used) that can be
experimented with.

2. Run on the data of the new task: We then run the LL algorithm on the new task data by
leveraging the knowledge in the KB.

3. Run baseline algorithms: For comparison, we run some baseline algorithms. There are usu-
ally two kinds of baselines. The first kind are algorithms that perform isolated learning on
the new data without using any past knowledge. The second kind are existing LL algo-
rithms.

4. Analyze the results: This step compares the results from steps 2 and 3 and analyzes the
results to make some observations, e.g., to show that the results from the LL algorithm in
step 2 are superior to those from the baselines in step 3.

'There are several additional considerations in carrying out an LL experimental evaluation.

1. A large number of tasks: A large number of tasks and datasets are needed to evaluate an
LL algorithm. This is because the knowledge gained from a few tasks may not be able to
improve the learning of the new task much as each task may only provide a very small
amount of knowledge that is useful to the new task (unless all the tasks are very similar)
and the data in the new task is often quite small.

2. Tusk sequence: 'The sequence of the tasks to be learned can be significant, meaning that
different task sequences can generate different results. This is so because LL algorithms
typically do not guarantee optimal solutions for all previous tasks. To take the sequence
effect into consideration in the experiment, one can try several random sequences of tasks
and generate results for the sequences. The results can then be aggregated for comparison
purposes. Existing papers mainly use only one random sequence in their experiments.

3. Progressive experiments: Since more previous tasks generate more knowledge, and more
knowledge in turn enables an LL algorithm to produce better results for the new task, it
is thus desirable to show how the algorithm performs on the new task as the number of
previous tasks increases.

Note that it is not our intention to cover all possible kinds of evaluations in the current research
on LL. Our purpose is simply to introduce the common evaluation methodologies. In evaluating
a specific algorithm, one has to consider the special characteristics of the algorithm (such as its
assumptions and parameter settings) and the related research in order to design a comprehensive
set of experiments.

Role of Big Data in LL Evaluation: It is common knowledge that the more you know
the more you can learn and the easier you can learn. If we do not know anything, it is very hard

18 1. INTRODUCTION

to learn anything. These are intuitive as each one of us must have experienced this in our lives.
'The same is true for a computer algorithm. Thus, it is important for an LL system to learn from
a diverse range and a large number of domains to give the system a wide vocabulary and a wide
range of knowledge so that it can help learn in diverse future domains. Furthermore, unlike
transfer learning, LL needs to automatically identify the pieces of past knowledge that it can
use, and not every past task/domain is useful to the current task. LL experiments and evaluation
thus require data from a large number of domains or tasks and consequently large volumes of
data. Fortunately, big datasets are now readily available in many applications such as image and
text that can be used in LL evaluations.

1.7 OUTLINE OF THE BOOK

This book introduces and surveys this important and emerging field. Although the body of
literature is not particularly large, related papers are published in a large number of conferences
and journals. There is also a large number of papers that do not exhibit all the characteristics
of LL, but are related to it to some extent. It is thus hard, if not impossible, to cover all of
the important work in the field. As a result, this book should not be taken to be an exhaustive
account of everything in the field.

'The book is organized as follows. In Chapter 2, we discuss some related ML paradigms
to set the stage and background. We will see that these existing paradigms are different from
LL because they lack one or more of the key characteristics of LL. However, all these paradigms
involve some forms of knowledge sharing or transfer across tasks and can even be made continual
in some cases. Thus, we regard LL as an advanced ML paradigm that extends these existing
paradigms in the progression of making ML more intelligent and closer to human learning.

In Chapter 3, we focus on discussing existing research on supervised LL, where we will see
a fairly detailed account of some early and more recent supervised LL methods. In Chapter 4, we
continue the discussion of supervised LL but in the context of deep neural networks (DNNs),
where LL is sometimes also called continual learning. The main goal in this context is to solve
the catastrophic forgetting problem in deep learning when learning multiple tasks. Chapter 5
is another chapter related to supervised learning. However, as its name suggests, this type of
learning learns in the open-world, where the test data may contain instances from unseen classes
(notseen in training). This is in contrast to the classic closed-world learning, where all test classes
have appeared in training.

In Chapter 6, we discuss lifelong topic models. In these models, discovered topics from
previous tasks are mined to extract reliable knowledge that can be exploited in the new model
inferencing to generate better topics for the new task. Chapter 7 discusses lifelong information
extraction. Information extraction is a very suitable problem for LL because information ex-
tracted in the past is often quite useful for future extraction due to knowledge sharing across
tasks and/or domains. Chapter 8 switches topic and discusses a preliminary work about life-
long interactive knowledge learning in human-machine conversation. This is a new direction as

1.7. OUTLINE OF THEBOOK 19

existing chatbots cannot learn new knowledge after they are built or deployed. Lifelong rein-
forcement learning is covered in Chapter 9. Chapter 10 concludes the book and discusses some
major challenges and future directions of the LL research.

21

CHAPTER 2

Related Learning Paradigms

As described in the introduction chapter, lifelong learning (LL) has several key characteristics:
continuous learning process, explicit knowledge retention and accumulation, and the use of the
previously learned knowledge to help learn new tasks. Additionally, it is also desirable to have
the ability to discover new tasks and learn them incrementally, and to learn additional knowl-
edge during the real-life applications to improve the model. There are several machine learn-
ing (ML) paradigms that have related characteristics. This chapter discusses the most related
ones, i.e., transfer learning or domain adaption, multi-task learning (MTL), online learning,
reinforcement learning, and meta-learning. The first two paradigms are more closely related to
LL because they both involve knowledge transfer across domains or tasks, but they don't learn
continuously and don't retain or accumulate learned knowledge explicitly. Online learning and
reinforcement learning involves continuous learning processes but they still focus on a single
learning task with a time dimension. Meta-learning is also concerned with multiple tasks, with
primary focus on one-shot or few-shot learning. These differences will become clearer after we
review some representative techniques for each of these related learning paradigms.

2.1 TRANSFER LEARNING

Transfer learning is a popular topic of research in ML and data mining. It is also commonly
known as domain adaptation in natural language processing. It usually involves two domains:
a source domain and a target domain. Although there can be more than one source domain, in
almost all existing research only one source domain is used. The source domain normally has a
large amount of labeled training data while the target domain has little or no labeled training
data. The goal of transfer learning is to use the labeled data in the source domain to help learning
in the target domain (see three excellent surveys of the area [Jiang, 2008, Pan and Yang, 2010,
Taylor and Stone, 2009]). Note that in the literature, some researchers also use the terms source
task and target task rather than source domain and target domain, but by far, the latter terminologies
are more commonly used as the source, and the target tasks are often from different domains or
quite different distributions [Pan and Yang, 2010].

There are many types of knowledge that can be transferred from the source domain to
the target domain to help learning in the target domain. For example, Bickel et al. [2007],
Dai et al. [2007b,c], Jiang and Zhai [2007], Liao et al. [2005], and Sugiyama et al. [2008] di-
rectly treated certain parts of data instances in the source domain as the knowledge with instance
reweighing and importance sampling and transfer it over to the target domain. Ando and Zhang

22 2. RELATED LEARNING PARADIGMS
[2005], Blitzer et al. [2006, 2007], Dai et al. [2007a], Daume III [2007], and Wang and Ma-

hadevan [2008] used features from the source domain to generate new feature representations
for the target domain. Bonilla et al. [2008], Gao et al. [2008], Lawrence and Platt [2004], and
Schwaighofer et al. [2004] transferred learning parameters from the source domain to the target
domain. To give a flavor of transfer learning, we briefly discuss some existing transfer learning
methods below.

2.1.1 STRUCTURAL CORRESPONDENCE LEARNING

One of the popular transfer learning techniques is the Structural Correspondence Learning
(SCL) proposed in Blitzer et al. [2006, 2007]. This method is mainly used in text classification.
'The algorithm works as follows: given labeled data from the source domain and unlabeled data
from both the source and target domains, SCL tries to find a set of pivor features that have
the same characteristics or behaviors in both domains. If a non-pivot feature is correlated with
many of the same pivot features across different domains, this feature is likely to behave similarly
across different domains. For example, if a word w co-occurs very frequently with the same set
of pivot words in both domains, then w is likely to behave the same (e.g., holding the same
semantic meaning) across domains.

To implement the above idea, SCL first chooses a set of m features which occur frequently
in both domains and are also good predictors of the source label (in their paper these were
the features with the highest mutual information with the source label). These pivot features
represent the shared feature space of the two domains. SCL then computes the correlations of
each pivot feature with other non-pivot features in both domains. This produces a correlation
matrix W where row i is a vector of correlation values of non-pivot features with the ith pivot
teature. Intuitively, positive values indicate that those non-pivot features are positively correlated
with the i th pivot feature in the source domain or in the target domain. This establishes a feature
correspondence between the two domains. After that, singular value decomposition (SVD) is
employed to compute a low-dimensional linear approximation 6 (the top k left singular vectors,
transposed) of W. The final set of features for training and for testing is the original set of
features x combined with 6x which produces k real-valued features. The classifier built using
the combined features and the labeled data in the source domain should work in both the source
and the target domains.

Pan et al. [2010] proposed a method similar to SCL at the high level. The algorithm
works in the setting where there are only labeled examples in the source domain and unlabeled
examples in the target domain. It bridges the gap between the domains by using a spectral feature
alignment (SFA) algorithm to align domain-specific words from different domains into some
unified clusters, with domain-independent words as the bridge. Domain-independent words are
like pivot words above and can be selected similarly.

2.1. TRANSFER LEARNING 23
2.1.2 NAIVE BAYES TRANSFER CLASSIFIER

Many transfer learning methods have been proposed in the context of Naive Bayesian (NB)
classification [Chen et al., 2013a, Dai et al., 2007b, Do and Ng, 2005, Rigutini et al., 2005].
Here we briefly describe the work in Dai et al. [2007b] to give a flavor of such methods.

Dai et al. [2007b] proposed a method called Naive Bayes Transfer Classifier NBTC). Let
the labeled data from the source domain be D; with the distribution @, and the unlabeled data
from the target domain be D,, with the distribution ©,. ©; may not be the same as D,. A
two-step approach is employed in NBTC.

1. Build an initial Naive Bayesian classifier using the labeled data D; under ©; from the
source domain.

2. Run an Expectation-Maximization (EM) algorithm together with the target unlabeled
data to find a local optimal model under the target domain distribution ®,,.

The objective function of NBTC is as follows, which aims to find a local optimum of the
Maximum a Posteriori (MAP) hypothesis under ©,,:

hyap = argmax Py, (h) X Po, (D, Dylh) . 2.1)
h

This equation considers the probability of the source domain labeled data and the target do-
main unlabeled data under the hypothesis /. The labeled data provides the supervised in-
formation, while estimating the probability of the unlabeled data under ©, ensures that the
model fits for D,,. Based on Bayes’ rule, NBTC maximizes the log-likelihood /(h|D;, D) =
log Po, (D1, D),

I(h|D;, Dy) « log Py, (h)
+) log Y Po,(d]c.h) x Po,(c|h)

deD; ceC (2~2)

+ > log Y Po,(dlc.h) x Po,(clh) .

deDy ceC

where C is the set of classes and d € D; is a document in D;. To optimize it, Dai et al. [2007b]
applied the EM algorithm as follows:

+ E-Step:
Py, (c|d) Po,(c) [| Po, (wlc) (2.3)
wed
* M-Step:

Po,(c) x Y Po,(Di)x Po,(c|D;) (24)
ie{l,u}

24 2. RELATED LEARNING PARADIGMS

Py, (wlc) o< Y~ Po,(D;) x Po, (c|D;) x Po, (w|c.D;) . (2.5)
ie{lu}

where w € d represents a word in document d. Po, (¢|D;) and Po, (w|c, D;) can be rewritten
via the NB classification formulation (see Dai et al. [2007b] for more details). The above E-step
and M-step are repeated to reach a local optimal solution.

Chen et al. [2013a] proposed two EM-type algorithms called FS-EM (Feature Selection
EM) and Co-Class (Co-Classification). FS-EM uses feature selection as the mechanism to
transfer knowledge from the source domain to the target domain in each EM iteration. Co-
Class further adds the idea of co-training [Blum and Mitchell, 1998] to deal with the imbalance
of the shared positive and negative features. It builds two NB classifiers, one on labeled data, and
the other on the unlabeled data with predicted labels. An earlier work for cross-language text
classification also used a similar idea in the context of NB classification [Rigutini et al., 2005],

which transfers knowledge from the labeled data in English to the unlabeled data in Italian.

2.1.3 DEEP LEARNING IN TRANSFER LEARNING

In recent years, deep learning or deep neural network (DNN) has emerged as a major learning
method and has achieved very promising results [Bengio, 2009]. It has been used by several
researchers for transfer learning.

For example, instead of using the traditional raw input as features which may not gen-
eralize well across domains, Glorot et al. [2011] proposed to use the low-dimensional features
learned using deep learning to help prediction in the new domain. In particular, Stacked De-
noising Auto-encoder of Vincent et al. [2008] was employed in Glorot et al. [2011]. In an
auto-encoder, there are typically two functions: an encoder function /() and a decoder function
g(). The reconstruction of input x is given by r(x) = g(h(x)). To train an auto-encoder, the ob-
jective function is to minimize the reconstruction error loss(x, r(x)). Then, auto-encoders can
be trained and stacked together as a hierarchical network. In this network, the auto-encoder at
level i takes the output of the (i — 1)¢h auto-encoder as input. Level 0 takes the raw input. In de-
noising an auto-encoder, the input vector x is stochastically corrupted into another vector X and
the objective function is to minimize a denoising reconstruction error loss loss(x, r(x)). In Glo-
rot et al. [2011], the model is learned in a greedy layer-wise fashion using stochastic gradient
descent. The first layer uses logistic sigmoid to transform the raw input. For the upper layers, the
softplus activation function, log(1 + exp(x)), is used. After learning the auto-encoders, a linear
SVM with squared hinge loss is trained on the labeled data from the source domain and tested
on the target domain.

Yosinski et al. [2014] studied the transferability of features in each layer of a DNN. They
argued that the lowest level or the raw input layer is very gemera/ as it is independent of the
task and the network. In contrast, the features from the highest level depend on the task and
cost function, and thus are specific. For example, in a supervised learning task, each output unit

corresponds to a particular class. From the lowest level to the highest level, there is a transfer

2.1. TRANSFER LEARNING 25

from generality to specificity. To experiment the transferability of features in each layer in a
DNN, they trained a neural network from the source domain and copied the first n layers to
the neural network for the target domain. The remaining layers in the target neural network
are randomly initialized. They showed that transferred features in the neural network from the
source domain are indeed helpful to the target domain learning. Also in the transfer learning
setting, Bengio [2012] focused on unsupervised pre-training of representations and discussed
potential challenges of deep learning for transfer learning.

2.1.4 DIFFERENCE FROM LIFELONG LEARNING

Transfer learning is different from LL in the following aspects. We note that since the literature
on transfer learning is extensive, the differences described here may not be applicable to every
individual transfer learning paper.

1. Transfer learning is not concerned with continuous learning or knowledge accumulation.
Its transfer of information or knowledge from the source domain to the target domain is
usually one time only. It does not retain the transferred knowledge or information for future
use. LL, on the other hand, represents continuous learning, and knowledge retention and
accumulation are essential for LL as they not only enable the system to become more and
more knowledgeable, but also allow it to learn additional knowledge more accurately and
easily in the future.

2. Transfer learning is unidirectional. It transfers knowledge from only the source domain to
the target domain, but not the other way around because the target domain has little or
no training data. In LL, the learning result from the new domain or task can be used to
improve learning in previous domains or tasks if needed.

3. Transfer learning typically involves only two domains, a source domain and a target domain
(although in some cases there is more than one source domain). It assumes that the source
domain is very similar to the target domain; otherwise the transfer can be detrimental.
The two similar domains are usually selected by human users. LL, on the other hand,
considers a large (possibly unlimited) number of tasks/domains. In solving a new problem,
the learner needs to decide what past knowledge is appropriate for the new learning task. It
does not have the assumption made by transfer learning. In LL, if there is useful knowledge
from the past, use it. If not, just learn using the current domain data. Since LL typically
involves a large number of past domains or tasks, the system can accumulate a large amount
of past knowledge such that the new learning task is very likely to find some pieces of past
knowledge useful.

4. Transfer learning does not identify new tasks to be learned during model application (after
the model has been built) [Fei et al., 2016], or learn on the job, i.e., learn while working
or model application [Shu et al., 2017b].

26 2. RELATED LEARNING PARADIGMS
2.2 MULTI-TASK LEARNING

Multi-task learning (MTL) learns multiple related tasks simultaneously, aiming at achieving a
better performance by using the relevant information shared by multiple tasks [Caruana, 1997,
Chen et al., 2009, Li et al., 2009]. The rationale is to introduce inductive bias in the joint hy-
pothesis space of all tasks by exploiting the task relatedness structure. It also prevents overfitting
in the individual task and thus has a better generalization ability. Note that unlike in transfer
learning, we mostly use the term multiple tasks rather than multiple domains as much of the exist-
ing research in the area is based on multiple similar tasks from the same domain of application.
We now define multi-task learning, which is also referred to as batch multi-task learning.

Definition 2.1~ Multi-task Learning (MTL) is concerned with learning multiple tasks 7~ =
{1,2,..., N} simultaneously. Each task r € T has its training data D’. The goal is to maximize
the performance across a// tasks.

Since most existing works on MTL focused on supervised learning, here we discuss
only multi-task supervised learning. Let each task ¢ have the training data D' = {(x!, y!) :i =
1,...,n}, where n; is the number of training instances in D*. D’ is defined by a hidden (or
latent) true mapping £ (x) from an instance space X’ € R to a set of labels V' (y! € V') (or
V' = R for regression). d is the feature dimension. We want to learn a mapping function f*(x)

for each task 7 so that f/(x) ~ f(x). Formally, given a loss function £, multi-task learning
minimizes the following objective function:

N ne

DY L(f&D, ¥i) (2.6)

t=1i=1

In contrast to this batch MTL, onfine multi-task learning aims to learn the tasks sequen-
tially and accumulate knowledge over time and leverage the knowledge to help subsequent learn-
ing (or to improve some previous learning task). Online MTL is thus LL.

2.2.1 TASKRELATEDNESS IN MULTI-TASK LEARNING

MTL assumes that tasks are closely related. There are different assumptions in terms of zask
relatedness, which lead to different modeling approaches.

Evgeniou and Pontil [2004] assumed that all data for the tasks come from the same space
and all the task models are close to a global model. Under this assumption, they modeled the
relation between tasks using a task-coupling parameter with regularization. Baxter [2000] and
Ben-David and Schuller [2003] assumed that the tasks share a common underlying represen-
tation, e.g., using a common set of learned features. Some other works used probabilistic ap-
proaches assuming that the parameters share a common prior [Daumé III, 2009, Lee et al.,

2007, Yu et al., 2005].

2.2. MULTI-TASK LEARNING 27

Task parameters can also lie in a low-dimensional subspace, which is shared across
tasks [Argyriou et al., 2008]. Instead of assuming all tasks sharing the full space, Argyriou et al.
[2008] assumed that they share a low rank of the original space. However, the low rank assump-
tion does not distinguish tasks. When some unrelated tasks are considered, the performance can
deteriorate. To address this issue, some papers assumed that there are disjoint groups of tasks
and applied clustering to group tasks [Jacob et al., 2009, Xue et al., 2007]. The tasks within
a cluster are considered similar to each other. On the other hand, Yu et al. [2007] and Chen
et al. [2011] assumed that there is a group of related tasks while the unrelated tasks are a small
number of outliers. Gong et al. [2012] assumed that the related tasks share a common set of fea-
tures while the outlier tasks do not. Kang et al. [2011] incorporated grouping structures using
regularization. However, only the tasks in the same group are modeled together, so the possible
sharing structure between tasks from different groups is ignored.

Recently, Kumar et al. [2012] assumed that the parameter vector of each task is a linear
combination of a finite number of underlying basis or latent components. Instead of using the
assumption of disjoint task groups [Jacob et al., 2009, Xue et al., 2007], they assumed that the
tasks in different groups can overlap with each other in one or more bases. Based on this idea,
they proposed a MTL model called GO-MTL. We detail it in the next subsection. Maurer et al.
[2013] proposed to use sparse coding and dictionary learning in multi-task learning. Extending
GO-MTL, Ruvolo and Eaton [2013b] proposed the Efficient Lifelong Learning Algorithm
(ELLA) that dramatically improves the efficiency and makes it an online MTL method, which
is regarded as an LL method as it satisfies the LL definition. We will introduce ELLA in Sec-
tion 3.4.

2.2.2 GO-MTL: MULTI-TASK LEARNING USING LATENT BASIS

Grouping and Overlap in Multi-Task Learning (GO-MTL) [Kumar et al., 2012] takes a para-
metric approach to model building in which the model or the prediction function f*(x) =
fi(x;0") for each task ¢ is governed by the task-specific parameter vector 87 € R, where d
is the dimension of the data. Given N tasks, GO-MTL assumes that there are k (< N) latent
basis model components among the models of the multiple tasks. Each basis model component L
is represented by a vector of size d. The k basis model components are represented by a d x k
matrix L = (Ly, ..., Lg). The parameter vector 6’ of the model for each task is assumed to be
a linear combination of the k basis model components and the weight vector ¢/, i.e., 8 = Ls’,
and s’ is assumed to be sparse. Considering all the tasks, we have:
® =L x S |, (2.7)
dxN dxk kxN
where @ = [01,02,...,0V]and S = [s',s2,...,sV].
The idea is that each task can be represented by some of the basis model components.
'This mechanism takes into consideration both related and unrelated tasks. A pair of related

tasks will lead to the overlapping of their linear weight vectors, while two unrelated tasks can be

28 2. RELATED LEARNING PARADIGMS

distinguished via their little linear weight vector overlapping. Thus, GO-MTL does not assume
disjointed groups of tasks like Jacob et al. [2009] and Xue et al. [2007]. As discussed above, the
disadvantage of disjoint groups is that the tasks from different groups will not have interactions
with each other. However, it is possible that although the tasks are in different groups, they
may be negatively correlated or they still share some information, both of which can be useful

tor MTL. The partial overlap among tasks is thus allowed in GO-MTL, which is flexible in

dealing with sophisticated task relatedness without strong assumptions.

Objective Function
Given the training data D’ for each task 7, the objective function is to minimize the predictive
loss over all tasks while encouraging the sharing of structures between the tasks, which is defined

as follows:
N n t

S L(f(:Ls). yf) + p ISl + ALIF (2.8)
r=1i=1
where L is the empirical loss function, (x£, y!) is the i th labeled instance in the training data for
task 7. The function f is f(x};Ls’) = 6'x! = (Ls")"x!. | - ||1 is the L1 norm, which is controlled
by as a convex approximation to the true vector sparsity. | L||% is the Frobenius norm of matrix
L, and A is the regularization coefficient for matrix L.

Alternating Optimization

If the loss function £ is convex, the objective function in Equation (2.8) is convex in L for a
fixed S, and convex in S for a fixed L, but they are not jointly convex. Thus, the alternating
optimization strategy is adopted to achieve a local minimum. For a fixed L, the optimization
function for s’ becomes:

ny
s! =arg1tnin2£(f(x§;Lst),yit)—I—/L”stHl . (2.9

i=1

For a fixed S, the optimization function for L is:

N ny
argmi L LLs), y) + AILF - 2.10
rg;mnzz (f(xf:Ls"). y!) + A L] Z (2.10)

t=1i=1

For optimization of Equation (2.9), the two-metric projection method in Schmidt et al. [2007]
and Gafni and Bertsekas [1984] was used in Kumar et al. [2012]. Equation (2.10) has a closed
form solution for squared loss function which is commonly used in regression problems. For
classification problems, logistic loss and the Newton-Raphson method were used in optimiza-
tion in Kumar et al. [2012].

To initialize L, each individual task’s parameters are learned independently using their

own data, which are stacked as columns in a weight matrix. The top-k left singular vectors of

2.2. MULTI-TASK LEARNING 29

this weight matrix are used as the initial L. The reason for this is that the singular vectors are the
directions that capture the maximum variances of the task parameters.

2.2.3 DEEP LEARNING IN MULTI-TASK LEARNING

In recent years, DNN has also been applied to MTL. For example, Liu et al. [2015b] proposed
a multi-task DNN for learning representations across multiple tasks. They considered two types
of tasks: query classification and Web search ranking.

* For query classification, the model classifies whether a query belongs to a particular domain
or not. In this work, the authors considered four domains (“Restaurant,” “Hotel,” “Flight,”
and “Nightlife”). A query can belong to multiple domains. These four domains are framed
as four query classification tasks. The training data for query classification consists of pairs
of query and label (y; = {0, 1} where ¢ denotes a particular task or domain).

* For Web search ranking, given a query, the model ranks the documents by their relevance
to the query. It is assumed that in the training data, there is at least one relevant document
for each query.

In their proposed multi-task DNN model, the lower neural network layers are shared
across multiple tasks while the top layers are task-dependent.

'The Input Layer (/;) is the word hash layer in which each word is hashed as a bag of n-
grams of letters. For example, the word deep is hashed as a bag of letter-trigrams {#-d-e, d-e-e,
e-e-p, e-p-#} where # denotes the boundary. This method can hash the variations of the same
word into the space close to each other, e.g., pofitics and politician.

Semantic-Representation Layer (/) maps /; into a 300-dimensional vector by:

L =f(W1-1) , (2.11)

where W is the weight matrix and f is defined as:

e—2x

f(x) = i:r? : (2.12)

This layer is shared across multiple tasks.
Task-Specific Layer (/3) for each task converts the 300-dimensional vector to a 128-
dimensional vector that is task dependent for each task, using the following:

li=f(W3 1) . (2.13)

where ¢ denotes a particular task and WY is another weight matrix. For a query classification task,
the probability of a query belonging to a domain is obtained from /3 using a sigmoid function
g(z) = # For Web search ranking, the cosine similarity is used to compare layer /3 of
the query and each document. To learn the neural network, the mini-batch-based stochastic

30 2. RELATED LEARNING PARADIGMS

gradient descent (SGD) is used, which is an iterative algorithm. In each iteration, a task 7 is first
randomly picked. Then a labeled instance from ¢ is sampled and this labeled instance is used to
update the neural network via SGD.

In Collobert and Weston [2008] and Collobert et al. [2011], the authors proposed a uni-
fied neural network architecture for performing multiple natural language processing tasks, in-
cluding part-of-speech tagging, chucking, name entity recognition, semantic role labeling, lan-
guage modeling, and semantically related words (or synonyms) discovering. They built a DNN
for all tasks jointly using weight-sharing. In the neural network, the first layer is for textual
features of each word. The second layer extracts features from a sentence, treating the sentence
as a sequence rather than a bag of words. The sequence is the input of the second layer. Long-
distance dependencies between words in a sentence is captured by Time-Delay Neural Networks
(TDNNs) [Waibel et al., 1989], which can model the effects between words beyond a fixed win-
dow.

A classic TDNN layer converts a sequence x to another sequence o as follows:

n—i
Oi = Z Lj'XH_j s (2-14)

j=1-i

where i denotes the time at which the ith word in the sentence is seen in TDNN (i.e., x;); 1 is
the number of words in the sentence or the length of the sequence. L; are the parameters of the
layer. Similar to Liu et al. [2015b], stochastic gradient descent is used to train the model, which
repeatedly selects a task and one of its training examples to update the neural network.

Along a similar line, Huang et al. [2013a] applied DNN to multilingual data. They pro-
posed a model called shared-hidden-layer multilingual DNN (SHL-MDNN), in which the
hidden layers are shared across multiple languages. Furthermore, Zhang et al. [2014] applied
deep MTL to the problem of facial landmark detection by co-modeling the correlated tasks
such as head pose estimation and facial attribute inference. There are also other applications of
deep MTL models to problems such as name error detection in speech recognition [Cheng et al.,
2015], multi-label learning [Huang et al., 2013b], phoneme recognition [Seltzer and Droppo,
2013], and so on.

2.2.4 DIFFERENCE FROM LIFELONG LEARNING

'The similarity of (batch) MTL and LL is that they both aim to use some shared information
across tasks to help learning. The difference is that multi-task learning is still working in the tra-
ditional paradigm. Instead of optimizing a single task, it optimizes several tasks simultaneously.
If we regard the several tasks as one bigger task, it reduces to the traditional optimization which
is actually the case in most optimization formulations of MTL. It does not accumulate any
knowledge over time and it does not have the concept of continuous learning, which are the key
characteristics of LL. Although one can argue that MTL can jointly optimize all tasks whenever
a new task is added, it is quite difficult to optimize all tasks in the world simultaneously in a

2.3. ONLINE LEARNING 31

single process as they are too numerous and diverse. Some local and distributed optimizations
are needed. Global optimization is also not efficient in terms of both the time and resources.
'Thus, it is important to retain knowledge to enable incremental learning of multiple tasks with
the help of knowledge learned in the past from previous tasks. That is why we regard on/ine or
incremental MTL as LL.

2.3 ONLINE LEARNING

Online learning is a learning paradigm where the training data points arrive in a sequential
order. When a new data point arrives, the existing model is quickly updated to produce the best
model so far. Its goal is thus the same as classic learning, i.e., to optimize the performance on
the given learning task. It is normally used when it is computationally infeasible to train over
the entire dataset or the practical applications cannot wait until a large amount of training data
is collected. This is in contrast with the classic batch learning where all training data is available
at the beginning for training.

In online learning, if whenever a new data point arrives re-training using all the available
data is performed, it will be too expensive. Furthermore, during re-training, the model being
used is already out of date. Thus, online learning methods are typically memory and run-time
efficient due to the latency requirement in a real-world scenario.

There are a large number of existing online learning algorithms. For example, Kivinen
et al. [2004] proposed some online learning algorithms for kernel-based learning like SVM.
By extending the classic stochastic gradient descent, they developed computationally efficient
online learning algorithms for classification, regression, and novelty detection. Related online
kernel classifiers were also studied in Bordes et al. [2005].

Rather than using the traditional table data, Herbster et al. [2005] studied online learning
on graphs. Their objective is to learn a function defined on a graph from a set of labeled vertices.
One application of their problem is to predict users’ preferences toward products in a social
network. Ma et al. [2009] worked on the problem of detecting malicious websites using lexical
and host-based features and URLs in an online setting. Mairal et al. [2009, 2010] proposed some
online dictionary learning approaches for sparse coding, which model data vectors as sparse
linear combinations of some basic elements. Hoffman et al. [2010] also proposed an online
variational Bayes algorithm for topic modeling.

Much of the online learning research focuses on one domain/task. Dredze and Crammer
[2008] developed a multi-domain online learning method, which is based on parameter combi-
nation of multiple classifiers. In their setting, the model receives a new instance/example as well
as its domain.

2.3.1 DIFFERENCE FROM LIFELONG LEARNING

Although online learning deals with future data in streaming or in a sequential order, its objective
is very different from LL. Online learning still performs the same learning task over time. Its

32 2. RELATED LEARNING PARADIGMS

objective is to learn more efficiently with the data arriving incrementally. LL, on the other hand,
aims to learn from a sequence of different tasks, retain the knowledge learned so far, and use the
knowledge to help future task learning. Online learning does not do any of these.

2.4 REINFORCEMENT LEARNING

Reinforcement Learning [Kaelbling et al., 1996, Sutton and Barto, 1998] is the problem where
an agent learns actions through trial and error interactions with a dynamic environment. In each
interaction step, the agent receives input that contains the current state of the environment.
The agent chooses an action from a set of possible actions. The action changes the state of the
environment. Then, the agent gets a value of this state transition, which can be reward or penalty.
This process repeats as the agent learns a trajectory of actions to optimize its objective. The goal
of reinforcement learning is to learn an optimal policy that maps states to actions that maximizes
the long run sum of rewards. Details about various types of reinforcement learning tasks can be
found in Busoniu et al. [2010], Szepesvari [2010], and Wiering and Van Otterlo [2012].

Transfer learning and MTL have also been applied to reinforcement learning. For exam-
ple, Banerjee and Stone [2007] demonstrated that feature-based value function transfer learning
learns optimal policies faster than without knowledge transfer. Taylor et al. [2008] proposed a
method to transfer data instances from the source to the target in a model-based reinforcement
learning setting. A rule transfer method was also proposed for reinforcement learning [Taylor
and Stone, 2007]. An excellent survey of transfer learning applied to reinforcement learning can
be found in Taylor and Stone [2009].

Mehta et al. [2008] worked on multiple tasks sharing the same transition dynamics but
different reward functions. Instead of fully observable experiments, Li et al. [2009] proposed a
model-free multi-task reinforcement learning model for multiple partially observable stochastic
environments. They proposed an off-policy batch algorithm to learn parameters in a regional-
ized policy representation. Lazaric and Ghavamzadeh [2010] assumed that in the multi-task
reinforcement learning, only a small number of samples can be generated for any given policy
in each task. They grouped the tasks using similar structures and learn them jointly. They also
assumed that tasks share structures via value functions which are sampled from a common prior.

Horde, an architecture for learning knowledge in reinforcement learning, was proposed
in Sutton et al. [2011]. Its knowledge is represented by a large number of approximate value
functions. The reinforcement learning agent is decomposed into many sub-agents. The value
function is approximated by the expected return for a trajectory of states and actions. The trajec-
tory is obtained according to the policy of each sub-agent. The intuition is that each sub-agent
is responsible for learning some partial information about interactions with the environment.
The sub-agents can also use each other’s results to achieve their own goals. The final decision
of the agent is made by all sub-agents together. However, Sutton et al. [2011] focused on the
same environment, which is related to but also different from lifelong learning. Along the lines

2.5. META LEARNING 33

of Horde, Modayil et al. [2014] modeled a generalization of the value function in reinforcement
learning.

2.4.1 DIFFERENCE FROM LIFELONG LEARNING

A reinforcement learning agent learns by trial and error in its interactions with the environment
which gives feedback or rewards to the agent. The learning is limited to one task and one envi-
ronment. There is no concept of accumulating knowledge to help future learning tasks. Transfer
and multi-task reinforcement learning paradigms have similar differences from LL as supervised
transfer learning and MTL discussed in Sections 2.1.4 and 2.2.4.

2.5 METALEARNING

Meta-learning [Thrun, 1998, Vilalta and Drissi, 2002] primarily aims to learn a new task with
only a small number of training examples using a model that has been trained on many other very
similar tasks. It is commonly used to solve one-shot or few-shot learning problems. There are
usually two learning components in a meta-learning system: a base learner (or a quick learner)
and a meta learner (or a slow learner). The base learner is trained within a task with quick
updating. The meta learner performs in a task-agnostic meta space, whose goal is to transfer
knowledge across tasks. The model learned from the meta learner enables the base learner to
learn effectively with only a very small set of training examples. In many cases, the two learners
may use the same learning algorithm. With this two-tiered architecture, meta-learning is often
described as “learning to learn”. But in a nutshell, meta-learning basically treats learning tasks
as learning examples. Vilalta and Drissi [2002] gave an excellent overview of the early work on
meta-learning. Below, we briefly discuss some more recent papers in the area, particularly in the
context of deep neural networks.

Santoro et al. [2016] proposed to consider architectures with augmented memory capac-
ities, such as Neural Turing Machines, to carry short-term and long-term memory demands.
An external memory access module was proposed to quickly bind never-before-seen informa-
tion after few training samples, to improve meta-learning. Andrychowicz et al. [2016] cast the
design of optimization algorithms as a learning problem from a meta-learning perspective. A
task is defined as a class of problems illustrated by example problem instances. The algorithm
was implemented using LSTMs [Hochreiter and Schmidhuber, 1997].

Finn et al. [2016] proposed a model-agnostic meta-learning method that is applicable to
any model trained with gradient descent. The key idea is to train the model’s initial parameters to
fit many tasks well. It is achieved by maximizing the sensitivity of the loss function of new tasks
with respect to the parameters. A high sensitivity implies that a small change to the parameters
can lead to significant loss amelioration. With such parameters, the model can be simply fine-
tuned to perform well on a new task with a small number of training examples. Munkhdalai and
Yu [2017] proposed Meta Networks that can update weights at different time-scales. Meta-level
information is updated slowly while task-level weights are updated within the scope of each task.

34 2. RELATED LEARNING PARADIGMS

It contains two types of loss functions: a representation loss to create a generalized embedding
and a task loss for the specific task. Some other recent works along these lines include [Duan
etal., 2017, Grant et al., 2018, Li et al., 2017¢c, Mishra et al., 2018, Ravi and Larochelle, 2017,
Wang et al., 2016, Zhou et al., 2018].

2.5.1 DIFFERENCE FROM LIFELONG LEARNING

Meta-learning trains a meta-model from a large number of tasks to quickly adapt to a new
task with only a few examples. One key assumption made by most meta-learning techniques
is that the training tasks and test/new tasks are from the same distribution, which is a major
weakness and limits the scope of its application. The reason is that in most real-life situations,
we would expect that many new tasks have something fundamentally different from old tasks. In
the evaluation of meta-learning algorithms, previous tasks are often artificially created to have
the same distribution as the new/test tasks. In general, LL does not make this assumption. A
lifelong learner is supposed to choose (explicitly or implicitly) the pieces of previous knowledge
that are applicable to the new task. If nothing is applicable, no previous knowledge will be used.
But clearly, meta-learning is closely related to LL, at least in the aspect of making use of many
tasks to help learn the new task. We expect that with further research, the above assumption
will be relaxed or even eliminated altogether. In the next edition of this book, we can cover
meta-learning fully.

2.6 SUMMARY

In this chapter, we gave an overview of the main ML paradigms that are closely related to LL
and described their differences from LL. In summary, we can regard LL as a generalization of or
extension to these paradigms. The key characteristics of LL are the continuous learning process,
knowledge accumulation in the KB, and the use of past knowledge to help future learning.
More advanced features also include learning while working and discovering new problem in
applications and learning them in a self-supervised manner based on environmental feedback
and previously learned knowledge without manual labeling. The related ML paradigms do not
have one or more of these characteristics. In a nutshell, LL essentially tries to mimic the human
learning process in order to overcome the limitations of the current isolated learning paradigm.
Although we still do not understand the human learning process, that should not prevent us
from making progress in ML that exhibits some characteristics of human learning. From the
next chapter, we review various existing LL research directions and representative algorithms
and techniques.

35

CHAPTER 3

Lifelong Supervised Learning

This chapter presents existing techniques for lifelong supervised learning (LSL). We first use
an example to show why the sharing of information across tasks is useful and how such sharing
makes LSL work. The example is about product review sentiment classification. The task is to
build a classifier to classify a product review as expressing a positive or negative opinion. In the
classic setting, we first label a large number of positive opinion reviews and negative opinion
reviews and then run a classification algorithm such as SVM to build a classifier. In the LSL
setting, we assume that we have learned from many previous tasks (which may be from different
domains). A task here has a set of reviews of a particular kind of product (a domain), e.g., cam-
era, cellphone, or car. Let us use the naive Bayesian (NB) classification technique for classifier
building. In NB classification, we mainly need the conditional probability of each word w given
each class y (positive or negative), P(w|y). When we have a task from a new domain D, the
question is whether we need training data from D at all. It is well known that the classifier built
in one domain works poorly in another domain because words and language constructs used
for expressing opinions in different domains can be quite different [Liu, 2012]. To make mat-
ters worse, the same word may express or indicate positive opinion in one domain but negative
opinion in another. The answer to the question is 70 in some cases, but yes in some others.

'The reason for the 7o answer is that we can simply append all training data from the past
domains and build a classifier (probably the simplest LL. method). This classifier can do wonders
for some new domain tasks. It can classify dramatically better than the classifier trained using a
modest number of training examples from the new domain D itself. This is because sentiment
classification is mainly determined by the words that express positive or negative opinions, called
sentiment words. For example, good, great, and beautiful are positive sentiment words, and bad,
poor, and terrible are negative sentiment words. These words are shared across domains and tasks,
but in a particular domain only a small subset of them is used. After seeing the training data
from a large number of domains, it is quite clear what words are likely to indicate positive
or negative opinions. This means that the system already knows those positive and negative
sentiment words and thus can do classification well without any in-domain training reviews from
D. To some extent, this is similar to our human case. We don't need a single training positive
or negative review to be able to classify reviews into positive and negative classes because we
have accumulated so much knowledge in the past about how people praise and criticize things
in natural language. Clearly, using one or two past domains for LL is not sufficient because
sentiment words used in these domains may be limited and may not even be useful to the new

36 3. LIFELONG SUPERVISED LEARNING

domain. Many non-sentiment words may be regarded as sentiment words incorrectly. Thus, big
and diverse data holds a key for LL.

Of course, this simple method does not always work. That is the reason for the yes answer
above (i.e., requiring some in-domain training data). The reason is that for some domains the
sentiment words identified from the past domains can be wrong. For example, the word “toy”
usually indicates a negative opinion in a review as people often say that “¢his camera is a toy” and
“this laptop is a toy.” However, when we classify reviews about children’s toys, the word “toy”
does not indicate any sentiment. We thus need some in-domain training data from D in order
to detect such words to overwrite the past knowledge about the words. In fact, this is to solve
the problem of applicability of knowledge in Section 1.4. With the correction, a lifelong learner
can do much better. We will discuss the technique in detail in Section 3.5. In this case, the
knowledge base (KB) of LSL stores the empirical counts needed for computing conditional
probability P(w]y) in each previous task.

This chapter reviews those representative techniques of LSL. Most of the techniques can
perform well with a small number of training examples.

3.1 DEFINITION AND OVERVIEW

We first present the definition of /ifelong supervised learning (LSL) based on the general def-
inition of lifelong learning (LL) in Chapter 1. We then give a brief overview of the existing
work.

Definition 3.1 Lifelong supervised learning is a continuous learning process where the learner
has performed a sequence of N supervised learning tasks, 71, 7, ..., Ty, and retained the
learned knowledge in a knowledge base (KB). When a new task 7 11 arrives, the learner lever-
ages the past knowledge in the KB to help learn a new model fy 4 from Ty41’s training data
D41 After learning Ty 41, the KB is also updated with the learned knowledge from Ty 4.

LSL started with the paper by Thrun [1996b], which proposed several earlier LL. meth-
ods in the context of memory-based learning and neutral networks. We will review them in
Sections 3.2 and 3.3. The neural network approach was then improved in Silver and Mercer
[1996, 2002], and Silver et al. [2015]. In these papers, each new task focuses on learning one
new concept or class. The goal of LL is to leverage the past data to help build a binary classifier
to identify instances of this new class. Ruvolo and Eaton [2013b] proposed the ELLA algorithm
to improve the multi-task learning (MTL) method GO-MTL [Kumar et al., 2012] to make it
an LL method. Chen et al. [2015] further proposed a technique in the context of NB classi-
fication. Clingerman and Eaton [2017] proposed GP-ELLA to support Gaussian processes in
ELLA. Xu et al. [2018] presented an LL method for word embedding based on meta-learning.
A theoretical study was also conducted by Pentina and Lampert [2014] in the PAC-learning
tramework. It provided a PAC-Bayesian generalization bound that quantifies the relation be-
tween the expected loss on a new task to the average loss on existing tasks for LL. In particular,

3.2. LIFELONG MEMORY-BASED LEARNING 37

they modeled the prior knowledge as a random variable and obtained its optimal value by min-
imizing the expected loss on a new task. Such loss can be transferred from the average loss on
existing tasks via the bound. They showed two realizations of the bound on the transfer of param-
eters [Evgeniou and Pontil, 2004] and the transfer of low-dimensional representations [Ruvolo
and Eaton, 2013b]. In the following sections, we present the main existing techniques of LSL.

3.2 LIFELONG MEMORY-BASED LEARNING

In Thrun [1996b], an LSL technique was proposed for two memory-based learning methods:
k-nearest neighbors and Shepard’s method. We discuss them below.

3.2.1 TWO MEMORY-BASED LEARNING METHODS
K-Nearest Neighbors (KNN) [Altman, 1992] is a widely used ML algorithm. Given a testing

instance x, the algorithm finds K examples in the training data (x;, y;) € D whose feature vec-
tors x; are nearest to x according to some distance metric such as the Euclidean distance. The
predicted output is the mean value & }_ y; of these nearest neighbors.

Shepard’s method [Shepard, 1968] is another commonly used memory-based learning method.
Instead of only using K examples as in KNN, this method uses all the training examples in D
and weights each example according to the inverse distance to the test instance x, as shown

-1
_ Vi 1
s(’“)‘(2 ||x—x,-||+e)x(2 ||x—x,-||+e) ’ 3D
(D (D

Xi,Yi)€ Xi,Yi)€

below:

where € > 0 is a small constant to avoid the denominator being zero. Neither KNN nor Shep-
ard’s method can use the previous task data with different distributions or distinct class labels to
help its classification.

3.2.2 LEARNING A NEW REPRESENTATION FOR LIFELONG
LEARNING

Thrun [1996b] proposed to learn a new representation to bridge the gap among tasks for the
above two memory-based methods to achieve LL, which was shown to improve the predictive
performance especially when the number of labeled examples is small.

'The interest of the paper is concept learning. Its goal is to learn a function f : I — {0, 1}
where f(x) = 1 means that x € I belongs to a target concept (e.g., cat or dog); otherwise x does
not belong to the concept. For example, f;,,(x) = 1 means that x is an instance of the concept
dog. Let the data from the previous N tasks be D? = {D;,D,,...,Dy}. Each past task data
D; € D? is associated with an unknown classification function f;. D? is called the support set
in Thrun [1996b]. The goal is to learn the function fy4; for the current new task data Dy 41
with the help of the support set.

38 3. LIFELONG SUPERVISED LEARNING

To bridge the difference among different tasks and to be able to exploit the shared infor-
mation in the past data (the support set), the paper proposed to learn a new representation of
the data, i.e., to learn a space transformation function g : I — 1’ to map the original input feature
vectors in I to a new space I’. The new space I’ then serves as the input space for KNN or
the Shepard’s method. The intuition is that positive examples of a concept (with y = 1) should
have similar new representations while a positive example and a negative example of a concept
(y = land y = 0) should have very different representations. This idea can be formulated as an
energy function E for g:

E= > > ((P HE RO Y Hg(x)—g(x/)H)- (3.2)

D; €DP (x,y=1)€D; x/,y’'=1)€eD; (x/,y’=0)€eD;

'The optimal function g* is achieved by minimizing the energy function E, which forces the dis-
tance between pairs of positive examples of the concept ({x, y = 1) and (x’, " = 1)) to be small,
and the distance between a positive example and a negative example of a concept ((x,y = 1)
and (x’, " = 0)) to be large. In the implementation of Thrun [1996b], g was realized with a
neural network and trained with the support set using Back-Propagation.

Given the mapping function g*, rather than performing memory-based learning in the
original space (x;, yi) € Dn1, X; is first transformed to the new space using g* to (g*(x;), yi)
before applying KNN or the Shepard’s method.

Since this approach does not retain any knowledge learned in the past but only accumulates
the past data, it is thus inefficient if the number of previous tasks is large because the whole
optimization needs to be re-done using all the past data (the support set) whenever a new task
arrives. In Thrun [1996b], an alternative method to the above energy-function-based approach
was also proposed, which learns a distance function based on the support set. This distance
function is then used in lifelong memory-based learning. This approach has similar weaknesses.
These techniques also do not deal with the correctness or applicability of the shared knowledge
g* (Section 1.4).

3.3 LIFELONG NEURAL NETWORKS

Here we introduce two early neural network approaches to LSL.

3.3.1 MTLNET

Although MTL net (Multi-task learning with neural network) [Caruana, 1997] is described as
an LI method in Thrun [1996b], it is actually a batch MTL method. Based on our definition
of LL, they are different learning paradigms. However, for historical reasons, we still give it a
brief discussion here.

In MTL net, instead of building a neural network for each individual task, it constructs
a universal neural network for all the tasks (see Figure 3.1). This universal neural network uses

3.3. LIFELONG NEURAL NETWORKS 39

the same input layer for input from all tasks and uses one output unit for each task (or class in
this case). There is also a shared hidden layer in MTL net that is trained in parallel using Back-
Propagation [Rumelhart et al., 1985] on all the tasks to minimize the error on all the tasks. This
shared layer allows features developed for one task to be used by other tasks. So some developed
features can represent the common characteristics of the tasks. For a specific task, it will activate
some hidden units that are related to it while making the weights of the other irrelevant hidden
units small. Essentially, like a normal batch MTL method, the system jointly optimizes the
classification of all the past/previous and the current/new tasks. It is thus not regarded as an LL
method based on the definition in this book (see Section 2.2.4). Several extensions of MTL net
were made in Silver and Mercer [2002], Silver and Poirier [2004, 2007], from generating and
using virtual training examples to deal with the need for the training data of all previous tasks
to adding contexts.

Task 1 Task 2 Task 3

INPUTS

Figure 3.1: 'The top neural networks are trained independently for each task, and the bottom
neural network is MTL net [Caruana, 1997].

3.3.2 LIFELONG EBNN
This LL approach is in the context of EBNN (Explanation-Based Neural Network) [Thrun,

1996a], which again leverages the previous task data (or the support set) to improve learning. As
in Section 3.2.2, concept learning is the goal of this work, which learns a function f : I — {0, 1}

40 3. LIFELONG SUPERVISED LEARNING

to predict if an object represented by a feature vector x € I belongs to a concept (y = 1) or not
(y =0).

In this approach, the system first learns a general distance function,d : 1 x I — [0, 1], con-
sidering all the past data (or the support set) and uses this distance function to share or transfer
the knowledge of the past task data to the new task 7y 41. Given two input vectors, say x and
x’, function d computes the probability of x and x’ being members of the same concept (or
class), regardless what the concept is. In Thrun [1996b], d is learned using a neural network
trained with Back-Propagation. The training data for learning the distance function is gener-
ated as follows: For each past task data D; € D?, each pair of examples of the concept generates a
training example. For a pair, (x,y = 1) € D; and (x’, y’ = 1) € D;, a positive training example
is generated, ((x,x’),1). For a pair (x,y = 1) € D; and (x’,y’' =0) € D; or (x,y =0) € D;
and (x’, y" = 1) € D;, a negative training example is generated, ((x, x"), 0).

With the learned distance function in hand, EBNN works as follows: Unlike a traditional
neural network, EBNN estimates the s/ope (tangent) of the target function at each data point x
and adds it into the vector representation of the data point. In the new task 741, a training
example is of the form, (x, fy+1(x), Vx fN+1(x)), where fy41(x) is just the original class label
of x € Dy 41 (the new task data). The system is trained using Tangent-Prop algorithm [Simard
et al., 1992]. V fn+1(x) is estimated using the gradient of the distance d obtained from the
neural network, i.e., Vy fy41(x) & ads;(x), where (x’,y' = 1) € Dy41 and dy/(x) = d(x, x').
'The rationale is that the distance between x and a positive training example x’ is an estimate

of the probability of x being a positive example, which approximates fy41(x). As a result, the
built EBNN fits both the current task data Dy 4 and the support set through V fy41(x) and
d.

Similar to lifelong KNN in Section 3.2, in this case, the part of the system that learns the
distance function (the shared knowledge) and performs EBNN is the znowledge-based learner in
Section 1.4. Again, the &nowledge base stores only the past data. Similarly, this technique also
does not deal with correctness or applicability of the shared knowledge d (see Section 1.4).

Like lifelong KNN, since lifelong EBNN does not retain any knowledge learned in the
past but only accumulates the past data, it is also inefficient if the number of previous tasks is
large because the training of the distance function d needs to be re-done using all the past data
(the support set) whenever a new task arrives. Additionally, since every pair of data points in each
past task dataset forms a training example for learning the distance function d, the training data
for learning d can be huge.

3.4 ELLA: AN EFFICIENT LIFELONG LEARNING
ALGORITHM

This section focuses on the lifelong supervised learning (LSL) system ELLA (Efficient Lifelong
Learning Algorithm) proposed by Ruvolo and Eaton [2013a,b]. It maintains a sparsely shared
basis (the past knowledge) for all task models, transfers knowledge from the basis to the new task,

3.4. ELLA: AN EFFICIENT LIFELONG LEARNING ALGORITHM 41

and refines the basis over time to maximize the performances across all tasks. Unlike cumulative
learning, each task in ELLA is independent of other tasks. ELLA also follows the tradition
of MTL aimed at optimizing the performances of all tasks. Many other LL. methods mainly
optimize the performance of the new task, although they can help optimize any previous task if
needed. In the presentation below, we try to use about the same notation as in the original paper
for easy reference.

3.4.1 PROBLEM SETTING

As in anormal LL problem, ELLA receives a sequence of supervised learning tasks, 1,2,..., N,
in a lifelong manner. Each task ¢ has its training data D' = {(x}, y!) :i = 1,...,n,}, where n,
is the number of training instances in D7, and is defined by a hidden (or latent) true mapping
F1(x) from an instance space X’ C R? to a set of labels)’ (or J* = R for regression). Let d
be the feature dimension.

ELLA extends the batch MTL model GO-MTL [Kumar et al., 2012] (also in Sec-
tion 2.2.2) to make it more efficient and become an incremental or online MTL system, which
is regarded as an LL system. Like Go-MTL, ELLA takes a parametric approach to model
building in which the model or the prediction function f’(x) = f*(x;0") for each task 7 is
governed by a task-specific parameter vector 8 € R?. The goal of ELLA is to construct task
models f1,..., fV so that:

1. for each task, f! ~ f’;
2. anew model f? can be added quickly when the training data for a new task ¢ arrives; and
3. each past model f7 can be updated efficiently after the addition of the new task.

ELLA assumes that the total number of tasks, the distribution of tasks and their order are all
unknown [Ruvolo and Eaton, 2013b]. It also assumes that there can be a large number of tasks,
while each task can have a large number of data points. Thus, an LL algorithm that is both
effective and efficient is needed.

3.4.2 OBJECTIVE FUNCTION

In the same way as the GO-MTL model [Kumar et al., 2012] (see Section 2.2.2), ELLA main-
tains k sparsely shared basis model components for all task models. Let L € R4*¥ be the k basis
model components. Each task model’s parameter vector 67 is assumed to be a linear combination
of the weight vector s’ € R¥ and the basis model components L. We thus obtain the equation
below (same as Equation (2.7)):

@ =L x S, (3.3)
dxN dxk kxN

where ® = [0',02,...,0¥]and S = [s',s2,...,s"]. For each task ¢, 8’ = Ls’. The initial ob-
jective function of ELLA is the same as Equation (2.8) in GO-MTL except that it optimizes

42 3. LIFELONG SUPERVISED LEARNING

the average (rather than the sum) loss on the training data across all tasks, which is essential for

the convergence guarantees:
1 N

. 1
— min § —
N sl ng

ny
DOL(fGELs). yE) + pls g + A ILIE (3.4)

=1 i=1

where f(x};Ls") = 8'x! = (Ls")Tx!. Since the objective function is not jointly convex in L and
the s’s, to optimize it, one can use a common approach to computing a local optimum, i.e.,
alternately optimizing s’ while holding L fixed, and optimizing L while holding s’ fixed. How-
ever, as pointed out in Ruvolo and Eaton [2013b], there are two major inefficiency issues in the

above objective function (which also exist in GO-MTL).

1. There is an explicit dependence on a// of the previous training data (through the inner
summation). That is, to compute the objective function, one needs to iterate all training
instances in all tasks in order to compute their loss function values. If the number of tasks
is large or the number of training instances in each task is large, this iteration can be very
inefficient.

2. When evaluating a single candidate L in Equation (3.4), an optimization problem must
be solved to recompute the value of each s’. This means each s’ will have to be updated
when L is updated. This becomes increasingly expensive when there are more and more
tasks.

Ruvolo and Eaton [2013b] proposed some approximation techniques to deal with the above
two inefficiency issues, which we detail in the next subsection. The basic idea is to approximate
the fit of a new task model using the single-task solution as a point estimate in the basis of
model components learned over the past tasks, and then updates the basis to incorporate the
new knowledge from the new task.

3.4.3 DEALING WITH THE FIRST INEFFICIENCY

To address the first issue, Ruvolo and Eaton [2013b] used the second-order Taylor expansion
for approximation. Before giving the technical details, let us briefly review some mathematical
foundations.

Taylor Expansion

In the single-variable case, i.e., when g(x) is a one variable function, the second-order Taylor
expansion near a constant value a is:

§00) ~ 2@ + £ @ —a) + 28" @ (x ~a)? (5)

where g’() and g”() are the derivative and the second-order derivative of function g.

3.4. ELLA: AN EFFICIENT LIFELONG LEARNING ALGORITHM 43

In the multiple-variable case, i.e., when g(x) is a multivariate function (assuming x has n
values), the second-order Taylor expansion near vector a of a constant size n is:

1
g(x) ~ ga) + Veg@x—a) + _ f(x— D)@ - (3.6)
where ||v]|5 = v Av and H (a) is called Hessian Matrix of function g.

Optimality Conditions in Unconstrained Optimization
Consider the problem of minimizing function f : R” — R, where f is twice continuously dif-
terentiable on R”:

min f(x) . (3.7)

xeR”

Theorem 3.2 First-Order Necessary Conditions for Optimality. Lez function f : R" — R
be differentiable at a point X € R". If X is a local minimizer, then V f(X) = 0.

Proof. From the definition of the first-order Taylor expansion, we have:

f®) =@+ VBT x-%) +o(lx—%|) : (3.8)
that is,

f® - fE®)=V/®Tx-%) +o(lx—%|) . (3.9)
where lim H = 0. Let x :== x — aV f(X), where « is a positive constant. Plugging it into

Equation (3.9), then:
) fE—aV)~ &)

G 4 2V (.10
o o
Taking the limit as « |, 0, we obtain:
0=—|Vf®I* =0 . (3.11)
Hence, V f(x) = 0. O

Removing Dependency

We now come back to ELLA. To remove the explicit dependence on a// task training data, the
second-order Taylor expansion is used to approximate the objective function in Equation (3.4).
Let’s first define a function g(#?) as below:

g0 = -3 L(fxl:00.51) (312)
Li=1

44 3. LIFELONG SUPERVISED LEARNING

where 6 = Ls’. Then the objective function in Equation (3.4) becomes:

N

1 .

= Y min {g(0) + s} + LI (3.13)
t=1 °

Let’s assume that the minimum solution of the function g is 0!, ie, 0" =
argming, -~ >, L(f(x!;0%),y!) (which is an optimal predictor learned on only the

ng i
training data for task #). Then, the second-order Taylor expansion near 8 is as follows:

R R <1 R
g(0") ~ g(6") + Vg(8")(6' —0") + Ellot —0" 5 (3.14)

where H' = H (") is the Hessian Matrix of function g.

Considering that function g is used in the outer minimization in Equation (3.13), the
first constant term in Equation (3.14) can be suppressed. According to the first-order necessary
conditions (Theorem 3.2), Vg(8') = 0 since 8 is the local minimum solution of function g,
and thus the second term in Equation (3.14) can also be removed. Hence, the new objective
function after plugging in Equation (3.13) is:

N

1 . A

& D_min {101 =83 + ulls' 1} + 2 LI (3.15)
t=1

As 0" = Ls’, Equation (3.15) can be rewritten as:

1 N

~ D min {16 = L' |, + uls'la} + LI - (3.16)
t=1 °

1 RS
H — Evgt,otazﬁ(f(x’?;m)’yf)
i=1

, and
01=91

A

1<
0’ =arg0rtnlnn—zﬁ(f(x§;0t)’yit) :
ti=1

Note that 87 and H' will remain the same if the training data for task 7 does not change. Thus,
the new objective function in Equation (3.16) removes the dependence of the optimization on
the training data of all previous tasks.

3.44 DEALING WITH THE SECOND INEFFICIENCY

The second efficiency issue is that when computing a single candidate L, an optimization prob-

lem must be solved to recompute the value of each s’. To solve this problem, Ruvolo and Eaton

3.4. ELLA: AN EFFICIENT LIFELONG LEARNING ALGORITHM 45

[2013b] adopted this strategy: when the training data for task ¢ is last encountered, only s’ is
updated while s*’ for other tasks ¢’ remain the same. That is, s’ is computed when the train-
ing data for task ¢ is last encountered, and it is not updated later when training on other tasks.
Although this seems to prevent the influence of earlier tasks from later tasks, they will benefit
from the subsequent adjustment of the basis latent model components L. Using the previously
computed values of s’, the following optimization process is performed:

s < argmin |0* — Lys' |3 + pells’ [l . with fixed Ly, and

st

N
1 ~
Lyy1 < argmin —) (||o’ . pL||st||1) + A||L||%, with fixed s’ |
L N

where notation Ly, refers to the value of the latent components at the mth iteration and 7 is
assumed to be the particular task for which the training data just arrives. Note that if 7 is an
existing task, the new training data is merged into the old training data of 7.

For the specific steps in performing the updates in the preceding equations, please refer
to the original paper. They depend on the type of model and the loss function used. The paper
presented two cases: linear regression and logistic regression.

3.4.5 ACTIVE TASK SELECTION

LL in the above problem setting (Section 3.4.1) is a passive process, i.e., the system has no control
over the order in which the learning tasks are presented. Ruvolo and Eaton [2013a] considered
ELLA in an active task selection setting. Assuming that there is a pool of candidate tasks, rather
than choosing a task randomly as in ELLA, Ruvolo and Eaton [2013a] chose tasks in a certain
order with the purpose of maximizing future learning performance using as few tasks as possible.
'The problem is practical since each learning task may need a significant amount of time of manual
labeling or each learning task may take a long time for the system to run. In such cases, learning
in a task-efficient manner by choosing some tasks in certain order is more scalable to real-life

LL problems.

Active Task Selection Setting

The active task selection setting in LL is defined as follows: instead of modeling training data
of task ¢ as in regular LL, the system has a pool of candidate unlearned tasks 7,50 to choose
from. For each candidate task ¢ € T 0, only a subset of training instances is labeled, which
are denoted by D% = (X%, Y’). Based on these small subsets, one of the tasks, tyexr € T pooi, 1
chosen to learn next. After that, all the training data of #,., will be revealed, which is denoted

by D) = (X(new) Y Ee)) Note that for each task t, D% C D*. The size of the candidate pool
can be a fixed value or increase/decrease dynamically during learning.

46 3. LIFELONG SUPERVISED LEARNING

Diversity Method

Here we introduce the diversity method for active task selection proposed in Ruvolo and Eaton
[2013a] which was shown to perform the best compared to the other methods used in the paper.
In the context of ELLA, in order to maximize performance on future tasks, the model should
have a flexible and robust set of latent components, i.e., L. In other words, L should be adaptable
to a wide variety of tasks. If L does not fit well for a new task ¢, it means that the information
in 7 has not been represented well in the current L. Thus, in order to solve the widest range of
tasks, the next task should be the one that the current basis L performs the worst, i.e., the loss
on the subset of the labeled data is maximal. This heuristic is described as follows:

lnew = argmax min ||§? — Ls' |3 + wmlls'h (3.17)
t€7—pool s

where % and H' are obtained from the subset of the labeled data D:. Since Equation (3.17)
tends to select tasks that are encoded poorly with the current basis L, the selected tasks are likely
to be very difterent from existing tasks, and it thus encourages diverse tasks.

Rather than simply choosing the task with the maximal loss value, another way (called
Diversity++) is to estimate the probability of selecting task ¢ as the square value of the minimal
loss value for ¢, as below:

2
Pl = 1) ¢ ([< 1+l) (318)

Then each time, a task is sampled based on the probability p(f.y). This is thus a stochastic
variant of the diversity method above.

3.5 LIFELONG NAIVE BAYESIAN CLASSIFICATION

This section introduces the /ifelong NB classification technique given in Chen et al. [2015]. It is
applied to a sentiment analysis task, classifying whether a product review expresses a positive
or negative opinion. The system is called LSC (lifelong sentiment classification). Below we first
briefly introduce the NB classification formulation and then introduce its lifelong extension for
sentiment classification. Again for easy reference, we follow the notation in the original paper.

3.5.1 NAIVE BAYESIAN TEXT CLASSIFICATION

NB for text classification is a generative model consisting of a mixture of multinomial distribu-
tions. Each multinomial distribution (called a mixture component) is the generator of a single
class of documents. Training an NB model is to find the parameters of each multinomial dis-
tribution and the mixture weight. For text classification, the above idea can be translated as
follows: Given a set of training documents D = {d;,d>,....d|p|}, a vocabulary of V (the set
of distinct words/terms in D) and a set of classes C = {cy, ¢z, ..., c|c|} associated with D, NB

3.5. LIFELONG NAIVE BAYESIAN CLASSIFICATION 47

classification trains a classifier by computing the conditional probability of each word w € V
given each class ¢j, i.e., P(w|c;) (the model parameter for class ¢;) and the prior probability of
each class, P(c;) (the mixture weight) [McCallum and Nigam, 1998].

P(wlcj) is estimated based on the empirical word counts as follows:

P (wles)

_ A"‘ch',w
A+ N

(3.19)

where N; is the number of times that word w occurs in the documents of class ¢;. A (0 < A < 1)
is used for smoothing. When A = 1, it is known as Laplace smoothing. 'The prior probability of
each class, P(cj), is estimated as follows:

|D|
=1 P(cjldi)
P(cj) = == — (3.20)
’ |D|
where P(cj|d;) = 1 if ¢; is the label of the training document d; and 0 otherwise.
For testing, given a test document d, NB computes the posterior probability P(c;|d) for
each class ¢; and picks the class with the highest P(cj|d) as the classification result:

P(c;)P(d|cy)
Pd)

__ P Ilwea Pwle))™ (3.22)

1L P(er) TTwea P(wley)oa

where n,, 4 is the number of times that word w appears in d.

NB is a natural fit for LL because past knowledge can serve as priors for the probabilities
of the new task very easily. LSC exploits this idea. Let us answer two specific questions in the
context of sentiment classification. The first question is why the past learning can contribute to
the new/current task classification given that the current task already has labeled training data.
'The answer is that the training data may not be fully representative of the test data due to sample
selection bias [Heckman, 1979, Shimodaira, 2000, Zadrozny, 2004] and/or small training data
size, which is the case in Chen et al. [2015]. For example, in a sentiment classification appli-
cation, the test data may contain some sentiment words that are absent in the current training
data, but they have appeared in review data in some previous tasks. So the past knowledge can
provide the prior sentiment polarity information for the current new task. Note that for sen-
timent classification, sentiment words such as good, nice, terrible, and poor are instrumental.
Note also that each task in Chen et al. [2015] is actually from a different domain (or products).
We thus use zask and domain interchangeably from now on.

The second question is why the past knowledge can help even if the past domains are
very diverse and not very similar to the current domain. The main reason is that in sentiment
classification, sentiment words and expressions are largely domain independent. That is, their

P(cj|d) = (3.21)

polarities (positive or negative) are often shared across domains. Hence having worked a large

48 3. LIFELONG SUPERVISED LEARNING

number of previous/past domains, the system has learned a lot of positive and negative sentiment
words. It is important to note that only one or two past domains are not sufficient because of
the low coverage of sentiment words in the limited domains.

3.5.2 BASICIDEAS OF LSC

'This subsection introduces the basic ideas of the LSC technique. We start by discussing what is
stored in the knowledge base of LSC.

Knowledge Base
For each word w € V7 (where V7 is the vocabulary of all previous tasks), the knowledge base
KB stores two types of information: document-level knowledge and domain-level knowledge.

1. Document-level knowledge N %, (and N2): number of occurrences of w in the documents
of the positive (and negative) class in the previous tasks.

2. Domain-level knowledge M f?w (and M ffw): number of domains in which P(w|+) >
P(w|-) (and P(w|+) < P(w|—)). Here, in each previous task, P(w|+) and P(w|—) are
calculated using Equation (3.19). Here 4+ and — stands for positive and negative opinion
classes respectively.

'The domain-level knowledge is complementary to the document-level knowledge as w may be
extremely frequent in a domain but rare in other domains which leads to the superfluous effect
of that domain on w at the document level.

A Naive Approach to Using Knowledge

From Section 3.5.1, we can see that the key parameters that affect NB classification results are
P(w|cj) which are computed using the empirical counts N; , and the total number of words
in the class of documents. In binary classification, P(w|c;) are computed using N ,, and N_ .
'This suggests that we can revise these counts appropriately to improve classification. Given the
new task data D', we denote the empirical word counts N{ , (and N’) as the number of
times that word w occurs in the positive (and negative) documents in D’. Here, we explicitly
use superscript ¢ to distinguish it from the previous tasks. The task becomes how to effectively
use the knowledge in the KB to update word counts to build a superior NB classifier.

Given the knowledge base KB from the past learning tasks, one naive way to build a
classifier is to sum up the counts in KB (served as priors) with the empirical counts N} , and
Nt , of D, ie., Xy =Ni , +N{ and X_,, = N, + N*3 . Here, we call X, and
X_ .y virtual counts as they will be updated using optimization discussed in the next sub-section.
In building the classifier, N4, and N—, (i.e., N, ») in Equation (3.19) are replaced by X 4
and X_ ,,, respectively. This naive method turns out to be quite good in many cases, but it has

two weaknesses.

3.5. LIFELONG NAIVE BAYESIAN CLASSIFICATION 49

1. 'The past domains usually contain much more data than the current domain, which means
N§5, (and N*%)) may be much larger than N% (and N’). As a result, the merged
results may be dominated by the counts in the KB from the past domains.

2. It does not consider the domain-dependent word polarity. A word may be positive in the
current domain but negative in past domains. For example, past domains may indicate that
the word “toy” is negative because there are a lot of past sentences like “this product is a
toy.” However, in the toy domain, the word expresses no sentiment.

The LSC system solves these two problems using an optimization method.

3.5.3 LSCTECHNIQUE

LSC uses stochastic gradient descent (SGD) to minimize the training error by adjusting X ,, and
X_, (virtual counts), which are the numbers of times that a word w appears in the positive and
negative classes, respectively.

For correct classification, ideally, we should have the posterior probability P(+]|d;) = 1
for each positive class (4) document d;, and P(—|d;) = 1 for each negative class (—) document
d;. In stochastic gradient descent, we optimize the classification of each d; € D'. Chen et al.
[2015] used the following objective function for each positive document d; (a similar objective
function can also be formulated for each negative document):

Fyi = P (+|d;)— P(—l|d;) . (3.23)

We omit the derivation steps and just give the final equations below. To simplify the equations,
we define g(X), a function of X where X is a vector consisting of X ,, and X_ ,, of each word

- AL+ S X)
¢ (X) _ Igldi| _ = +,v , (3.24)
AVI+ 2 =1 X
A X "W d; g
Fyi _ A+X+u + P(+) e, (orxe w) X W _Nud; (3.25)
- P A+X_ d; ’ .
8X+’u Pé—i-)) nwed (A+X+) x g(X) o X—hu
nu.d;
Fri maxy X8X) + g7 (3.26)
= P A+X w nw.d; ’ '
X P((+)) Hwed (A+X+) + g(X)

In stochastic gradient descent, we update the variables X, and X_, for the positive
document d; iteratively using:

X-li-,u = X-li-_ul -V ~ , and

50 3. LIFELONG SUPERVISED LEARNING

where u represents each word in d;. y is the learning rate and / represents each iteration. Similar
update rules can be derived for each negative document d;. X9 , = Ni , + Nf% and X° , =
N* , 4+ NX serve as the starting points. The iterative updating process stops when the counts
converge.

Exploiting Knowledge via Penalty Terms

'The above optimization can update the virtual counts for better classification in the current
domain. However, it does not deal with the issue of domain-dependent sentiment words, i.e.,
some words may change their polarities across different domains. Nor does it use the domain-
level knowledge in the knowledge base KB (Section 3.5.2). We thus propose to add penalty
terms into the optimization to accomplish these.

'The idea is that if a word w can distinguish classes very well in the current domain train-
ing data, we should rely more on the current domain training data. So we define a set Vr of
distinguishing words in the current domain. A word w belongs to V7 if P(w|+) is much larger
or much smaller than P(w|-) in the current domain, i.e., 1;((5"3 >0 or % > o, where
o is a parameter. Such words are already effective in classification for the current domain, so
the virtual counts in optimization should follow the empirical counts (N} ,, and N’) in the
current task/domain, which are reflected in the L2 regularization penalty term below (« is the
regularization coefficient):

S 3 (Ko = N o)+ (X —N2,)°) (3.27)

weVr

To leverage domain-level knowledge (the second type of knowledge in the KB in Sec-
tion 3.5.2, we want to use only those reliable parts of the knowledge. The rationale here is that
if a word only appears in one or two past domains, the knowledge associated with it is probably
not reliable or it is highly specific to those domains. Based on this idea, domain frequency is
used to define the reliability of the domain-level knowledge. For w, if Mf5, > 7 or MX% > ¢
(7 is a parameter), it is regarded as appearing in a reasonable number of domains, making its
knowledge reliable. The set of such words is denoted by Vs. Then the second penalty term is:

1 2 1 2
5 > (Xpw—Rux X0 ,) + 5 Y (Xw—(I=Ry)xXx°)", (3.28)
weVg weVy

where the ratio Ry, is defined as M{5 /(M£5 + MX%). X9 and X° , are the starting points
tor SGD. Finally, the partial derivatives in Equations (3.24), (3.25), and (3.26) are revised by
adding the corresponding partial derivatives of Equations (3.27) and (3.28) to them.

3.5.4 DISCUSSIONS

Here we want to discuss a possible improvement to LSC, and a related lifelong sentiment clas-

sification work based on voting.

3.6. DOMAIN WORD EMBEDDING VIA META-LEARNING 51

Possible Improvements to LSC

So far we have discussed how to improve the future task learning by leveraging the prior prob-
ability knowledge gained from learning the past tasks. One question is whether we can also use
the future learning results to go back to help past learning. This is possible because we can apply
the same LSC technique by treating the past task to be improved as the future task and the rest
of all tasks as the past tasks. The weakness of this approach is that we need the training data of
the past task. But what happens if the past task training data is forgotten (like that in human
learning)? This is an interesting research problem, and I believe it is possible.

Lifelong Sentiment Classification via Voting

Xia et al. [2017] presented two LL methods for sentiment classification via voting of individual
task classifiers. The first method votes with equal weight for each task classifier. This method
can be applied to help past tasks. The second method uses weighted voting. However, like LSC,
it needs the past task training data to improve its model. Furthermore, their tasks are actually
from the same domain as they partitioned the same dataset into subsets and treated each subset
as a task. Tasks in LSC are from different domains (different types of products).

3.6 DOMAIN WORD EMBEDDING VIA META-LEARNING

LL can also be realized through meta-learning. This section describes such a method, which
aims to improve word embeddings for a domain without a large corpus. Learning word em-
beddings [Mikolov et al., 2013a,b, Mnih and Hinton, 2007, Pennington et al., 2014, Turian
et al., 2010] has received a significant amount of attention in recent years due to its success in
numerous natural language processing (NLP) applications. The “secret sauce” of the success of
word embeddings is that a large-scale corpus can be turned into a huge number (e.g., billions) of
training examples to learn the “semantic meanings” of words, which are used to perform many
down-stream NLP tasks. Two implicit assumptions are often made about the effectiveness of
embeddings to down-stream tasks: (1) the training corpus for embedding is available and much
larger than the training data of the down-stream task, and (2) the topic (domain) of the em-
bedding corpus is closely aligned with the topic of the down-stream NLP task. However, many
real-world applications do not meet both assumptions.

In most cases, the in-domain corpus is of limited size, which is insufficient for train-
ing good embeddings. In such applications, researchers and practitioners often just use some
general-purpose embeddings that are trained using a very large general-purpose corpus (which
satisfies the first assumption) covering almost all possible topics, e.g., the well-known GloVe
embeddings [Pennington et al., 2014] trained using 840 billion tokens covering almost all top-
ics or domains on the Web. Such embeddings have been shown to work reasonably well in many
domain-specific tasks. This is not surprising as the meaning of a word is largely shared across
domains and tasks. However, this solution violates the second assumption, which often leads to
sub-optimal results for domain-specific tasks [Xu et al., 2018]. One obvious explanation for this

52 3. LIFELONG SUPERVISED LEARNING

is that the general-purpose embeddings do provide some useful information for many words in
the domain task, but their embedding representations may not be ideal for the domain and in
some cases they may even conflict with the meanings of some words in the task domain because
words often have multiple senses or meanings. For instance, we have a task in the program-
ming domain, which has the word “Java.” A large-scale general-purpose corpus, which is very
likely to include texts about coffee shops, supermarkets, the Java island of Indonesia, etc., can
easily squeeze the room for representing the “Java” context words like “function,” “variable” and
“Python” in the programming domain. This results in a poor representation of the word “Java”
for the programming domain task.

To solve this problem and also the limited in-domain corpus size problem, cross-domain
embeddings have been investigated [Bollegala et al., 2015, 2017, Yang et al., 2017] via transfer
learning. These methods allow some in-domain words to leverage the general-purpose embed-
dings in the hope that the meanings of these words in the general-purpose embeddings do not
deviate too much from the in-domain meanings of these words. The embeddings of these words
can thus be improved. However, these methods cannot improve the embeddings of many other
words with domain-specific meanings (e.g., “Java”). Furthermore, some words in the general-
purpose embeddings may carry meanings that are different than those in the task domain.

Xu et al. [2018] proposed to improve domain embedding via LL by expanding the in-
domain corpus. The problem is stated as follows: Assuming that the learning system has seen
corporaof N domains in the past: Di.xy = {D1,..., Dy}, when a new task arrives with a domain
corpus Dy 11, the system automatically generates word embeddings for the (N + 1)-th domain
by leveraging some useful information or knowledge from the past N domains.

'The main challenges of this problem are twofold: (1) how to automatically identify relevant
information/knowledge from the past N domains without the help of a human user and (2) how
to integrate the relevant information into the new (N + 1)-th domain corpus. Xu et al. [2018]
proposed a meta-learning based algorithm called L-DEM (Lifelong Domain Embedding via
Meta-learning) to tackle the challenges.

To deal with the first challenge, for a word in the new domain, L-DEM learns to identify
similar contexts of the word in the past domains. Here the context of a word in a domain means
the surrounding words of that word in the domain corpus, called the domain context of the
word. For this, a multi-domain meta-learner is introduced. The meta-learner learns a meta-
predictor using data (corpora) from multiple domains. This meta-predictor is called the base
predictor. When a new domain arrives with its corpus, the system first adapts the base meta-
predictor to make it suitable for the new domain. The resulting domain-specific meta-predictor
is then used to identify similar (or relevant) domain contexts in each of the past domain for
each word in the new domain. The training data for meta-learning and domain adaptation are
produced automatically. To tackle the second challenge, L-DEM augments the new domain
corpus with the relevant domain contexts (knowledge) produced by the meta-predictor from the
past domain corpora and uses the combined data to train the embeddings for the new domain.

3.7. SUMMARY AND EVALUATION DATASETS 53

For example, for the word “Java” in the programming domain (the new domain), the meta-
predictor may produce similar domain contexts from some previous domains like programming
language, software engineering, operating systems, etc. These domain contexts will be combined
with the new domain corpus for “Java” to train a new domain embedding for “Java.” The detailed
technique is involved. Interested readers, please refer to Xu et al. [2018].

3.7 SUMMARY AND EVALUATION DATASETS

Although LL started with supervised learning more than 20 years ago, existing work is still
limited in both variety and in depth. There is still no general mechanism or algorithm that can
be applied to any sequence of tasks like existing ML algorithms such as SVM, Naive Bayes, or
deep learning, which can be used for almost any supervised learning task. There are many reasons
for this. Perhaps, the most important reason is that the research community still does not have a
good understanding of what the knowledge is in general, how to represent knowledge, and how
to use knowledge in learning effectively. A unified theory of knowledge and the related issues is
urgently needed. Another reason is that knowledge from supervised learning is difficult to use
across domains because to some extent optimization is an obstacle for reuse or transfer because
each model is highly optimized for its specific task. It is difficult to pick and choose some pieces
of knowledge learned from previous tasks or domains and apply them to the new tasks because
a model is often not decomposable. For example, it is very difficult to reuse any knowledge in
an SVM model or apply it in different but similar tasks. Simpler models are often much easier
to reuse. For example, it is not hard to pick some rules from a rule-based classifier and use them
to help learn a new task. This is probably why human learning is not optimized as the human
brains are not good at optimization and also our intelligence requires flexibility.

Evaluation Datasets: To help researchers working in the field, we summarize the eval-
uation datasets used in the papers covered in the chapter. For those publicly available datasets,
we provide their URLs.

Thrun [1996b] used a dataset of color camera images of different objects (such as bottle,
hammer, and book) in the evaluation. Caruana [1997] used the dataset 1D-ALVINN [Pomer-
leau, 2012] in the road-following domain. They also created the dataset 1D-DOORS [Caruana,
1997] in the object-recognition domain. In addition, a medical decision-making application was
also tested in Caruana [1997]. Ruvolo and Eaton [2013b] used three datasets in their evaluation.
The first is the land mine dataset from Xue et al. [2007], which detects whether or not a land
mine appears in an area according to radar images. The second is the facial expression recogni-
tion challenge dataset in Valstar et al. [2011].! The third is a London Schools dataset.” Chen
et al. [2015] evaluated using Amazon reviews from 20 diverse product domains, which is a sub-
set of the dataset in Chen and Liu [2014b].3 Xu et al. [2018] used the Amazon Review datasets

http://gemep-db.sspnet.eu
2https://github.com/tjanez/PyMTL/tree/master/data/school
3https://www.cs.uic.edu/~zchen/downloads/KDD2014-Chen-Dataset.zip

http://gemep-db.sspnet.eu
https://github.com/tjanez/PyMTL/tree/master/data/school
https://www.cs.uic.edu/~zchen/downloads/KDD2014-Chen-Dataset.zip

54 3. LIFELONG SUPERVISED LEARNING

from He and McAuley [2016], which is a collection of multiple-domain corpora organized in
multiple levels. The paper considered each second-level category (the first level is department)

as a domain and aggregate all reviews under each category as one domain corpus. This ends up
with a very diverse domain collection.

55

CHAPTER 4

Continual Learning and
Catastrophic Forgetting

In the recent years, lifelong learning (LL) has attracted a great deal of attention in the deep
learning community, where it is often called continual learning. Though it is well-known that
deep neural networks (DNNs) have achieved state-of-the-art performances in many machine
learning (ML) tasks, the standard multi-layer perceptron (MLP) architecture and DNNs suffer
from catastrophic forgetting [McCloskey and Cohen, 1989] which makes it difficult for continual
learning. The problem is that when a neural network is used to learn a sequence of tasks, the
learning of the later tasks may degrade the performance of the models learned for the earlier
tasks. Our human brains, however, seem to have this remarkable ability to learn a large number
of different tasks without any of them negatively interfering with each other. Continual learning
algorithms try to achieve this same ability for the neural networks and to solve the catastrophic
forgetting problem. Thus, in essence, continual learning performs incremental learning of new
tasks. Unlike many other LL techniques, the emphasis of current continual learning algorithms
has not been on how to leverage the knowledge learned in previous tasks to help learn the new
task better. In this chapter, we first give an overview of catastrophic forgetting (Section 4.1) and
survey the proposed continual learning techniques that address the problem (Section 4.2). We
then introduce several recent continual learning methods in more detail (Sections 4.3—4.8). Two
evaluation papers are also covered in Section 4.9 to evaluate the performances of some existing
continual learning algorithms. Last but not least, we give a summary of the chapter and list the
relevant evaluation datasets.

4.1 CATASTROPHIC FORGETTING

Catastrophic forgetting or catastrophic interference was first recognized by McCloskey and Cohen
[1989]. They found that, when training on new tasks or categories, a neural network tends
to forget the information learned in the previous trained tasks. This usually means a new task
will likely override the weights that have been learned in the past, and thus degrade the model
performance for the past tasks. Without fixing this problem, a single neural network will not be
able to adapt itself to an LL scenario, because it forgess the existing information/knowledge when
it learns new things. This was also referred to as the stability-plasticity dilemma in Abraham and
Robins [2005]. On the one hand, if a model is too stable, it will not be able to consume new
information from the future training data. On the other hand, a model with sufficient plasticity

56 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

suffers from large weight changes and forgets previously learned representations. We should note
that catastrophic forgetting happens to traditional multi-layer perceptrons as well as to DNNs.
Shadow single-layered models, such as self-organizing feature maps, have been shown to have
catastrophic interference too [Richardson and Thomas, 2008].

A concrete example of catastrophic forgetting is transfer learning using a deep neural
network. In a typical transfer learning setting, where the source domain has plenty of labeled
data and the target domain has little labeled data, fine-funing is widely used in DNNs [Dauphin
etal., 2012] to adapt the model for the source domain to the target domain. Before fine-tuning,
the source domain labeled data is used to pre-train the neural network. Then the output layers
of this neural network are retrained given the target domain data. Backpropagation-based fine-
tuning is applied to adapt the source model to the target domain. However, such an approach
suffers from catastrophic forgetting because the adaptation to the target domain usually disrupts
the weights learned for the source domain, resulting inferior inference in the source domain.

Li and Hoiem [2016] presented an excellent overview of the traditional methods for
dealing with catastrophic forgetting. They characterized three sets of parameters in a typical
approach:

* f: set of parameters shared across all tasks;
* 0,: set of parameters learned specifically for previous tasks; and
* 0,: randomly initialized task-specific parameters for new tasks.

Li and Hoiem [2016] gave an example in the context of image classification, in which 6
consists of five convolutional layers and two fully connected layers in the AlexNet architecture
[Krizhevsky et al., 2012]. 6, is the output layer for classification [Russakovsky et al., 2015] and
its corresponding weights. 6, is the output layer for new tasks, e.g., scene classifiers.

There are three traditional approaches to learning 6, with knowledge transferred from 6.

* Feature Extraction (e.g., Donahue et al. [2014]): both 65 and 6, remain the same while
the outputs of some layers are used as features for training 6, for the new task.

* Fine-tuning (e.g., Dauphin et al. [2012]): 65 and 6, are optimized and updated for the
new task while 6, remains fixed. To prevent large shift in 6;, a low learning rate is typically
applied. Also, for the similar purpose, the network can be duplicated and fine-tuned for each
new task, leading to N networks for N tasks. Another variation is to fine-tune parts of 6y,
for example, the top layers. This can be seen as a compromise between fine-tuning and
feature extraction.

* Joint Training (e.g., Caruana [1997]): All the parameters 6y, 0,, 8, are jointly optimized
across all tasks. This requires storing all the training data of all tasks. Multi-task learning
(MTL) typically takes this approach.

4.2. CONTINUAL LEARNING IN NEURAL NETWORKS 57

'The pros and cons of these methods are summarized in Table 4.1. In light of these pros
and cons, Li and Hoiem [2016] proposed an algorithm called “Learning without Forgetting”
that explicitly deals with the weaknesses of these methods; see Section 4.3.

Table 4.1: Summary of traditional methods for dealing with catastrophic forgetting. Adapted
from Li and Hoiem [2016].

Feature

Duplicate and

Category Extraction Fine-Tuning Fine-Tuning Joint Training
New task performance Medium Good Good Good
Old task performance Good Bad Good Good
Training efficiency Fast Fast Fast Slow
Testing efficiency Fast Fast Slow Fast
Storage requirement Medium Medium Large Large
Require previous task data No No No Yes

4.2 CONTINUAL LEARNING IN NEURAL NETWORKS

A number of continual learning approaches have been proposed to lessen catastrophic forgetting
recently. This section gives an overview for these newer developments. A comprehensive survey
on the same topic is also given in Parisi et al. [2018a].

Much of the existing work focuses on supervised learning [Parisi et al., 2018a]. Inspired
by fine-tuning, Rusu et al. [2016] proposed a progressive neural network that retains a pool of
pretrained models and learns lateral connections among them. Kirkpatrick et al. [2017] proposed
a model called Elastic Weight Consolidation (EWC) that quantifies the importance of weights
to previous tasks, and selectively adjusts the plasticity of weights. Rebuffi et al. [2017] tackled the
LL problem by retaining an exemplar set that best approximates the previous tasks. A network
of experts is proposed by Aljundi et al. [2016] to measure task relatedness for dealing with
catastrophic forgetting. Rannen Ep Triki et al. [2017] used the idea of autoencoder to extend
the method in “Learning without Forgetting” [Li and Hoiem, 2016]. Shin et al. [2017] followed
the Generative Adversarial Networks (GANs) framework [Goodfellow, 2016] to keep a set of
generators for previous tasks, and then learn parameters that fit a mixed set of real data of the
new task and replayed data of previous tasks. All these works will be covered in details in the
next few sections.

Instead of using knowledge distillation as in the model “Learning without Forgetting”
(LwF) [Li and Hoiem, 2016], Jung et al. [2016] proposed a less-forgetful learning that regu-
larizes the final hidden activations. Rosenfeld and Tsotsos [2017] proposed controller modules
to optimize loss on the new task with representations learned from previous tasks. They found

58 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

that they could achieve satisfactory performance while only requiring about 22% of parameters
of the fine-tuning method. Ans et al. [2004] designed a dual-network architecture to generate
pseudo-items which are used to self-refresh the previous tasks. Jin and Sendhoff [2006] modeled
the catastrophic forgetting problem as a multi-objective learning problem and proposed a multi-
objective pseudo-rehearsal framework to interleave base patterns with new patterns during op-
timization. Nguyen et al. [2017] proposed variational continual learning by combining online
variational inference (VI) and Monte Carlo VI for neural networks. Motivated by EWC [Kirk-
patrick et al., 2017], Zenke et al. [2017] measured the synapse consolidation strength in an
online fashion and used it as regularization in neural networks. Seff et al. [2017] proposed to
solve continual generative modeling by combining the ideas of GANs [Goodfellow, 2016] and
EWC [Kirkpatrick et al., 2017].

Apart from regularization-based approaches mentioned above (e.g., LwF [Li and Hoiem,
2016], EWC [Kirkpatrick et al., 2017]), dual-memory-based learning systems have also been
proposed for LL. They are inspired by the complementary learning systems (CLS) theory [Ku-
maran et al., 2016, McClelland et al., 1995] in which memory consolidation and retrieval are
related to the interplay of the mammalian hippocampus (short-term memory) and neocortex
(long-term memory). Gepperth and Karaoguz [2016] proposed using a modified self-organizing
map (SOM) as the long-term memory. To complement it, a short-term memory (STM) is
added to store novel examples. During the sleep phase, the whole content of STM is replayed
to the system. This process is known as intrinsic replay or pseudo-rehearsal [Robins, 1995].
It trains all the nodes in the network with new data (e.g., from STM) and replayed samples
from previously seen classes or distributions on which the network has been trained. The re-
played samples prevents the network from forgetting. Kemker and Kanan [2018] proposed a
similar dual-memory system called FearNet. It uses a hippocampal network for STM, a medial
prefrontal cortex (mPFC) network for long-term memory, and a third neural network to deter-
mine which memory to use for prediction. More recent developments in this direction include
Deep Generative Replay [Shin et al., 2017], DGDMN [Kamra et al., 2017] and Dual-Memory
Recurrent Self-Organization [Parisi et al., 2018b].

Some other related works include Learn++ [Polikar et al., 2001], Gradient Episodic
Memory [Lopez-Paz et al., 2017], Pathnet [Fernando et al., 2017], Memory Aware
Synapses [Aljundi et al., 2017], One Big Net for Everything [Schmidhuber, 2018], Phan-
tom Sampling [Venkatesan et al., 2017], Active Long Term Memory Networks [Furlanello
et al., 2016], Conceptor-Aided Backprop [He and Jaeger, 2018], Gating Networks [Masse
et al., 2018, Serra et al., 2018], PackNet [Mallya and Lazebnik, 2017], Diftfusion-based Neu-
romodulation [Velez and Clune, 2017], Incremental Moment Matching [Lee et al., 2017b],
Dynamically Expandable Networks [Lee et al., 2017a], and Incremental Regularized Least
Squares [Camoriano et al., 2017].

There are some unsupervised learning works as well. Goodrich and Arel [2014] studied
unsupervised online clustering in neural networks to help mitigate catastrophic forgetting. They

4.3. LEARNING WITHOUT FORGETTING 59

proposed building a path through the neural network to select neurons during the feed-forward
pass. Each neural is assigned with a cluster centroid, in addition to the regular weights. In the
new task, when a sample arrives, only the neurons whose cluster centroid points are close to
the sample are selected. This can be viewed as a special dropout training [Hinton et al., 2012].
Parisi etal. [2017] tackled LL of action representations by learning unsupervised visual represen-
tation. Such representations are incrementally associated with action labels based on occurrence
frequency. The proposed model achieves competitive performance compared to models trained
with predefined number of action classes.

In the reinforcement learning applications [Ring, 1994], other than the works mentioned
above (e.g., Kirkpatrick et al. [2017], Rusu et al. [2016]), Mankowitz et al. [2018] proposed a
continual learning agent architecture called Unicorn. The Unicorn agent is designed to have the
ability to simultaneously learn about multiple tasks including the new tasks. The agent can reuse
its accumulated knowledge to solve related tasks effectively. Last but not least, the architecture
aims to aid agent in solving tasks with deep dependencies. The essential idea is to learn multiple
tasks off-policy, i.e., when acting on-policy with respect to one task, it can use this experience
to update policies of related tasks. Kaplanis et al. [2018] took the inspiration from biological
synapses and incorporated different timescales of plasticity to mitigate catastrophic forgetting
over multiple timescales. Its idea of synaptic consolidation is along the lines of EWC [Kirk-
patrick et al., 2017]. Lipton et al. [2016] proposed a new reward shaping function that learns
the probability of imminent catastrophes. They named it as insrinsic fear, which is used to pe-
nalize the Q-learning objective.

Evaluation frameworks were also proposed in the context of catastrophic forgetting.
Goodfellow et al. [2013a] evaluated traditional approaches including dropout training [Hin-
ton et al., 2012] and various activation functions. More recent continual learning models were
evaluated in Kemker et al. [2018]. Kemker et al. [2018] used large-scale datasets and evaluated
model accuracy on both old and new tasks in the LL setting. See Section 4.9 for more details.
In the next few sections, we discuss some representative continual learning approaches.

4.3 LEARNING WITHOUT FORGETTING

'This section describes the approach called Learning without Forgetting given in Li and Hoiem
[2016]. Based on the notations in Section 4.1, it learns 6, (parameters for the new task) with the
help of 05 (shared parameters for all tasks) and 6, (parameters for old tasks) without degrading
much of the performance on the old tasks. The idea is to optimize 5 and 6, on the new task
with the constraint that the predictions on the new task’s examples using 65 and 6, do not shift
much. The constraint makes sure that the model still “remembers” its old parameters, for the
sake of maintaining satisfactory performance on the previous tasks.

'The algorithm is outlined in Algorithm 4.1. Line 2 records the predictions Y, of the new
task’s examples X, using 6, and 6,, which will be used in the objective function (Line 7). For
each new task, nodes are added to the output layer, which is fully connected to the layer beneath.

60 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

These new nodes are first initialized with random weights 6, (Line 3). There are three parts in
the objective function in Line 7.

Algorithm 4.1 Learning without Forgetting

Input: shared parameters 0y, task-specific parameters for old tasks 6,, training data X,,, Y, for
the new task.
Output: updated parameters 0, 05, 0,

§) 70 "n*

A - NV S O SV R SR

: // Initialization phase.

. Y, < CNN(X,, 65, 6,)

. 6, < RANDINIT(|6,)

: // Training phase.

. Define ¥, = CNN(X,,, 0;. 6,,)

. Define ¥, = CNN(X,, 0, éo)

07,67, 67 < argming ; (E,,ew(f’n, Y) + AoLota(Yo, Yo) + R(@s,eo,e,,))

§s70°"n

* Loew (f’n, Y,): minimize the difference between the predicted values Y, » and the
groundtruth Y,,. ¥, is the predicted value using the current parameters 65 and 6, (Line 5).
In Li and Hoiem [2016], the multinomial logistic loss is used:

ﬁnew (},}n’ Yn) = —Yn . log i}n .

. Eold(l?o, Y,): minimize the difference between the predicted values Y, and the recorded
values Y, (Line 2), where ¥, comes from the current parameters 6 and 6, (Line 6). Li
and Hoiem [2016] used knowledge distillation loss [Hinton et al., 2015] to encourage
the outputs of one network to approximate the outputs of another. The distillation loss is
defined as modified cross-entropy loss:

Lo1a(Yo,Yo) = —H(Y,, Y,

0’7o
1
= — Z yo(l) 1Og on(l) ,
i=1
where [is the number of labels. y;(i) and ﬁ;(i) are the modified probabilities defined as:
(gi)) 1/T

G) (y &/G) (ﬁgl))l/T

ST T S IHIT
T is set to 2 in Li and Hoiem [2016] to increase the weights of smaller logit values. In the

objective function (Line 7), A, is used to balance the new task and the old/past tasks. Li
and Hoiem [2016] tried various values for A, in their experiments.

4.4. PROGRESSIVE NEURAL NETWORKS 61

* R(bs. 05, 0n): regularization term to avoid overfitting.

4.4 PROGRESSIVE NEURAL NETWORKS

Progressive neural networks were proposed by Rusu et al. [2016] to explicitly tackle catastrophic
forgetting for the problem of LL. The idea is to keep a pool of pretrained models as knowledge,
and use lateral connections between them to adapt to the new task. The model was originally
proposed to tackle reinforcement learning, but the model architecture is general enough for other
ML paradigms such as supervised learning. Assuming there are N existing/past tasks: 71, 7z, . . .,
Tn, progressive neural networks maintain N neural networks (or N columns). When a new task
TN +1 is created, a new neural network (or a new column) is created, and its lateral connections
with all previous tasks are learned. The mathematical formulation is presented below.

In progressive neural networks, each task 7, is associated with a neural network, which
is assumed to have L layers with hidden activations hl(") for the units at layer i < L. The set of
parameters in the neural network for 7, is denoted by O™ _ When a new task Ty arrives, the
parameters W 0@ . W) remain the same while each layer hl(NH) in the Ty 41’s neural
network takes inputs from (i — 1)th layers of all previous tasks” neural networks, i.e.,

h§N+1) = max (O, VVi(N_H)hl(Tl—’_l) + Z Ui(n:N—’_l)h,(’i)l) , (4.1)
n<N+1

where Wi(NH) denotes the weight matrix of layer i in neural network N + 1. The lateral connec-
tions are learned via Ui(":NH) to indicate how strong the (i — 1)th layer from task n influences
the ith layer from task N + 1. hg is the network input.

Unlike pretraining and fine-tuning, progressive neural networks do not assume any rela-
tionship between tasks, which makes it more practical for real-world applications. The lateral
connections can be learned for related, orthogonal, or even adversarial tasks. To avoid catas-
trophic forgetting, settings of parameters @™ for existing tasks 7, where n < N are “frozen”
while the new parameter set @V 1 is learned and adapted for the new task Ty 1. As a result,
the performance on existing tasks does not degrade.

For the applications in reinforcement learning, each task’s neural network is trained to
learn a policy function for a particular Markov Decision Process (MDP). The policy function
implies the probabilities over actions given states. Nonlinear lateral connections are learned
through a single hidden perceptron layer, which reduces the number of parameters from the
lateral connections to the same order as |©(|. More details can be found in Rusu et al. [2016].

With the flexibility of considering various task relationships, progressive neural networks
come at a price: it can explode the numbers of parameters with an increasing number of tasks,
since it needs to learn a new neural network for a new task and its lateral connections with all
existing ones. Rusu et al. [2016] suggested pruning [LeCun et al., 1990] or online compression
[Rusu et al., 2015] as potential solutions.

62 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING
4.5 ELASTIC WEIGHT CONSOLIDATION
Kirkpatrick et al. [2017] proposed a model called Elastic Weight Consolidation (EWC) to miti-

gate catastrophic forgetting in neural networks. It was inspired by human brain in which synaptic
consolidation enables continual learning by reducing the plasticity of synapses related to previous
learned tasks. As mentioned in Section 4.1, plasticity is the main cause of catastrophic forget-
ting since the weights learned in the previous tasks can be easily modified given a new task.
More precisely, plasticity of weights that are closely related to previous tasks is more prone to
catastrophic forgetting than plasticity of weights that are loosely connected to previous tasks.
'This motivates [Kirkpatrick et al., 2017] to quantify the importance of weights in terms of their
impact on previous tasks’ performance, and selectively decrease the plasticity of those important
weights to previous tasks.

Kirkpatrick et al. [2017] illustrated their idea using an example consisting of two tasks A
and B where A is a previous task and B is the new task. The example only contains two tasks
for easy understanding, but the EWC model works in an LL manner with tasks coming in a
sequence. The parameters (weights and biases) for task A and B are represented by 64 and 6p.
'The sets of parameters that lead to low errors for task 4 and B are represented by ©% and O3,
respectively. Over-parametrization makes it possible to find a solution 65 € ®% and 03 € ©F,
i.e., the solution is learned toward task B while also maintaining low errors in task 4. EWC
achieves this goal by constraining the parameters to stay in A’s low-error region. Figure 4.1
visualizes the example.

'The Bayesian approach is used to measure the importance of parameters toward a task
in EWC. In particular, the importance is modeled as the posterior distribution p(6|D), the
probability of parameter 6 given a task’s training data D. Using Bayes’ rule, the log value of the
posterior probability is:

log p(0|D) = log p(D|) + log p(8) — log p(D) . (4.2)

Assume that the data consists of two independent parts: Dy for task 4 and Dp for task
B. Equation (4.2) can be written as:

log p(8|D) = log p(Dg|0) + log p(0|D4) —log p(Dp) . (4.3)

The left side in Equation (4.3) is still the posterior distribution given the entire dataset,
while the right side only depends on the loss function for task B, i.e., log p(Dp|6). All the in-
formation related to task A4 is embedded in the term log p(6|D4). EWC wants to extract infor-
mation about weight importance from log p(6|D4). Unfortunately, log p(6|Dy) is intractable.
'Thus, EWC approximates it as a Gaussian distribution with mean given by the parameters 6
and a diagonal precision by the diagonal of the Fisher information matrix F. Thus, the new loss

function in EWC is: s
L(0) = Lp(®) + Z S0 =057 . (4.4)

4.5. ELASTIC WEIGHT CONSOLIDATION 63

1 OX: Low error for task A — EWC
—— No penalty

*.
™ ©g: Low error for task B L, Regularization

i

Figure 4.1: An example to illustrate EWC. Given task B, a regular neural network learns a
point that yields a low error for task B but not task A (blue arrow). A L, regularization instead
provides a suboptimal model to task B (purple arrow). EWC updates its parameters for task B
while slowly updating the parameters important to task A to stay in A’s low error region (red
arrow).

where Lp(0) is the loss for task B only. A controls how strong the constraint posed should not
move too far away from task A’s low error area. i denotes each index in the weight vector.

Recall that if 0 has n dimensions, 61, 05, ..., 0,, the Fisher information matrix F is a
n x n matrix with each entry being:

16);) = Ex [(%Mg p(1>|9)) (%mg p(D|9)) ’e] | (4.5)
1 J

The diagonal entry is then:

2
Fo = 1(6) = Ex [(%Mgp(me))

9i| . (4.6)

When a task C comes, EWC updates Equation (4.4) with the penalty term enforcing the

parameters 6 to be close to 6} 5, where 0} p is the parameters learned for tasks A and B.

64 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

To evaluate EWC, Kirkpatrick et al. [2017] used the MNIST dataset [LeCun et al.,
1998]. A new task is obtained by generating a random permutation and the input pixels of all
images are shuffled according to the permutation. As a result, each task is unique with equal
difficulty to the original MNIST problem. The results showed that EWC achieves superior
performances to those models that suffer from catastrophic forgetting. For more details on the
evaluation as well as EWC’s application in reinforcement learning, please refer to the original

paper by Kirkpatrick et al. [2017].

4.6 ICARL: INCREMENTAL CLASSIFIER AND
REPRESENTATION LEARNING

Rebuffi et al. [2017] proposed a new model for class-incremental learning. Class-incremental
learning requires the classification system to incrementally learn and classify new classes that it
has never seen before. This is similar to open-world-learning (or cumulative learning) [Fei et al.,
2016] introduced in Chapter 5 without the rejection capability of open-world learning. It as-
sumes that examples of different classes can occur at different times, with which the system
should maintain a satisfactory classification performance on each observed class. Rebuffi et al.
[2017] also emphasized that computational resources should be bounded or slowly increased
with more and more classes coming.

To meet these criteria, a new model called iCaRL, incremental Classifier and Representation
Learning, was designed to simultaneously learn classifiers and feature representations in the
class-incremental setting. At the high level, iCaRL maintains a set of exemplar examples for
each observed class. For each class, an exemplar set is a subset of all examples of the class, aiming
to carry the most representative information of the class. The classification of a new example is
performed by choosing the class whose exemplars are the most similar to it. When a new class
shows up, iCaRL creates an exemplar set for this new class while trimming the exemplar sets of
the existing/previous classes.

Formally, at any time, iCaRL learns a stream of classes in the class-incremental learning
setting with their training example sets, X*, X**1 ... X’ where X?” is a set of examples of
class y. y can either be an observed/past class or a new class. To avoid memory overflow, iCaRL
holds a fixed number (K') of exemplars in total. With C classes, the exemplar sets are represented
by P = {Pi,..., Pc} where each class’s exemplar set P; maintains K/C exemplars. In Rebufhi
et al. [2017], both original examples and exemplars are images, but the proposed method is
general enough for non-image datasets.

4.6.1 INCREMENTAL TRAINING

Algorithm 4.2 presents the incremental training algorithm in iCaRL with new training example
sets X*, ..., X" of classes s, ..., t arriving in a stream. Line 1 updates the model parameters

® with the new training examples (defined in Algorithm 4.3). Line 2 computes the number of

4.6. ICARL: INCREMENTAL CLASSIFIER AND REPRESENTATION LEARNING 65
Algorithm 4.2 iCaRL IncrementalTraining

Input: new training examples X*, ..., X ! of new classes s, ..., t, current model parameters O,
current exemplar sets P = {Py,..., Ps_1}, memory size K.
Output: updated model parameters ©, updated exemplar sets P.

® <« UpdateReresentation(X*, ..., X*; P, ©)
m<« K/t
fory=1tos—1do
Py < Py[1:m]
end for
fory =stot do
P, < ConstructExemplarSet(X”, m, ©)
end for
P {P,... P}

R A N

exemplars per class. For each existing class, we reduce the number of exemplars per class to m.
Since the exemplars are created in the order of importance (see Algorithm 4.4), we just keep the
first m exemplars for each class (Line 3-5). Line 68 construct the exemplar set for each new
class (see Algorithm 4.4).

4.6.2 UPDATING REPRESENTATION

Algorithm 4.3 details the steps for updating the feature representation. Two datasets are created
(Lines 1 and 2): one with all existing exemplar examples, and the other with new examples of
the new classes. Note that the exemplar examples have the original feature space, not the learned
representation. Lines 35 store the prediction output of each exemplar example with the current
model. Learning in Rebuffi et al. [2017] used a convolutional neural network (CNN) [LeCun
et al., 1998], interpreted as a trainable feature extractor: ¢ : X — R¥. A single classification
layer is added with as many sigmoid output nodes as the number of classes observed so far. The
output score for class y € {1,...,t} is formulated as follows:

1
1 + exp(—ay(x))

gy(x) = with ay(x) = w;go(x) . (4.7)

Note that the network is just utilized for representation learning, not for the actual classi-
fication. The actual classification is covered in Section 4.6.4. The last step in Algorithm 4.3 runs
Backpropagation with the loss function that (1) minimizes the loss on the new examples of new
classes D"€Y (classification loss), and (2) reproduces the scores stored using previous networks
(distillation loss [Hinton et al., 2015]). The hope is that the neural network will be updated with
new examples of the new classes, while not forgetting the existing classes.

66 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

Algorithm 4.3 iCaRL UpdateRepresentation

Input: new training examples X*, ..., X ! of new classes s, .. ., t, current model parameters O,
current exemplar sets P = {Py, ..., Ps_1}, memory size K.
Output: updated model parameters ©.

1. pexemplar |] {(x,y):x € Py}
1
2: D" —) {(x,y):x€e XV}

V=5,...,t
fory=1tos—1do
q; < gy(x;) forall (x;,) € pexemplar
end for
Pptrain Dexemplar U PDrew
Run network training (e.g., Backpropagation) with loss function that contains c/assification
and distillation terms:

L(®) =— Z(x,,yi)epfmi" [ij:s 8y=y,' log gy (xi) + Syyéyf log(1 — gy (x;))
+ Y52 4 log gy (i) + (1 — g) log(1 — gy (x;))]

N AW

4.6.3 CONSTRUCTING EXEMPLAR SETS FORNEW CLASSES

When examples of a new class ¢ show up, iCaRL balances the number of exemplars in each
class, i.e., reducing the number of exemplars for each existing class and creating the exemplar
set for the new class. If K exemplars are allowed in total due to the memory limitation, each
class receives m = K/t exemplar quota. For each existing class, the first m exemplars are kept
(Lines 35 in Algorithm 4.2). For the new class ¢, Algorithm 4.4 chooses m exemplars for it.
Here is the intuition of how the selection of exemplars works: the average feature vector over
all exemplars should be close to the average feature vector over all examples of the class. As
such, the general property of all examples in a class does not diminish much when most of them
are removed, i.e., only exemplars are retained. Also, to make sure that exemplars can be easily
trimmed, the exemplars are stored in the order that the most important ones are stored first,
thus making the list a priority list.

In Algorithm 4.4, the average feature vector p of all training examples of class ¢ is com-
puted (Line 1). Then m exemplars are selected in the order that by picking each exemplar py,
the average feature vector is the closest to i compared to adding any other non-exemplar ex-
ample (Lines 2—4). Consequently, the resulting exemplar set P < (pi. ..., pm) should well
approximate the class mean vector. Note that all non-exemplar examples are dropped after class
¢ training. So having an ordered list of exemplars according to importance is a key to LL since
it is easy to reduce its size with future new classes added while retaining the most essential past
information.

4.7. EXPERT GATE 67

Algorithm 4.4 iCaRL ConstructExemplarSet

Input: examples X = {xy1,...,x,} of class ¢, the target number of exemplars m, current feature
function ¢ : X — R¥.
Output: exemplar set P for class y.

A %erX QD(X)
: fork =1tomdo

. k—
Pk < rgMiNy e Xandxé{py,....px_1} HM — Ho(x) + X5 90(1);)]H
end for
P <~ (p1,....,Pm)

A

4.6.4 PERFORMING CLASSIFICATION IN ICARL

With all the training algorithms introduced above, the classification is performed with the sets
of exemplars P = {Py,..., P;}. The idea is straightforward: given a test example x, we pick
the class y* whose exemplar set’s average feature vector is the closet to x as x’s class label (see

Algorithm 4.5).

Algorithm 4.5 iCaRL Classify in iCaRL

Input: a test example x to be classified, sets of exemplars P = {P,..., P;}, current feature
function ¢ : X — R¥.
Output: predicted class label y* of x.

1: fory=1tot do
1
2 My < 1P > _pep, #(P)
3: end for
4 y* «— arglmin [lo(x) — pyl|
y=1,..., t

4.7 EXPERT GATE

Aljundi et al. [2016] proposed a Network of Experts where each expert is a model trained given a
specific task. Since an expert is trained on one task only, it is good at this particular task, but not
others. Thus, in the LL context, a network of experts are needed to handle a sequence of tasks.

One compelling point that Aljundi et al. [2016] emphasizes is the importance of memory
efficiency, especially in the era of big data. As we know, GPUs are widely used for training deep

learning models due to their rapid processing capability. However, GPUs have limited memory

compared to CPUs. As deep learning models are becoming more and more complex, GPUs can

68 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

only load a small number of models at a time. With a large number of tasks, as in LL, it requires
the system to know what model or models to load when making a prediction on a test example.

With this need in mind, Aljundi et al. [2016] proposed an Expert Gate algorithm to deter-
mine the relevance of tasks, and only load the most relevant tasks in memory during inference.
Denoting the existing tasks as 71, 72, ..., Tn, an undercomplete autoencoder model Ay and
an expert model Ej are constructed for each existing task T where k € {1,..., N}. When a
new task Ty 41 and its training data Dy 41 arrive, Dy will be evaluated against each autoen-
coder Ay to find the most relevant tasks. The expert models of these most relevant tasks are used
for fine-tuning or learning-without-forgetting (LwF) (Section 4.3) to build the expert model
EnN+1. At the same time, Ay is learned from Dy 1. When making a prediction on a test
example x;, the expert models whose corresponding autoencoders best describe x; are loaded in
memory and used to make the prediction.

4.7.1 AUTOENCODER GATE

An autoencoder [Bourlard and Kamp, 1988] model is a neural network that learns to recover
input in the output layer in an unsupervised manner. There are encoder and decoder in the
model. The encoder f = h(x) projects the input x to an embedded space /1(x) while the decoder
r = g(h(x)) maps the embedded space to the original input space. There are two types of au-
toencoder models: undercomplete autoencoder and overcomplete autoencoder. Undercomplete
autoencoder learns a lower-dimensional representation and overcomplete autoencoder learns a
higher-dimensional representation with regularization. An example of undercomplete autoen-
coder is illustrated in Figure 4.2.

Input Hidden
Layer Layers

X JS=h

Figure 4.2: An example of undercomplete autoencoder model.

The intuition for using autoencoder in Expert Gate is that, as an unsupervised approach,
an undercomplete autoencoder can learn a lower-dimensional feature representation that best

4.7. EXPERT GATE 69

describes the data in a compact way. The autoencoder of one task should perform well at re-
constructing the data of that task, i.e., one autoencoder model is a decent representation of one
task. If two autoencoder models from two tasks are close to each other, the tasks are likely to be
similar too.

'The autoencoder used in Aljundi et al. [2016] is simple: it has one ReLU layer [Zeiler
et al.,, 2013] between the encoding and decoding layers. ReLU activation units are fast and easy
to optimize, which also introduce sparsity to avoid over-fitting.

4.7.2 MEASURING TASK RELATEDNESS FOR TRAINING

Given a new task Ty 41 with its training data Dy 11, Expert Gate first learns an autoencoder
AN 41 from Dy 4. To facilitate training expert model En 41, it finds the most related existing
task and use its expert model. Specifically, the reconstruction error of D using an autoencoder
Ay is defined as:

k
D ceperl
Er, = =X x 4.8

: D] (4.8)
where erk is the reconstruction error of applying x to the autoencoder Ay. Since the data of
existing tasks are discarded, only Dy 11 can be used to evaluate the relatedness. Given an existing
task Tk, Dy +1 is used to compute two reconstruction errors: Ery 4 of autoencoder Ay 41 and
Ey of autoencoder Ag. The task relatedness is thus defined as:

Erys1—Erg

Relatedness(Ty+1,Te) = 1 —
Ery

(4.9

Note that this relatedness definition is asymmetric. After the most related task is chosen,
depending on how related it is to the new task, fine-tuning (see Section 4.1) or learning-without-
forgetting (LwF) (Section 4.3) is employed. If two tasks are sufficiently related, LwF is applied;
otherwise, fine-tuning is used. In LwF, a shared model is used for all tasks while each task has its
own classification layer. A new task introduces a new classification layer. The model is fine-tuned
to the new task’s data while trying to preserve the previous tasks’ predictions on the new data.

4.7.3 SELECTING THE MOST RELEVANT EXPERT FOR TESTING

If a test example x; yields a very small reconstruction error when going through an autoencoder
(say Ag), x; should be similar to the data that was used to train Ag. The specialized model
(expert) Ej should hence be utilized to make predictions on x;. The probability pi of x; being
relevant to an expert Ey is defined as:

exp(—e r)’jt /T)
> exp(—er,{,/t) ’

where er¥ is the reconstruction error of applying x; to the autoencoder A. 7 is the temperature

whose value is 2, leading to soft probability values. Aljundi et al. [2016] picked the expert Ex

Pk = (4.10)

70 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

to make the prediction on x; whose py is the maximum among all existing tasks. The approach
can also accommodate loading multiple experts by simply selecting experts whose relevant score

is higher than a threshold.

4.7.4 ENCODER-BASED LIFELONG LEARNING

Finally, we note that Rannen Ep Triki et al. [2017] also used the idea of autoencoder to extend
LwF (Section 4.3). Rannen Ep Triki et al. [2017] argued that LwF has an inferior loss function
definition when the new task data distribution is quite different from those of previous tasks. To
address this issue, an autoencoder based method is proposed to preserve only the features that
are the most important for previous tasks while allowing other features to adapt more quickly
to new tasks. This is achieved by learning a lower-dimensional manifold via autoencoder, and
constraining the distance between the reconstructions. Note that this is similar to EWC (Sec-
tion 4.5) in the sense that EWC tries to maintain the most important weights while Rannen Ep
Triki et al. [2017] aims to conserve features. See Rannen Ep Triki et al. [2017] for more details.

4.8 CONTINUAL LEARNING WITH GENERATIVE REPLAY

Shin et al. [2017] proposed a continual learning method using replayed examples from a gen-
erative model without referring to the actual data of past tasks. It is inspired by the suggestion
that the hippocampus is better paralleled with a generative model than a replay buffer [Ramirez
etal., 2013, Stickgold and Walker, 2007]. As mentioned in Section 4.2, this represents a stream
of lifelong learning systems that use dual-memory for knowledge consolidation. We pick the
work of Shin et al. [2017] to give a flavor of such models. In the deep generative replay frame-
work proposed by Shin et al. [2017], a generative model is maintained to feed pseudo-data as
knowledge of past tasks to the system. To train such a generative model, the generative adversar-
ial networks (GANSs) [Goodfellow et al., 2014] framework is used. Given a sequence of tasks,
a scholar model, containing a generator and a solver, is learned and retained. Such a scholar
model holds the knowledge representing the previous tasks, and thus prevents the system from
forgetting previous tasks.

4.8.1 GENERATIVE ADVERSARIAL NETWORKS

'The Generative Adversarial Networks (GANs) framework is not only used in Shin et al. [2017],
but also widely adopted in the deep learning community (e.g., Radford et al. [2015]). In this
subsection, we give an overview of GANs based on Goodfellow [2016].

In GAN:S, there are two players: a generator and a discriminator. On the one hand, the
generator creates samples that mimic training data, i.e., drawing samples from the similar (ide-
ally same) distribution as the training data. On the other hand, the discriminator classifies the
samples to tell whether they are real (from real training data) or fake (from samples created

by the generator). The problem that discriminator faces is a typical binary classification prob-

4.8. CONTINUAL LEARNING WITH GENERATIVE REPLAY 71

lem. Following the example given in Goodfellow [2016], a generator is like a counterfeiter who
tries to make fake money. A discriminator is like a police who wants to allow legitimate money
and catch counterfeit money. To win the game, the counterfeiter (generator) must learn how to
make money that looks identical to genuine money while the police (discriminator) learns how
to distinguish authenticity without mistakes.

Formally, GANS are a structured probabilistic model with latent variables z and observed
variables x. The discriminator has a function D that takes x as input. The function for the
generator is defined as G whose input is z. Both functions are difterentiable with respect to their
inputs and parameters. The cost function for the discriminator is:

1 1
J = —EEvapdatu(x) [log D(x)] - zEzpr(z) [log(l — D(G(Z)))] . (411)

By treating the two-player game as a zero-sum game (or minimax game), the solution
involves minimization in an outer loop and maximization in an inner loop, yielding the objective
function for discriminator D and generator G as:

L(D,G) = min max V(D, G)

= mi —J
min max (4.12)

= HlGiIl mgXEvapda,a(x)[lOgD(x)] + Ezvp.(»)[log(l — D(G(2)))] .

4.8.2 GENERATIVE REPLAY

In Shin et al. [2017], a scholar model H is learned and maintained in an LL. manner. The scholar
model contains a generator G and a solver S with parameters 6. The solver here is like the
discriminator in Section 4.8.1. Denoting the previous N tasks as Tn = (71, 72,...,Tn), and
the scholar model for previous N taskas Hy = (Gn, Sn), the system aims to learn a new scholar
model Hy 11 = (Gn+1. Sn+1) given the new task T 1’s training data Dy 4.

To obtain Hy+1 = (Gn+1, Sn+1) given the training data Dy 41 = (x, y), there are two
steps.

1. Gn41 is updated with the new task input x and replayed inputs x’ created from Gy . Real
and replayed samples are mixed at a ratio that depends on the importance of the new task
compared to previous ones. Recall that this step is known as intrinsic replay or pseudo-
rehearsal [Robins, 1995] in which new data and replayed samples of old data are mixed to
prevent catastrophic forgetting.

2. Sn41 is trained to couple the inputs and targets drawn from the same mix of real and
replayed data, with the loss function:

Lirain(On 1) = rE(x,y)~DN+1 [L(S(x;0Nn+1),)]
+ (1= r)Exgy [L(S(x":0n41). S(x":6N8))] (4.13)

72 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

where Oy denotes the parameters for the solver Sy, and r denotes the ratio of mixing real
data. If Sy is tested on the previous tasks, the test loss function becomes:

Etest(eN-l-l) = r[E(x,y)~DN+1 [L(S(x’ 9N+1)’ y)]
+ (1 = NE,p)~Dpas [L(S(x: On+1). ¥)] (4.14)

where Dy, is the cumulative distribution of the data from the past tasks.

The proposed framework is independent of any specific generative model or solver. The
choice for the deep generative model can be a variational autoencoder [Kingma and Welling,

2013] or a GAN [Goodfellow et al., 2014].

4.9 EVALUATING CATASTROPHIC FORGETTING

There are two main papers [Goodfellow et al., 2013a, Kemker et al., 2018] in the literature that
evaluate ideas aimed at addressing catastrophic forgetting in neural networks.

Goodfellow et al. [2013a] evaluated some traditional approaches that attempt to reduce
catastrophic forgetting. They evaluated dropout training [Hinton et al., 2012] as well as various
activation functions including:

* logistic sigmoid,

* rectified linear [Jarrett et al., 2009],

* hard local winner take all (LWTA) [Srivastava et al., 2013], and
* Maxout [Goodfellow et al., 2013b].

They also used random hyperparameter search [Bergstra and Bengio, 2012] to auto-
matically select hyperparameters. In terms of experiments, only pairs of tasks were considered
in Goodfellow et al. [2013a] with one being the “old task” and the other being the “new task.”
"The tasks were MNIST classification [LLeCun et al., 1998] and sentiment classification on Ama-
zon reviews [Blitzer et al., 2007]. Their experiments showed that dropout training is mostly
beneficial to prevent forgetting. They also found that the choice of activation function matters
less than the choice of training algorithm.

Kemker et al. [2018] evaluated several more recent continual learning algorithms using
larger datasets. These algorithms include the following.

* Elastic weight consolidation (EWC) [Kirkpatrick et al., 2017]: it reduces plasticity of

important weights with respect to previous tasks when adapting to a new task (see Sec-
tion 4.5).

* PathNet [Fernando et al., 2017]: it creates an independent output layer for each task to
preserve previous tasks. It also finds the optimal path to be trained when learning a par-

ticular task, which is like a dropout network.

4.10. SUMMARY AND EVALUATION DATASETS 73

* GeppNet [Gepperth and Karaoguz, 2016]: it reserves a sample set of training data of
previous tasks, which is replayed to serve as a short-term memory when training on a new
task.

* Fixed expansion layer (FEL) [Coop et al., 2013]: it uses sparsity in representation to mit-
igate catastrophic forgetting.

'They proposed three benchmark experiments for measuring catastrophic forgetting.

1. Data Permutation Experiment: The elements in the feature vector are randomly permu-
tated. In the same task, the permutation order is the same while different tasks have distinct
permutation orders. This is similar to the experiment setup in Kirkpatrick et al. [2017].

2. Incremental Class Learning: After learning the base task set, each new task contains only
a single class to be incrementally learned.

3. Multi-Modal Learning: The tasks contain different datasets, e.g., learn image classifica-
tion and then audio classification.

Three datasets were used in the experiments: MNIST [LeCun et al., 1998], CUB-
200 [Welinder et al., 2010], and AudioSet [Gemmeke et al., 2017]. Kemker et al. [2018] evalu-
ated the accuracy on the new task as well as the old tasks in the LL setting, i.e., tasks arriving in
a sequence. They found that PathNet performs the best in data permutation, GreppNet obtains
the best accuracy in incremental class learning, and EWC has the best results in multi-modal
learning.

4.10 SUMMARY AND EVALUATION DATASETS

This chapter reviewed the problem of catastrophic forgetting and existing continual learning
algorithms aimed at dealing with it. Most existing works fall into some variations of regulariza-
tion or increasing/allocating extra parameters for new tasks. They are shown to be effective in
some simplified LL settings. Considering the huge success of deep learning in recent years, con-
tinual/lifelong deep learning continues to be one of the most promising channels to reach true
intelligence with embedded LL. Nonetheless, catastrophic forgetting remains a long-standing
challenge. We look forward to the day when a robot can learn to perform all kinds of tasks and
solve all kinds of problems continually and seamlessly without human intervention and without
interfering each other.

To reach this ideal, there are many obstacles and gaps. We believe that one major gap is
how to seamlessly discover, integrate, organize, and solve problems or tasks of different sim-
ilarities at the different levels of detail in a single network or even multiple networks just like
our human brains, with minimum interference of each other. For example, some tasks are dis-
similar at the detailed action level but may be similar at a higher or more abstract level. How
to automatically recognize and leverage the similarities and differences in order to learn quickly

74 4. CONTINUAL LEARNING AND CATASTROPHIC FORGETTING

and better in an incremental and lifelong manner without the need of a large amount of training
data is a very challenging and interesting research problem.

Another gap is the lack of research in designing systems that can truly embrace real-life
problems with memories. This is particularly relevant to DNNs due to catastrophic forgetting.
One idea is to encourage the system to take snapshots of its status and parameters, and keep
validating itself against a gold dataset. It is not practical to retain all the training data. But to
prevent the system from moving to some extreme parameter point in the space, it is useful to
keep a small sampled set of training data that can cover most of the patterns/classes seen before.

In short, catastrophic forgetting is a key challenge for DNNs to enable LL. We hope this
chapter can shed some light in the area and attract more attention to address this challenge.

Regarding evaluation datasets, image data are among the most commonly used datasets
for evaluating continual learning due to their wide availability. Some of the common ones are as
tollows.

* MNIST [LeCun et al., 1998]" is perhaps the most commonly used dataset (used in more
than half of the works introduced in this chapter). It consists of labeled examples of hand-
written digits. There are 10 digit classes. One way to produce datasets for multiple tasks
is to create the representations of the data by randomly permuting the elements of input
feature vectors [Goodfellow et al., 2013a, Kemker et al., 2018, Kirkpatrick et al., 2017].
'This paradigm ensures that the tasks are overlapping and have equal complexity.

+ CUB-200 (Caltech-UCSD Birds 200) [Welinder et al., 2010]?) is another popular dataset
for LL evaluation. It is an image dataset with photos of 200 bird species. It has been used
in Aljundi et al. [2016, 2017], Kemker et al. [2018], Li and Hoiem [2016], Rannen Ep
Triki et al. [2017], and Rosenfeld and Tsotsos [2017].

* CIFAR-10 and CIFAR-100 [Krizhevsky and Hinton, 2009]° are also widely used. They
contain images of 10 classes and 100 classes, respectively. They are used in Fernando et al.
[2017], Jung et al. [2016], Lopez-Paz et al. [2017], Rebufhi et al. [2017], Venkatesan et al.
[2017], Zenke et al. [2017], and Rosenfeld and Tsotsos [2017].

* SVHN (Google Street View House Numbers) [Netzer et al., 2011]* is similar to MNIST,
but contains an order of magnitude more labeled data. These images are from real-world
problems and are harder to solve. It also has 10 digit classes. It is used in Aljundi et al.
[2016, 2017], Fernando et al. [2017], Jung et al. [2016], Rosenfeld and Tsotsos [2017],
Shin et al. [2017], Venkatesan et al. [2017], and Seff et al. [2017].

http://yann.lecun. com/exdb/mnist/
2http://www.vision.caltech.edu/visipedia/CUB-200.html
Shttps://www.cs.toronto.edu/~kriz/cifar.html
“http://ufldl.stanford.edu/housenumbers/

http://yann.lecun.com/exdb/mnist/
http://www.vision.caltech.edu/visipedia/CUB-200.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/

4.10. SUMMARY AND EVALUATION DATASETS 75

Other image datasets include Caltech-256 [Griffin et al., 2007],> GTSR [Stallkamp
et al,, 2012],° Human Sketch dataset [Eitz et al.,, 2012],” Daimler (DPed) [Munder and
Gavrila, 2006],>° MIT Scenes [Quattoni and Torralba, 2009],” Flower [Nilsback and Zisser-
man, 2008],'° FGVC-Aircraft [Maji et al., 2013],'! ImageNet ILSVRC2012 [Russakovsky
et al., 2015],'? and Letters (Chars74K) [de Campos et al., 2009].1%

More recently, Lomonaco and Maltoni [2017] proposed a dataset called CORe50.™ It
contains 50 objects that were collected in 11 distinct sessions (8 indoor and 3 outdoor) differing
in background and lighting. The dataset is specifically designed for continual object recogni-
tion. Unlike many popular datasets such as MNIST and SVHN, CORe50’s multiple views of
the same object from different sessions enable richer and more practical LL. Using CORe50,
Lomonaco and Maltoni [2017] considered evaluation settings where the new data can con-
tain (1) new patterns of the existing classes, (2) new classes, and (3) new patterns and new
classes. Such real-life evaluation scenarios are very useful for carrying the LL research forward.
Parisi et al. [2018b] used CORe50 to perform an evaluation of their own approach as well as
some other approaches, e.g., LwF [Li and Hoiem, 2016], EWC [Kirkpatrick et al., 2017], and
iCaRL [Rebufhi et al., 2017].

Apart from image datasets, some other types of data are also used. AudioSet [Gemmeke
et al, 2017]¥ is a large-scale collection of human-labeled 10-sec sound clips sampled from
YouTube videos. It is used in Kemker et al. [2018].

In continual learning on reinforcement learning, different environments were used for
evaluation. Atari games [Mnih et al., 2013] are among the most popular ones which are used
in Kirkpatrick et al. [2017], Rusu et al. [2016], and Lipton et al. [2016]. Some other environ-
ments include Adventure Seeker [Lipton et al., 2016], CartPole-v0 in OpenAl gym [Brock-
man et al., 2016], and Treasure World [Mankowitz et al., 2018].

Shttp://ufldl.stanford.edu/housenumbers/

Shttp://benchmark.ini.rub.de/

"http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/

8http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.h

tml

‘http://web.mit.edu/torralba/www/indoor.html
Ohttp://www.robots.ox.ac.uk/~vgg/data/flowers/
Uhttp://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
Lhttp://www.image-net.org/challenges/LSVRC/
Bhttp://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
https://vlomonaco.github.io/core50/benchmarks.html
15h1:tps://research.google.com/audioset/dataset/index.html

http://ufldl.stanford.edu/housenumbers/
http://benchmark.ini.rub.de/
http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/daimler_pedestrian_benchmark_d.html
http://web.mit.edu/torralba/www/indoor.html
http://www.robots.ox.ac.uk/~vgg/data/flowers/
http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
http://www.image-net.org/challenges/LSVRC/
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
https://vlomonaco.github.io/core50/benchmarks.html
https://research.google.com/audioset/dataset/index.html

77

CHAPTER 5

Open-World Learning

Classic supervised learning makes the c/osed-world assumption, meaning that all the test classes
have been seen in training [Bendale and Boult, 2015, Fei and Liu, 2016, Fei et al., 2016]. Al-
though this assumption holds in many applications, it is violated in many others, especially in
dynamic and open environments, where instances of unexpected classes may appear in testing or
applications. That is, the test/application data may contain instances from classes that have not
appeared in training. To learn in such an environment, we need gpen-world learning (open-world
classification or simply open classification), which has to detect instances of unseen classes dur-
ing testing or model application, and incrementally learn the new classes to update the existing
model without re-training the whole model from scratch. This form of learning is also called
cumulative learning in Fei et al. [2016] and in the first edition of this book. In computer vision,
open-world learning is called open-world recognition [Bendale and Boult, 2015, De Rosa et al.,
2016].

In fact, open-world learning is a general problem, not limited to supervised learning. It
can be broadly defined as learning a model that can perform its intended task and also identify
new things that have not been learned before, and then incrementally learn the new things.
Open-world learning can occur in different learning scenarios and paradigms. For example, in
reading, the system may see a new word that it does not know, and then learns it by looking
up the word in the dictionary. In human-machine conversation, the conversation agent may not
understand something said by the human user and then asks the user to explain in order to learn
it. In this chapter, we focus on open-world supervised learning. Learning during conversation
will be discussed in Chapter 8.

Open-world learning basically performs a form of se/f~motivated learning because by rec-
ognizing that something new has appeared, the system has the opportunity to learn the new
thing. Traditionally, self-motivated learning means that the learner has curiosity that motivates
it to explore new territories and to learn new things. In the context of supervised learning, the
key is for the system to recognize what it has not seen or learned before. If a learned model can-
not recognize any new things, there is no way for the learner to learn new things or to explore
by itself other than by being told or instructed by a human user or an external system, which is
not ideal for a truly intelligent system. It also has great difficulty to function in a dynamic and
open environment.

78 5. OPEN-WORLD LEARNING
5.1 PROBLEM DEFINITION AND APPLICATIONS
Open-world Learning is defined as follows [Bendale and Boult, 2015, Fei et al., 2016].

1. Ata particular time point, the learner has built a multi-class classification model Fy based
onall past N classes of data D? = {D;,D,,..., Dy} with their corresponding class labels
YN ={l,,l5,...,In}. Fy is able to classify each test instance to either one of the known
classes [; € YN or reject it and put it in a rejected set R, which may include instances from
one or more new or unseen classes in the test set.

2. 'The system or a human user identifies the hidden unseen classes C in R, and collects
training data for the unseen classes.

3. Assume that there are k new classes in C that have enough training data. The learner
incrementally learns the k classes based on their training data. The existing model Fy is
updated to produce the new model Fy 1.

Open-world learning is a form of lifelong learning (LL) because it conforms to the definition of
LL in Chapter 1. Specifically, the new learning task 7n 41 is to build a multi-class open classifier
based on all the past and the current classes. The knowledge base (KB) contains the past model
Fx and possibly all the past training data.

We should note that the third task of learning new classes incrementally here is different
from traditional incremental class learning (ICL) studied in different areas because traditional
ICL still learns in the closed-world (i.e., it does not perform unseen class rejection) although
it can add new classes incrementally to the classification system without re-training the whole
model from scratch.

Let us see some example applications. For example, we want to build a greeting robot for
a hotel. At any point in time, the robot has learned to recognize all existing hotel guests. When
it sees an existing guest, it can call his/her name and chat. At the same time, it must also detect
any new guests that it has not seen before. On seeing a new guest, it can say hello, ask for his/her
name, take many pictures, and learn to recognize the guest. Next time when it sees the person
again, it can call his/her name and chat like an old friend. The scenario in self-driving cars is
very similar as it is very hard, if not impossible, to train a system to recognize every possible
object that may appear on the road. The system has to recognize objects that it has not learned
before and learn them during driving (possibly through interactions with the human passenger)
so that when it sees the objects next time, it will have no problem recognizing them.

Fei et al. [2016] gave another example in text classification. The 2016 presidential election
in the U.S. was a hot topic on social media, and many social science researchers relied on collected
online user discussions to carry out their research. During the campaign, every new proposal
made by a candidate was followed by a huge amount of discussions in the social media. A multi-
class classifier is thus needed to organize the discussions. As the campaign went on, the initially
built classifier inevitably encounters new topics (e.g., Donald Trump’s plan for immigration

5.2. CENTER-BASED SIMILARITY SPACE LEARNING 79

reform or Hillary Clinton’s proposal for tax increase) that had not been covered in previous
training. In this case, the classifier should first recognize these new topics when they occur rather
than classify them into some existing classes or topics. Second, after enough training examples
of the new topics are collected, the existing classifier should incorporate the new classes or topics
incrementally in a manner that does not require retraining the entire classification system from
scratch.

Bendale and Boult [2015] made an attempt to solve the open-world learning problem
(which was called open-world recognition in their paper) for image classification. Its method
is called Nearest Non-Outlier (NNO), which is adapted from the traditional Nearest Class Mean
(NCM) method for image classification using a metric learning technique proposed by Mensink
etal. [2013]. In NCM, each image is represented as a feature vector and each class is represented
by the class mean computed using the feature vectors of all the images in the class. In testing,
each test image’s feature vector is compared with each class mean and is assigned the class with
the nearest class mean. However, this method cannot perform unseen class rejection. NNO
enables rejection. For incremental learning, it simply adds the new class mean to the existing
class mean set. The rejection capability of NNO was improved in Bendale and Boult [2016].
The new method, called OpenMax, is based on deep learning, which adapts the traditional
SoftMax classification scheme to enable rejection by introducing a new model layer (also called
OpenMax) to estimate the probability of an input being from an unseen class. However, its
training needs examples from some unseen classes (not necessarily the test unseen classes) to
tune the parameters. In the next two sections, we discuss two other methods. It was shown
in Shu et al. [2017a] that its DOC method outperforms OpenMax for both open text and open

image classifications without requiring any training unseen class examples.

5.2 CENTER-BASED SIMILARITY SPACE LEARNING

Fei et al. [2016] proposed a technique to perform open-world classification based on a center-
based similarity space learning method (called CBS learning), which we discuss below. We first
discuss its training process for learning a new class incrementally and then its testing process,
which is able to classify test instances to known/seen classes and also detect unseen class in-
stances.

5.2.1 INCREMENTALLY UPDATING A CBS LEARNING MODEL

'This sub-section describes incremental training in CBS learning, which was inspired by human
concept learning. Humans are exposed to new concepts all the time. One way we learn a new
concept is perhaps by searching from the already known concepts for ones that are similar to
the new concept, and then trying to find the difference between these known concepts and the
new one without using all the known concepts. For example, assume we have already learned
the concepts like “movie,” “furniture,” and “soccer.” Now we are presented with the concept of
“basketball” and its set of documents. We find that “basketball” is similar to “soccer,” but very

80 5. OPEN-WORLD LEARNING

different from “movie” and “furniture.” Then we just need to accommodate the new concept “bas-
ketball” into our old knowledge base by focusing on distinguishing the “basketball” and “soccer”
concepts, and do not need to worry about the difference between “basketball” and “movie” or
“furniture,” because the concepts of “movie” and “furniture” can easily tell that documents from
“basketball” do not belong to either of them.

Feietal. [2016] adopted this idea and used the 1-vs.-rest strategy of SVM for incremental
learning of multiple classes (or concepts). Before the new class [y 41 arrives, the learning system
has built a classification model Fp, which consists of a set of N 1-vs.-rest binary classifiers
Fy ={fi., f2...., fn}, for the past N classes using their training sets D? = {D;,D,,..., Dy}
and corresponding class labels YN ={l1,l5,...,In}. Each f; isa binary classifier built using
the CBS learning method (see Section 5.2.3) for identifying instances of class /;. When a new
dataset Dy 41 of class [y arrives, the system goes through the following two steps to update
the classification model Fy to build a new model F 4 in order to be able to classify test data or
instances of all existing classes in YNHL =] I, ... In, N4} and recognize any unseen class
Cy of documents.

1. Searching for a set of classes SC that are similar to the new class Iy 4.

2. Learning to separate the new class /x4 and the previous classes in SC.

For step 1, the similarity between the new class /y 41 and the previous ones {/1,/5,...,Iy} is
computed by running each of the 1-vs.-rest past binary classifiers f; in Fy = {f1, f2,.... fn}
to classify instances in Dy 4. The classes of those past binary classifiers that accept (classify
as positive) a certain number/percentage Ay, of instances from Dy 4 are regarded as similar
classes and denoted by SC.

Step 2 of separating the new class /y 41 and classes in SC involves two sub-steps: (1) build-
ing a new binary classifier fy; for the new class [y and (2) updating the existing classifiers
for the classes in SC. It is intuitive to build fy 4 using Dy 41 as the positive training data and
the data of the classes in SC as the negative training data. The reason for updating classifiers in
SC is that the joining of class /x4 confuses those classifiers in SC. To re-build each classifier,
the system needs to use the original negative data employed to build the existing classifier f; and
the new data Dy 4 as the new negative training data. The reason that the old negative training
data is still used is because the new classifier still needs to separate class /; from those old classes.

'The detailed algorithm is given in Algorithm 5.6, which incrementally learns a new class
with its data Dy ;. Line 1 initializes SC to the empty set. Line 3 initializes the variable C7T"
(count) to record the number of instances in Dy that will be classified as positive by classifier
fi. Lines 4-9 use f; to classify each instance in Dy 41 and record the number of instances that
are classified (or accepted) as positive by f;. Lines 10-12 check whether there are too many
instances in Dy that have been classified as positive by f; to render class /; as similar to
class Iy 41. Agim is a threshold controlling how many percents of instances in Dy 11 should be

5.2. CENTER-BASED SIMILARITY SPACE LEARNING 81

classified to class /; before considering /; as similar/close to class /4. Lines 14-17 build a new
classifier fy 41 and update all the classifiers for classes in SC.

Algorithm 5.6 Incremental Class Learning

Input: classification model Fy = { f1, f2...., fn}, past datasets {D;, D, ..., Dy}, new dataset
DN +1, similarity threshold A .

Output: classification model Fy 1 ={f1...., [N, fN+1}
1: SC =90
2: for each classifier f; € Fy do
3: CT =0
4. for each test instance x; € Dy 41 do
5 class = fi(x;) // classify document x; using f;
6: if class = I; then
7: CT = CT + 1// wrongly classified
8: end if
9: end for

10: if CT > Agim X |DN+1| then
11: SC = SC u{l;}

122 endif

13: end for

14: Build fy+1 and add it to Fy 41
15: for each f; of class I; € SC do
16: ~ Update f;

17: end for

18: Return Fy 41

In summary, the learning process uses the set SC of similar classes to the new class [y to
control both the number of binary classifiers that need to be built/updated and also the number
of negative instances used in building the new classifier fx4i. It thus greatly improves the
efficiency compared to building a new multi-class classifier F 4 from scratch.

Combining the above incremental learning process and the underlying classifier cosSVM
discussed in Section 5.2.3, the new learner, called CL-cbsSVM (CL stands for Cumulative Learn-
ing, a name used in Fei et al. [2016] for open-world learning) is able to tackle both challenges
in incremental learning.

5.2.2 TESTING A CBS LEARNING MODEL

To test the new classification model Fy 1 = { fi. f2. ..., fn, fn+1}, the standard technique of
combining the set of 1-vs.-rest binary classifiers to perform multi-class classification is followed

82 5. OPEN-WORLD LEARNING

with a rejection option for the unknown. As output scores from different SVM classifiers are
not comparable, the SVM scores for each classifier are first converted to probabilities based on a
variant of Platt’s algorithm [Platt et al., 1999], which is supported in LIBSVM [Chang and Lin,
2011]. Let P(y|x) be a probabilistic estimator, where y € YN (= {l1, 15, ... Iy, In+1}) isa
class label and x is the feature vector of a test instance. Let 8 (= 0.5) be the decision threshold,
y* be the final predicted class for x, and Cy be the label for the unknown. Classification of the
test instance x is done as follows:

 _ JATgmax,cyn i P(ylx) if P(ylx) >0 . (5.1)

Co otherwise

The idea is that for the test instance x, each binary classifier f; € Fy 1 is used to produce a
probability P(/;|x). If none of the probabilities is greater than 6 (= 0.5), the document repre-
sented by x is regarded as unseen/unknown and belonging to Co; otherwise it is classified to the
class with the highest probability.

5.2.3 CBS LEARNING FOR UNSEEN CLASS DETECTION

'This subsection describes the core CBS learning method, which performs binary classification
focusing on identifying positive class documents and also has the ability to detect unseen classes
or classifying them as not positive. It provides the base learning method for open-world learning
above [Fei et al., 2016]. The learning method is based on the idea of reducing the open space risk
while balancing the empirical risk in learning. Classic learners define and optimize over empirical
risk, which is measured on the training data. For open learning, it is crucial to consider how to
extend the classic model to capture the risk of the unknown by preventing over-generalization.
To tackle this problem, Scheirer et al. [2013] introduced the concept of open space risk. Below,
we first discuss the open space risk management strategy in Fei et al. [2016], and then apply
an SVM-based CBS learning method as the solution toward managing the open space risk.
The basic idea of CBS learning is to find a “ball” (decision boundary) to cover the positive
class data area. Any document falling outside of the “ball” is considered not positive. Although
CBS learning only performs binary classification, applying the 1-vs.-rest method described in
Section 5.2.2 gives a multi-class CBS classification model, which is called cbsSVM in Fei et al.
[2016].

Open Space Risk

Consider the risk formulation for open image recognition in Scheirer et al. [2013], where apart
from empirical risk, there is risk in labeling the open space (space away from positive training
examples) as “positive” for any unknown class. Due to lack of information of a classification
function on the open space, open space risk is approximated by a relative Lebesgue measure
[Shackel, 2007]. Let S, be a large ball of radius r, that contains both the positively labeled

open space O and all of the positive training examples; and let f be a measurable classification

5.2. CENTER-BASED SIMILARITY SPACE LEARNING 83

function, where f, (x) = 1 means recognizing x as belonging to class y of interest and f; (x) = 0
otherwise. In our case, y is simply any class of interest /;.

In Fei et al. [2016], O is defined as the positively labeled area that is sufficiently far from
the center of the positive training examples. Let B, (cen,) be a closed ball of radius ry, cen-
tered around the center cen, of positive class y, which, ideally, should tightly cover all positive
examples of class y only; S, be a larger ball B, (ceny) of radius r, with the same center cen,.
Let classification function fy(x) = 1 for x € By, (ceny), and fy(x) = 0 otherwise. Also let ¢
be the positive half space defined by a binary SVM decision hyperplane € obtained using pos-
itive and negative training examples. We also define the size of ball B,, to be bounded by €2,
B, N q = By,. Then the positive open space is defined as O = S, — Bry(ceny). S, needs to be
determined during learning for the positive class.

'This open-space formulation greatly reduces the open space risk compared to traditional
SVM and 1-vs.-Set Machine in Scheirer et al. [2013]. For traditional SVM, classification func-
tion f7""(x) =1 when x € ¢, and its positive open space is approximately g — B, (ceny),
which is only bounded by the SVM decision hyperplane 2. For 1-vs.-Set Machine in Scheirer
et al. [2013], fyl_"“'_m (x) = 1 when x € g, where g is a slab area with thickness § bounded by
two parallel hyperplanes € and ¥ (¥[|Q) in ¢. And its positive open space is approximately
g — & N By, (ceny). Given open-space formulations of the traditional SVM and 1-vs.-Set Ma-
chine, we can see that both methods label an unlimited area as the positively labeled space,
while Fei et al. [2016] reduces it to a bounded area of a “ball.”

Given the open space definition, the question is how to estimate S, for the positive class.
Fei et al. [2016] used the center-based similarity space learning (CBS learning), which trans-
forms the original document space to a similarity space. The final classification is performed in
the CBS space. Below, we introduce CBS learning and briefly discuss why it is suitable for the
problem.

Center-Based Similarity Space Learning

Let D = {(x1,y1), (x2,¥2). ..., (Xn, yn)} be the set of training examples, where xi is the feature
vector (e.g., with unigram features) representing a document and yx € {1, —1} is its class label.
This feature vector is called a document space vector (or ds-vector). Traditional classification
directly uses D to build a binary classifier. However, CBS learning transforms each ds-vector
Xk (no change to its class label) to a center-based similarity space feature vector (CBS vector)
cbs-vi. Each feature in cbs-vy is a similarity between a center ¢; of the positive class documents
and xi.

To make CBS learning more effective by generating more similarity features, multiple
document space representations or feature vectors (e.g., one based on unigrams and one based
on bigrams) can be used to represent each document, which results in multiple centers for the
positive documents. There can also be multiple document similarity functions used to compute
similarity values. The detailed learning technique is as follows.

84 5. OPEN-WORLD LEARNING

For a document x, we have a set R of p ds-vectors, Ry = {dF, dé‘, ey dlf}. Each ds-
vector d }‘ denotes one document space representation of the document xg, e.g., unigram repre-
sentation or bigram representation. Then the centers of positive training documents can be com-
puted, which are represented as a set of p centroids C = {cy, c2,...,cp}. Each ¢; corresponds to
one document space representation in Rg. The Rocchio method in information retrieval [Man-
ning et al., 2008] is used to compute each center ¢; (a vector), which uses the corresponding
ds-vectors of all training positive and negative documents:

d¥ B d*
PR R I - R

D+ | Xk €D+ €D—Dy H djk H

where D is the set of documents in the positive class and |.| is the size function. « and B
are parameters. It is reported that using the popular #f~idf (term frequency and inverse document
frequency) representation, & = 16 and g = 4 usually work well [Buckley et al., 1994]. The sub-
traction is used to reduce the influence of those terms that are not discriminative (i.e., terms
appearing in both classes).

Based on Ry for adocument xi (in both training and testing) and the previously computed
set C of centers using the training data, we can transform a document x; from its document space
representations Ry to one center-based similarity space vector cbs-vi by applying a similarity
function Sim on each element d Jk of Ry and its corresponding center ¢; in C:

chs-vg = Sim(Ry,C) . (5.3)

Sim can contain a set of similarity measures. Each measure m is applied to p document repre-
sentations d}‘ in Ry and their corresponding centers ¢; in C to generate p similarity features
(cbs-features) in cbs-vg.

For ds-features, unigrams and bigrams with tf-idf weighting were used as two document
representations. The five similarity measures in Fei and Liu [2015] were applied to measure the
similarity of two vectors. Based on the CBS space representation, SVM is applied to produce a
binary CBS classifier f,.

Why Does CBS Learning Work?

We now briefly explain why CBS learning gives a good estimate to S,. Due to using similarities
as features, CBS learning generates a boundary to separate the positive and negative training
data in the similarity space. Since similarity has no direction (or it covers all directions), the
boundary in the similarity space is essentially a “ball” encompassing the positive class training
data in the original document space. The “ball” is an estimate of S, based on those similarity
measures.

5.3. DOC: DEEP OPEN CLASSIFICATION 85
5.3 DOC: DEEP OPEN CLASSIFICATION

This section describes a deep learning based classification method called DOC [Shu et al,,
2017a], which performs only classification and unseen class instance rejection, but does not
do incremental learning of new classes. DOC is based on CNN [Collobert et al., 2011, Kim,
2014] and is augmented with a 1-vs.-rest final Sigmoid layer and Gaussian fitting for classifi-
cation. This algorithm has been shown to perform better than many existing methods in both
open-world text classification and open-world image classification.

5.3.1 FEED-FORWARD LAYERS AND THE 1-VS.-REST LAYER

The DOC system (given in Figure 5.1) is a variant of the CNN architecture [Collobert et al.,
2011] for text classification [Kim, 2014].! The first layer embeds words in document x into dense
vectors. The second layer performs convolution over dense vectors using different filters of varied
sizes. Next, the max-over-time pooling layer selects the maximum values from the results of the
convolution layer to form a k-dimension feature vector k. Then A is reduced to a N -dimension
vector d = dq.nx (N is the number of training/seen classes) via two fully connected layers and
one intermediate ReLLU activation layer:

d =W/ [ReLUWh + b)) + b, (5.4)

where W e R b e R", W € RV*" and b’ € RY are trainable weights; r is the output di-
mension of the first fully connected layer. The output layer of DOC is a 1-vs.-rest layer applied

to d1.n, which allows rejection. We describe it next.

This B
Asus M 1
desktop mlm

<
S I

monitar R

is [

very [

good = —
;e‘ ‘ i [N —
X h

Figure 5.1: Overall network of DOC.

Traditional multi-class classifiers [Bendale and Boult, 2016, Goodfellow et al., 2016] typ-

ically use softmax as the final output layer, which does not have the rejection capability since the

Thttps://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras

https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras

86 5. OPEN-WORLD LEARNING

probability of prediction for each class is normalized across all training/seen classes. Instead, a
1-vs.-rest layer is built containing N Sigmoid functions for N seen classes. For the i-th Sigmoid
function corresponding to class [;, DOC takes all examples with y = [; as positive examples and
all the rest examples for y # [; as negative examples.

'The model is trained with the objective of summation of all log loss of the N Sigmoid
functions on the training data D:

N n
Loss = ZZ—H(yj =li)log p(y; = 1;)

i=1j=1
—I(y; # 1) log(1 — p(y; = 1))

(5.5)

where [is the indicator function and p(y; = 1;) = Sigmoid(dij) is the probability output from
ith sigmoid function on the jth document’s i th-dimension of d.

During testing, we reinterpret the prediction of N Sigmoid functions to allow rejection,
as shown in Equation (5.6). For the i -th Sigmoid function, we check if the predicted probability
Sigmoid(d;) is less than a threshold #; belonging to class /;. If all predicted probabilities are less
than their corresponding thresholds for a test example, the example is rejected; otherwise, its

predicted class is the one with the highest probability:

.~ | reject, if Sigmoid(d;) < t;,VI; € Y;
| argmax;, ¢y, Sigmoid(d;). otherwise .

(5.6)

When DOC was published, OpenMax [Bendale and Boult, 2016] was the state-of-the-
art. It uses a classification network and add to it the rejection capability by utilizing the logits
that are trained via the closed-world softmax function. One assumption of OpenMax is that ex-
amples with equally likely logits are more likely from the unseen or rejection class, which can be
examples that are hard to classify. It also requires validation examples from the unseen/rejection
class to tune the hyperparameters. In contrast, DOC uses the 1-vs.-rest sigmoid layer to provide
a representation of all other classes (the rest of the seen classes and unseen classes), and to en-
able the 1 class to form a good boundary. Experimental results in Shu et al. [2017a] show that
this basic DOC is already better than OpenMax. DOC is further improved by tightening the

decision boundaries, which we discuss next.

5.3.2 REDUCING OPEN-SPACE RISK

Sigmoid function usually uses the default probability threshold of #; = 0.5 for classification of
each class i. But this threshold does not consider potential open space risks from unseen (rejec-
tion) class data. We can improve the boundary by increasing 7;. We use Figure 5.2 to illustrate.
The x-axis represents d; and y-axis is the predicted probability p(y = ;|d;). The sigmoid func-
tion tries to push positive examples (belonging to the i -th class) and negative examples (belong-

ing to the other seen classes) away from the y-axis via a high gain around d; = 0, which serves

5.3. DOC: DEEP OPEN CLASSIFICATION 87

as the default decision boundary for d; with the probability threshold #; = 0.5. As demonstrated
by those three circles on the right-hand side of the y-axis, during testing, unseen class examples
(circles) can easily fill in the gap between the y-axis and those dense positive (+) examples, which
may reduce the recall of rejection and the precision of the i-th seen class prediction. Obviously,
a better decision boundary is at d; = T, where the decision boundary more closely “wrap” those
dense positive examples with the probability threshold # > 0.5. Note that only #; is used in
classification decision making in this work and T is not used.

P(y =1ildj) 1o = o -
t; P
[4
0.8
- Negative [/
0.6/
b
oAl
)
)
ozt
2
A
el B E s = d
2 1 T1 2

Figure 5.2: Open-space risk of sigmoid function and desired decision boundary d; = T and
probability threshold ;.

'To obtain a better #; for each seen class i -th, we use the idea of outlier detection in statis-
tics.

1. Assume the predicted probabilities p(y = l;|x;, y; = [;) of all training data of each class
i follow one half of the Gaussian distribution (with mean p; = 1), e.g., the three positive
points in Figure 5.2 projected to the y-axis (we don't need d;). We then artificially create
the other half of the Gaussian distributed points (> 1): for each existing point p(y =
li|xj, y;j = l;), we create a mirror point 1 + (I — p(y = l;|x;, y; = I;) (not a probability)
mirrored on the mean of 1.

2. Estimate the standard deviation o; using both the existing points and the created points.

3. In statistics, if a value/point is a certain number () of standard deviations away from the
mean, it is considered an outlier. We thus set the probability threshold #; = max(0.5, 1 —
o). The commonly used number for « is 3, which also works well in our experiments.

Note that due to Gaussian fitting, different class /; can have a different classification threshold
ti.

88 5. OPEN-WORLD LEARNING
5.3.3 DOCFORIMAGE CLASSIFICATION

DOC was originally proposed for open-world text classification. It was also later experimented
for image classification and shown to perform very well [Shu et al., 2018], better than Open-
Max [Bendale and Boult, 2016], which was designed for open image classification.

The evaluation used two publicly available image datasets: MNIST and EMNIST.

(1) MNIST?: MNIST is a well-known database of handwritten digits (10 classes), which
has a training set of 60,000 examples, and a test set of 10,000 examples. In the experiment, 6
classes were used as the set of seen classes and the rest 4 classes were used as unseen classes.

(2) EMNIST® [Cohen et al., 2017]: EMNIST is an extension of MNIST to commonly
used characters such as English alphabet. It is derived from the NIST Special Database 19. In
the evaluation, EMNIST Balanced dataset with 47 balanced classes were used. It has a training
set of 112,800 examples and a test set of 18,800 examples. 33 classes were used as the set of seen
classes and another 10 classes were used as the unseen classes.

In Shu et al. [2018], DOC is compared with OpenMax [Bendale and Boult, 2016].*
Both systems are based on deep learning. The results shown that DOC markedly outperforms
OpenMax.

5.3.4 UNSEEN CLASS DISCOVERY

At the beginning of this chapter, we saw that in the second task of open-world learning a system
or a human user identifies the hidden unseen classes in the rejected instances before they are
incrementally learned in the third task. In Shu et al. [2018], an attempt was made to solve
this problem automatically. In all previous works, this was done manually. The task is called
unseen class discovery. The idea in Shu et al. [2018] is to transfer the class similarity knowledge
learned from the seen classes to the hidden unseen classes. The transferred similarity knowledge
is then used by a hierarchical clustering algorithm to cluster the rejected instances/examples to
discover the hidden classes in the rejected instances. Note that this transfer of knowledge is from
supervised learning to unsupervised learning.

'This proposed transfer is warranted because we humans seem to group things based on our
prior knowledge of what might be considered similar or difterent. For example, if we are given
two objects and are asked whether they are of the same class/category or of different classes given
some context, most probably we can tell. Why is that the case? We believe that we have learned
in the past what are considered to be of the same class or of different classes in a knowledge
context. The knowledge context here is important. For example, we have learned to recognize
some breeds of dogs, which forms the knowledge context. When we are given two new/unseen
breeds of dogs, we probably know that they are of difterent breeds. If we are given many different
dogs from each of the two breeds, we probably can cluster them into two clusters. However, if

2http://yann.lecun.com/exdb/mnist/
Shttps://www.nist.gov/itl/iad/image-group/emnist-dataset
“https://github.com/abhijitbendale/0SDN

http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/itl/iad/image-group/emnist-dataset
https://github.com/abhijit bendale/OSDN

5.4. SUMMARY AND EVALUATION DATASETS 89

our previous knowledge only has classes such as dog, chicken, pig, cow, and sheep and we are
given two different but unseen breeds of dogs, we probably will say that they are of the same
kind/class and are dogs. However, if we are given a tiger and a rabbit, we will probably tell that
they are from different classes.

To solve this problem, Shu et al. [2018] proposed a Pairwise Classification Network
(PCN) to learn a binary classifier to predict whether two given examples are from the same
class or different classes, i.e., g(xXp,X4). The positive training data of PCN consists of a set of
pairs of intra-class (same class) examples, and the negative training data consists of a set of pairs
of inter-class (different classes) examples all from seen classes. A hierarchical clustering method
then uses the function g(x,, X4) (which can be regarded as a distance/similarity function) to find
the number of hidden classes (clusters) in the unseen/rejected class examples. Further details can

be found in Shu et al. [2018].

5.4 SUMMARY AND EVALUATION DATASETS

As Al systems such as self-driving cars, mobile robots, chatbots, and personal intelligent as-
sistants are increasingly working in real-life open environments and interacting with humans
and/or automated systems, open-world learning is becoming increasingly important. An open-
world learner should be able to detect new things that it has not seen before and learn them
incrementally to become more and more knowledgeable. To some extent, we can regard such a
learner as self-motivated because it actively identifies unseen objects and learns them to become
more and more knowledge. Open-world learning is still highly challenging and needs a great
deal of future research.

Although in this chapter we only discussed open-world learning in the supervised learning
setting, it can be viewed from a broad perspective of detecting things unknown and learning the
unknown things. It thus can be applied to any type of learning. For example, the learning method
presented in Chapter 8, which continually spots and learns new knowledge in human-machine
conversations, can also be seen as a form of open-world learning.

Fei et al. [2016] evaluated their method using the 100-products Amazon review dataset
created by Chen and Liu [2014b]° and the popular text classification dataset 20-Newsgroup.®>’
'The 100-products Amazon review dataset contains Amazon reviews from 100 different types
of products. Each type of product (or domain) has 1,000 reviews. The 20-Newsgroup dataset
contains news articles of 20 different topics. Each topic has about 1,000 articles. Shu et al.
[2018] used image datasets MNIST® and EMNIST.” ImageNet!” and its derivative datasets

can also be used.

Shttps://www.cs.uic.edu/~zchen/downloads/KDD2014-Chen-Dataset .zip
Shttp://quone.com/~jason/20Newsgroups/
"https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
8http://yann.lecun.com/exdb/mnist/
‘https://www.nist.gov/itl/iad/image-group/emnist-dataset
Onttp://image-net.org/

https://www.cs.uic.edu/~zchen/downloads/KDD2014-Chen-Dataset.zip
http://qwone.com/~jason/20Newsgroups/
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/itl/iad/image-group/emnist-dataset
http://image-net.org/

91

CHAPTER 6

Lifelong Topic Modeling

Topic modeling has been used extensively to find topics in a large collection of text documents.
A topic is a distribution over words. Those words with high probabilities in a topic indicate the
topic. This set of words is often very useful in practice. Topic modeling is well suited for lifelong
learning (LL) because topics learned in the past in related domains can be used to guide the
model inference in the new or current domain [Chen and Liu, 2014a,b, Wang et al., 2016].
'The knowledge base (KB) (Section 1.4) thus mainly stores the past topics. In this chapter, we
use the terms domain and fask interchangeably as in the existing research; each task is from a
different domain. Even with the current simple LL techniques, lifelong topic modeling can al-
ready produce significantly better results than without LL regardless of whether the data (the
text collection) is large or small. When the data size is small, LL is even more advantageous. For
example, when the data is small, traditional topic models produce very poor results, but lifelong
topic models can still generate very good topics. Ideally, as the KB expands, fewer modeling
errors will incur. This is similar to our human learning. As we become more and more knowl-
edgeable, it is easier for us to learn more and also less likely to make mistakes. In the following
sections, we discuss several current representative techniques of lifelong topic modeling.

6.1 MAINIDEAS OF LIFELONG TOPIC MODELING
Topic models, such as LDA (latent Dirichlet allocation) [Blei et al., 2003] and pLSA (Proba-

bilistic latent semantic analysis) [Hofmann, 1999], are unsupervised learning methods for dis-
covering topics from a set of text documents. They have been applied to numerous applications,
e.g., opinion mining [Chen et al., 2014, Liu, 2012, Mukherjee and Liu, 2012, Zhao et al., 2010],
machine translation [Eidelman et al., 2012], word sense disambiguation [Boyd-Graber et al.,
2007], phrase extraction [Fei et al., 2014], and information retrieval [Wei and Croft, 2006]. In
general, topic models assume that each document discusses a set of topics, probabilistically, a
multinomial distribution over the set of topics, and each topic is indicated by a set of topical
words, probabilistically, a multinomial distribution over the set of all words. The two kinds of
distributions are called document-topic distribution and topic-word distribution, respectively. The
intuition is that some words are more or less likely to be present given the topics of a document.
For example, “sport” and “player” will appear more often in documents about sports; “rain” and
“cloud” will appear more frequently in documents about weather.

However, fully unsupervised topic models tend to generate many inscrutable topics. The
main reason is that the objective functions of topic models are not always consistent with human

92 6. LIFELONG TOPIC MODELING

judgment [Chang et al., 2009]. To deal with this problem, we can use any of the following three
approaches.

1. Inventing better topic models: This approach may work if a large number of documents is
available. If the number of documents is small, regardless of how good the model is, it will
not generate good topics simply because topic models are unsupervised learning methods
and insufficient data cannot provide reliable statistics for modeling. Some form of super-
vision or external information beyond the given documents is necessary.

2. Asking users to provide prior domain knowledge: 'This approach asks the user or a domain
expert to provide some prior domain knowledge. One form of knowledge can be in the
form of must-links and cannot-links. A must-link states that two terms (or words) should
belong to the same topic, e.g., price and cosz. A cannot-link indicates that two terms should
not be in the same topic, e.g., price and picture. Some existing knowledge-based topic mod-
els (e.g., Andrzejewski et al. [2009, 2011], Chen et al. [2013b,c], Hu et al. [2011], Jagar-
lamudi et al. [2012], Mukherjee and Liu [2012], Petterson et al. [2010], Xie et al. [2015])
have used such prior domain knowledge to produce better topics. However, asking the user
to provide prior knowledge is problematic in practice because the user may not know what
knowledge to provide and wants the system to discover useful knowledge for him/her. It
also makes the approach non-automatic.

3. Using lifelong topic modeling: This approach incorporates LL in topic modeling. Instead of
asking the user to provide prior knowledge, prior knowledge is learned and accumulated
automatically in the modeling of previous tasks. For example, we can use the topics resulted
from modeling of previous tasks as the prior knowledge to help the new task modeling.
'The approach works because of the observation that there are usually a great deal of sharing
of concepts or topics across domains and tasks in natural language processing [Chen and
Liu, 2014a,b], e.g., in sentiment analysis [Liu, 2012, 2015] as we discussed in the Preface
of this book. We will give some examples shortly too.

We focus on the third approach. Following the definition in Chapter 1, each task here
means to perform topic modeling on a set of documents of a particular domain. The KB stores
all the topics obtained from each of the previous tasks, which are used in various ways as prior
knowledge in different lifelong topic models.

At the beginning, the KB is either empty or filled with knowledge from an external source
such as WordNet [Miller, 1995]. It grows with the results of incoming topic modeling tasks.
Since all the tasks are about topic modeling, we use domains to distinguish the tasks. Two topic
modeling tasks are different if their corpus domains are different. The scope of a domain is
quite general. A domain can be a category (e.g., sports) or a product (e.g., camera) or an event
(e.g., presidential election). We use Ty, 72, ..., Ty to denote the sequence of previous tasks,
D? = {D;,D>,..., Dy} to denote their corresponding data or corpora, and use Ty +; to denote
the new or current task with its data Dy 1.

6.1. MAIN IDEAS OF LIFELONG TOPIC MODELING 93

Key Questions in Lifelong Topic Modeling
For lifelong topic modeling to work, several questions need to be answered. Different models
have different strategies to answer these questions.

1. What past knowledge should be retained and accumulated in the KB? As indicated above,
in existing models, only the output topics from each previous domain/task are retained.

2. What kinds of knowledge should be used in the new domain modeling and how to mine
such knowledge from the KB? Note that the raw past topics in the KB may not be directly
used in topic modeling. Current lifelong topic models use must-link and cannot-link types
of knowledge mined from the raw past topics stored in the KB.

3. How to assess the quality of knowledge and how to deal with possibly wrong knowledge?
Previous modeling can make mistakes, and wrong knowledge from the past is often detri-
mental to new modeling.

4. How to apply the knowledge in the modeling process to generate better topics in the new
domain?

Why Does Lifelong Topic Modeling Work?

'The motivation for lifelong topic modeling is that topics from a large number of previous do-
mains can provide high-quality knowledge to guide the modeling in the new domain to produce
better topics. Although every domain is different, there is often a fair amount of concept or topic
overlapping across domains. Using product reviews of different types of products (or domains)
as an example, we observe that every product review domain probably has the topic of price, re-
views of most electronic products share the topic of battery, and reviews of some products share
the topic of screen. Topics produced from a single domain can be erroneous (i.e., a topic may
contain some irrelevant words in its top ranked positions), but if a set of shared words among
some topics generated from multiple domains can be found, these shared words are more likely
to be correct or coherent for a particular topic. They can serve as a piece of prior knowledge to
help topic modeling.

For example, we have product reviews from three domains. The classic topic model such
as LDA [Blei et al., 2003] is used to generate a set of topics from each domain. Every domain
has a topic about price, which is listed below with its top four words (words are ranked based on
their probabilities under each topic).

* Domain 1: price, color, cost, life

* Domain 2: cost, picture, price, expensive

* Domain 3: price, money, customer, expensive

94 6. LIFELONG TOPIC MODELING

These topics are not perfect due to the incoherent words (words that do not indicate the main
topic): color, life, picture, and customer. However, if we focus on those words that appear together
in the same topic at least in two domains (the underlined words), we find the following two sets:

{price, cost} and {]brice, expensiw}.

The words in each of the sets are likely to belong to the same topic. As such, {price, cost} and
{price, expensive} can serve as prior or past knowledge. That is, a piece of knowledge contains
words that are semantically correlated. These two sets are called musz-links.

With the help of the knowledge, a new model can be designed to adjust the probability
and improve the output topics for each of the above three domains or a new domain. Given the
above knowledge indicating price and cos# are related, price and expensive are related, a new topic
may be found in Domain 1: price, cost, expensive, color, which has three coherent words in the top
four positions rather than only two words as in the original topic. This represents a good topic
improvement.

In the next section, we review the LI'M model [Chen and Liu, 2014a], which uses only
must-links as prior knowledge. Its main idea is also applied in the LAST model for a senti-
ment analysis task [Wang et al., 2016]. In Section 6.3, we review the more advanced model
AMC [Chen and Liu, 2014b], which can use both must-links and cannot-links as prior knowl-
edge to model in a new domain with only a small set of documents. There is also another model
called AKL (Automated Knowledge LDA) [Chen et al., 2014] that clusters past topics before
mining must-links. Since both LTM and AMC improve AKL, AKL will not be discussed fur-
ther.

6.2 LTM:ALIFELONG TOPIC MODEL
Lifelong Topic Model (LT M) was proposed in Chen and Liu [2014a]. It works in the following

lifelong setting: At a particular point in time, a set of N previous modeling tasks have been
performed. From each past task/domain data (or document set) D; € D?, a set of topics S; has
been generated. Such topics are called prior topics (or p-topics for short). Topics from all past tasks
are stored in the Knowledge Base (KB) S (known as the zgpic base in Chen and Liu [2014a]). At
a new time point, a new task represented by a new domain document set Dy 41 arrives for topic
modeling. This is also called the current domain. LTM does not directly use the p-topics in S as
knowledge to help its modeling. Instead, it mines must-/inks from S and uses the must-links as
prior knowledge to help model inferencing for the (N + 1)th task. The process is dynamic and
iterative. Once modeling on Dy 4 is done, its resulting topics are added to S for future use.
LTM has two key characteristics.

1. LTM’s knowledge mining is targeted, meaning that it only mines useful knowledge from
those relevant p-topics in S. To do this, LI'M performs a topic modeling on Dy 41 first
to find some initial topics and then uses these topics to find similar p-topics in S. Those
similar p-topics are used to mine must-links (knowledge) which are more likely to be

applicable and correct. These must-links are then used in the next iteration of modeling to
guide the inference to generate more accurate topics.

2. LTM is a fault-tolerant model as it is able to deal with errors in automatically mined
must-links. First, due to wrong topics (topics with many incoherent/wrong words or topics
without a dominant semantic theme) in S or mining errors, the words in a must-link may
not belong to the same topic in general. Second, the words in a must-link may belong to
the same topic in some domains, but not in others due to the domain diversity. Thus, to
apply such knowledge in modeling, the model must deal with possible errors in must-links.

6.2.1 LTM MODEL

Like many topic models, LTM uses Gibbs sampling for inference [Griffiths and Steyvers, 2004].
Its graphical model is the same as LDA, but it has a very different sampler which can incorporate
prior knowledge and also handle errors in the knowledge as indicated above. The LTM system
is illustrated in Figure 6.1, in the general LL framework of Figure 1.2.

6.2. LTM: A LIFELONG TOPIC MODEL 95

| Task Manager |
New Task
1, T ..., Tne Tanet ---
Previously Learned Tasks Future Learning Tasks
Dy
Knowledge-based Topic Model '
Topic Knowledge < Topics Topic Model: / / -\
. . opics
Miner Must-links Gibbs Sampler \ ? /
P-topics Topics
—
Knowledge Base

Figure 6.1: 'The Lifelong Topic Model (LTM) system architecture.

LTM works as follows (Algorithm 6.7): It first runs the Gibbs sampler of LTM for M
iterations (or sweeps) to find a set of initial topics Ay from Dy with no knowledge (line
1). It then makes another M Gibbs sampling sweep (lines 2-5). But before each of these new
sweeps, it first mines a set of targeted must-links (knowledge) KCn 41 for every topic in Ay 41

96 6. LIFELONG TOPIC MODELING

using the function TopicKnowledgeMiner (Algorithm 6.8, detailed in the next subsection)
and then uses ICy 41 to generate a new set of topics An 41 from Dy 4. To distinguish topics
in An 41 from p-topics, these new topics are called the current topics (or c-topics for short). We
say that the mined must-links are targeted because they are mined based on the c-topics in
Ap 41 and are targeted at improving the topics in Ay 1. Note that to make the algorithm more
efficient, it is not necessary to mine knowledge for every sweep. Section 6.2.2 focuses on the topic
knowledge mining function of LT M. The Gibbs sampler will be given in Section 6.2.4. Line 6
simply updates the knowledge base, which is simple, as each task is from a distinct domain in

this paper. The set of topics is simply added to the knowledge base S for future use.

Algorithm 6.7 Lifelong Topic Modeling (LTM)

Input: New domain data Dy 1 1; Knowledge Base S
Output: Topics from new domain Ay 41

: An+1 < GibbsSampler(Dy 11, @, M) // Run M iterations with no knowledge
: fori =1to M do

Kn+1 < TopicKnowledgeMiner(An+1, S)

Apn 41 < GibbsSampler(Dy 41, Kn+1, 1) // Run with knowledge ICx 41
end for
: 8§ < UpdateKB(Ay+1.S)

Algorithm 6.8 TopicKnowledgeMiner

Input: topics from new domain Ay 4 1; knowledge base &
Output: must-links (knowledge) ICp 41 for new domain

1: for each p-topic s € S do

2: j* = min; KL-Divergence(a;, sx) for each c-topic a; € Ay 41
3. if KL-Divergence(a;=, sx) < 7 then

4 MN_HJ'* < MN+1j* U {5k}

5. endif

6: end for

7. Kn+1 < Ujx FIM(MN 1), // Frequent Itemset Mining

6.2.2 TOPIC KNOWLEDGE MINING

'The TopicKnowledgeMiner function is given in Algorithm 6.8. For each p-topic s¢ in S, it
finds the best matching (or the most similar) c-topic a;= in the c-topic set Ay (line 2). The

6.2. LTM: A LIFELONG TOPIC MODEL 97

matching is done using KL-Divergence (line 2) since each topic is a distribution over words.
MNF1,. is used to store all matching p-topics for each c-topic a;« (line 4). Note that the
matching p-topics are found for each individual c-topic a;+ because a;=-specific p-topics are
preferable for more accurate knowledge (must-links) mining, which is done in line 7. In other
words, these matching p-topics MY *1 .« are targeted toward each a;+ and should provide high
quality knowledge for ;. MY *1,. is mined to generate must-links TN 1« for each c-topic
a;+. Must-links mined for all c-topics in Ay are stored in /Cn 1. Below, we describe topic
matching and knowledge mining in greater detail.

Topic matching (lines 2-5, Algorithm 6.8): To find the best match for sx in & with
a c-topic a;+ in Ay 41, KL-Divergence is used, which computes the difference between two
distributions (lines 2 and 3). Specifically, Symmetrized KL (SKL) Divergence is employed, i.e.,

given two distributions P and Q, the divergence is calculated as:

KL(P, Q) + KL(Q, P)
2 ;
KL(P.Q) =) In (&) P(i) . (6.2)
Q@)
'The c-topic with the minimum SKL Divergence with s¢ is denoted by a;+. Parameter 7 is used
to ensure that the p-topics in MY 1« are reasonably correlated with a;«.

Mining must-link knowledge using frequent itemset mining (FIM): Given the p-topics
in each matching set M~ 1, this step finds sets of words that appear together multiple times
in these p-topics. The shared words among matching p-topics across multiple domains are likely
to belong to the same topic. To find such shared words in the matching set of p-topics MY 1«
frequent itemset mining (FIM) is used [Agrawal and Srikant, 1994].

FIM is stated as follows: Given a set of transactions X', where each transaction x; € X
is a set of items. In our context, x; is a set of top words of a p-topic (no probability attached).
X is MV 1. without lowly ranked words in each p-topic as only the top words are usually
representative of a topic. The goal of FIM is to find every itemset (a set of items) that satisfies
some user-specified frequency threshold (also called minimum support), which is the minimum

SKL(P, Q) = and (6.1)

i

number of times that an itemset should appear in X'. Such itemsets are called frequent itemsets.
In the context of LT'M, a frequent itemset is a set of words that have appeared together multiple
times in the p-topics of MY 1« which is a must-link.

Only frequent itemsets of length two, i.e., each must-link has only two words, are used
in the LTM model, e.g., {battery, life}, {battery, power}, {battery, charge}. Larger sets tend to

contain more errors.

6.2.3 INCORPORATING PAST KNOWLEDGE

As each must-link reflects a possible semantic similarity relation between a pair of words, the

generalized Polya urn (GPU) model [Mahmoud, 2008] is used to leverage this knowledge in the

98 6. LIFELONG TOPIC MODELING

Gibbs sampler of LTM to encourage the pair of words to appear in the same topic. Below, we first
introduce the Pélya urn model which serves as the basic framework to incorporate knowledge,
and then presents the generalized Pélya urn model, which can deal with possible errors in must-
links to make LTM fault-tolerant to some extent.

Simple Pélya Urn Model. The Pélya urn model works on colored balls and urns. In the
topic model context, a term/word can be seen as a ball of a certain color and a topic as an urn.
'The distribution of a topic is reflected by the color proportions of balls in the urn. LDA follows
the simple Pélya urn (SPU) model in the sense that when a ball of a particular color is drawn
from an urn, the ball is put back to the urn along with a new ball of the same color. The content
of the urn changes over time, which gives a self-reinforcing property known as “the rich get
richer.” This process corresponds to assigning a topic to a term in Gibbs sampling.

Generalized Pélya urn Model. The generalized Pélya urn (GPU) model [Chen and Liu,
2014a, Mahmoud, 2008, Mimno et al., 2011] differs from SPU in that, when a ball of a certain
color is drawn, two balls of that color are put back along with a certain number of balls of
some other colors. These additional balls of some other colors added to the urn increase their
proportions in the urn. This is the key technique for incorporating must-links as we will see
below.

Applying the GPU model to topic modeling, when a word w is assigned to a topic ¢, each
word w’ that shares a must-link with w is also assigned to the topic ¢ by a certain amount, which
is decided by the matrix A}, . w’is thus promoted by w, meaning that the probability of w’
under topic ¢ is also increased. Here, a must-link of a topic ¢ means this must-link is extracted

from the p-topics matching with topic ¢.
/
t,w,w

. To answer this question, let us
also consider the problem of wrong knowledge. Since the must-links are mined from p-topics

'The problem is how to set proper values for matrix A
in multiple previous domains automatically, the semantic relationship of words in a must-link
may not be correct for the current domain. It is a challenge to determine which must-link is
not appropriate. One way to deal with the problem is to assess how the words in a must-link
correlated with each other in the current domain. If they are more correlated, they are more
likely to be correct for a topic in the domain and thus should be promoted more. If they are less
correlated, they are more likely to be wrong and should be promoted less (or even not promoted).

To measure the correlation of two words in a must-link in the current domain, Pointwise
Mutual Information (PMI) is used, which is a measure of word association in text [Church and
Hanks, 1990]. In this case, it measures the extent to which two words tend to co-occur, which
corresponds to “the higher-order co-occurrence” on which topic models are based [Heinrich,

2009]. The PMI of two words is defined as follows:

P(wy,wz)

PMI , =log —M—— ,
(w1 w2) =108 5o P twn)

(6.3)

where P(w) denotes the probability of seeing word w in a random document, and P(w;, w»)
denotes the probability of seeing both words co-occurring in a random document. These prob-

6.2. LTM: A LIFELONG TOPIC MODEL 99

abilities are empirically estimated using the current domain collection Dy 4:

_ #Dny1(w)
T oha 4
P(wr.wg) = TENE1 W1 02) 6.5)

#DpN 11

where #Dpy+1(w) is the number of documents in Dpy; that contain word w, and
#Dpn 1 (w1, wy) is the number of documents that contain both words w; and w,. #Dn 41
is the total number of documents in Dy 41. A positive PMI value implies a true semantic cor-
relation of words, while a non-positive PMI value indicates little or no semantic correlation.
'Thus, only must-links with positive PMI values are considered. A parameter factor p is added
to control how much the GPU model should trust the word relationships indicated by PMI.
'The amount of promotion for word w’ when seen w is defined as follows:

1 w=uw
Al yw = Y1 X PMI(w,w') (w,w’) is a must-link of topic ¢ (6.6)
0 otherwise .

6.2.4 CONDITIONAL DISTRIBUTION OF GIBBS SAMPLER

'The GPU model is nonexchangeable, i.e., the joint probability of the words in any given topic is
not invariant to the permutation of those words. The inference for the model can be computa-
tionally expensive due to the nonexchangeability of words, that is, the sampling distribution for
the word of interest depends on each possible value for the subsequent words along with their
topic assignments. LT M takes the approach of Mimno et al. [2011] which approximates the
true Gibbs sampling distribution by treating each word as if it were the last. The approximate
Gibbs sampler has the following conditional distribution:

Pzi=tlz7" w,a, B, A) x
_ v i
nd,lt +o « Zw’=l A;,w’,wi X nt,zy’ + IB (67)
T i 1% 1% — ;
Zt’:l(nd,lt’ +a) Do (Qwm A/t,w’,v x nt,iu’ +B)

where n™" is the count excluding the current assignment of z;, i.e., z*, w refers to all the words
in all documents in the document collection Dy 41, and w; is the current word to be sampled
with a topic denoted by z;. n4; denotes the number of times that topic ¢ was assigned to words in
document d, where d is the document index of word w;. n; , refers to the number of times that
word v appears under topic . & and f are predefined Dirichlet hyperparameters. 7' is the number

of topics, and V' is the vocabulary size. A’ is the promotion matrix defined in Equation (6.6).

100 6. LIFELONG TOPIC MODELING

6.3 AMC: ALIFELONG TOPIC MODEL FOR SMALL DATA

The LTM model needs a fairly large set of documents in order to generate reasonable initial top-
ics to be used in finding similar past topics in the knowledge base to mine appropriate must-link
knowledge. However, when the document set (or data) is very small, this approach does not work
because the initial modeling produces very poor topics, which cannot be used to find matching
or similar past topics in the knowledge base to serve as prior knowledge. A new approach is
thus needed. The AMC model (topic modeling with Automatically generated Must-links and
Cannot-links) [Chen and Liu, 2014b] aims to solve the problem. AMC’s must-link knowledge
mining does not use any information from the new domain/task. Instead, it mines must-links
from the past topics independent of the new domain. However, to make the resulting topics ac-
curate, must-link knowledge is far from sufficient. Thus, AMC also uses cannot-links, which are
hard to mine independent of the new domain data due to the high computational complexity.
Cannot-links are mined dynamically. All these are detailed in this section.

Algorithm 6.9 AMC Model

Input: New domain data Dy 1 1; Knowledge Base S
Output: Topics from new domain Ay 41

1: M <« MustLinkMiner(S)
2: C =@ // C stores cannot-links
Apn+1 < GibbsSampler(Dy 41, M, C, M); // Run M Gibbs iterations with must-links
M but no cannot-links
forr =1to Rdo
C <« C U CannotLinkMiner(S, Ay +1)
Ay 41 < GibbsSampler(Dy 41, M, C, N)
end for

S < UpdateKB(Ay 41, S)

w

S A

6.3.1 OVERALLALGORITHM OF AMC
Algorithm 6.9 gives the overall algorithm of AMC, which is also illustrated in Figure 6.2. Line

1 mines a set of must-links M using the function MustLinkMiner from previous topics (or
p-topics) in the knowledge base (KB) S. Note here the must-links can be generated offline
independent of the current new task. Line 3 runs the proposed Gibbs sampler (introduced
in Section 6.3.5) using only the must-links M to produce a set of topics An41, where M
is the number of Gibbs sampling iterations. Line 5 mines cannot-links C using the function
CannotLinkMiner based on the current topics Ay 41 and p-topics in the knowledge base S
(see Section 6.3.3). Then line 6 uses both must-links M and cannot-links C to improve the

6.3. AMC: ALIFELONG TOPIC MODEL FOR SMALL DATA 101

resulting topics. This process can run iteratively (R times) to obtain a set of superior topics to be
stored in the knowledge base and also output to the user. Function UpdateKB(An 11, S) (line 8)
is simple at the moment. If the domain of Ay exists in S, replace those topics of the domain
in 8 with Ay 1; otherwise, Ay is added to S.

e ™~
Task Manager
New Task
Tl’ Tz, ceey ij, TN+1, .
Previously Learned Tasks Future Learning Tasks
Dy
Knowledge-based Topic Model
Must-link J/ . N
) —> Topics)
Miner Must-links . g pd
Topic Model:
Topics Gibbs Sampler
| Cannot-link
Miner Cannot-links
Topics
P-topics I
\

L Knowledge Base
_&B)

Figure 6.2: 'The AMC model system architecture.

6.3.2 MINING MUST-LINK KNOWLEDGE

Since AMC cannot use topics from the new domain to find similar topics in the knowledge base
(KB) like LTM, it mines must-links directly from the KB without considering the context of
any new task using the function MustLinkMiner. Recall that each topic generated from a topic
model, such as LDA, is a distribution over words, i.e., words with their associated probabilities.
Words are commonly ranked based on their probabilities in a descending order. In practice,
top words under a topic are expected to represent some similar semantic meaning. The lower
ranked words usually have very low probabilities due to the smoothing effect of the Dirichlet
hyperparameters rather than true correlations within the topic, leading to their unreliability.
Thus, in Chen and Liu [2014b], only the top 15 words are employed to represent a topic. This

topic representation is used in mining both must-link and cannot-link knowledge.

102 6. LIFELONG TOPIC MODELING

Given knowledge base S, similar to the LT M model in Section 6.2, must-links are sets
of words that appear together in multiple topics and they are mined using the data mining tech-
nique frequent itemset mining (FIM). However, this technique is insufficient due to the problem
with the single minimum support threshold used in classic FIM algorithms.

A single minimum support is not appropriate because generic topics, such as price with
topic words like price and cost, are shared by many (even all) product review domains, but specific
topics, such as screen, occur only in product domains having such features. This means that
different topics may have very different frequencies in the data. Thus, using a single minimum
support threshold is unable to extract both generic and specific topics because if this threshold is
set too low, the popular topics will result in numerous spurious frequent itemsets (which results
in wrong must-links) and if it is set too high, must-links from less frequent topics will not be
found. This is called the rare item problem in data mining and has been well documented in the
data mining literature [Liu, 2007].

To address the above issue, the AMC model uses the multiple minimum supports frequent
itemset mining (MS-FIM) algorithm in Liu et al. [1999]. MS-FIM is stated as follows: Given
a set of transactions R, where each transaction r; € R is a set of items from a global item set
Z,ie., ri €Z.In AMC, r; is a topic comprising the top words of the topic (no probability
attached). An item is a word. R is thus the collection of all p-topics in the knowledge base S
and 7 is the set of all words in 8. In MS-FIM, each item/word is given a minimum itemset
support (MIS). The minimum support that an itemset (a set of items) must satisfy is not fixed. It
depends on the MIS values of all the items in the itemset. MS-FIM also has another constraint,
called the support difference constraint (SDC), expressing the requirement that the supports of
the items in an itemset must not be too different. MIS and SDC together can solve the above
rare item problem.

'The goal of MS-FIM is to find all itemsets that satisfy the user-specified MIS thresholds
and SDC constraints. Such itemsets are called frequent itemsets. In AMC, a frequent itemset is
a set of words which have appeared multiple times in the p-topics in the knowledge base S. The
frequent itemsets of length two are used as the learned must-link knowledge, e.g., {battery, life},
{battery, power}, {battery, charge}, {price, expensive}, {price, pricy}, {cheap, expensive}.

'Then again each must-link used in AMC has only two words [Chen and Liu, 2014b]. As
mentioned in Section 6.2.2, larger sets tend to contain more errors. Such errors are hard to deal
with than those in pairs. The same rationale applies to cannot-links.

There are two key challenges in incorporating the must-link knowledge in modeling.

1. A word can have multiple meanings or senses. For example, light may mean “something
that makes things visible” or “of little weight.” Different senses may lead to distinct must-
links. For example, with the first sense of /ight, the must-links can be {light, bright} and
{light, luminance}. In contrast, {light, weight} and {light, heavy} indicate the second sense
of light. Without dealing with this, it can cause the transitivity problem [Chen and Liu,
2014b]. That is, if words w; and w, form a must-link, and words w, and w3 form a must-

6.3. AMC: A LIFELONG TOPIC MODEL FOR SMALL DATA 103

link, it implies a must-link between w; and w3, i.e., wi, wz, and w3 should be in the same
topic. With transitivity, /ight, bright, and weight would be incorrectly assumed to be in the
same topic.

2. Not every must-link is suitable for a domain. This is the same wrong knowledge problem
discussed in Section 6.2.

To deal with the first issue, a must-link graph was proposed in Chen and Liu [2014b]
to distinguish multiple senses in must-links to solve the transitivity problem. As the must-links
are automatically mined from the set of p-topics (for past topics) in S, the p-topics may also
provide some guidance on whether the mined must-links share the same word sense or not.
Given two must-links m; and m, if they share the same word sense, the p-topics that cover
my should have some overlapping with p-topics that cover m,. For example, must-links {light,
bright} and {light, luminance} should be mostly coming from the same set of p-topics related to
the semantic meaning “something that makes things visible” of /ight. On the other hand, little
topic overlapping indicates likely different word senses. For example, must-links {light, bright}
and {light, weight} may come from two different sets of p-topics as they usually refer to different
topics.

Following this idea, a must-link graph G is constructed where each must-link is a vertex.
An edge is formed between two vertices if the two must-links m; and m, have a shared word.
For each edge, the amount of their original p-topics overlapping is used to decide whether the
two must-links share the same sense or not. Given two must-links 7, and m,, the p-topics in S
covering each of them are denoted by C; and C,, respectively. m; and m, share the same sense

if
#(C1NCy)

m > Toverlap >

where 7oyeriqp is the overlap threshold for distinguishing senses. This threshold is necessary due to
errors in topics. The edges that do not satisfy the above inequality are discarded. The final must-
link graph G can provide some guidance on selecting the right must-links sharing the same word
sense in the Gibbs sampler (in Section 6.3.5) for dealing with the transitivity problem.

To tackle the second problem, Pointwise Mutual Information (PMI) was also used to
approximate the semantic correlation using the current domain data. This is similar to that in

the UTM model (Section 6.2.3) and thus will not be discussed again.

(6.8)

6.3.3 MINING CANNOT-LINK KNOWLEDGE

Although it is reasonable to find must-links from all past topics, it is problematic to find cannot-
links from all past topics (p-topics) as it is prohibitive to do so. This is because for a word w, there
are usually only a few words wy, that share must-links with w while there is a huge number of
words w, that can form cannot-links with w. In general, if there are V words in the vocabulary

of all tasks or domains, then there are O(V?) potential cannot-links. However, for a new domain

104 6. LIFELONG TOPIC MODELING

Dy +1, most of these cannot-links are not useful because the vocabulary size of Dy 41 is much
smaller than V. Thus, AMC focuses only on those words that are relevant to Dy ;.

Formally, given the knowledge base S and the current c-topics Ay 41 from the new
task domain data Dy, cannot-links from each pair of top words w; and w, in each c-
topic A; € Apn41 are extracted. Based on this formulation, to mine cannot-links (using Can-
notLinkMiner), the mining algorithm enumerates every pair of top words w; and w; and checks
whether they form a cannot-link or not. Thus, the cannot-link mining is targeted to each c-topic
with the aim to improve the c-topic using the discovered cannot-links.

Given two words, CannotLinkMiner determines whether they form a cannot-link or not
as follows: If the words seldom appear together in p-topics in S, they are likely to have distinct
semantic meanings. Let the number of past domains that w; and w, appear in different p-topics
be Ngg and the number of past domains that w; and w; share the same topic be Nyuare. Naifr
should be much larger than Nguu. Two conditions or thresholds are necessary to control the
formation of a cannot-link:

1. The ratio Ny /(Nhare + Naygr) (called the support ratio) is equal to or larger than a threshold
7.. This condition is intuitive.

2. Ny is greater than a support threshold 4. This condition is needed because the above
ratio can be 1, but Ny can be very small and thus unreliable.

Some cannot-link examples are as follows: {battery, money}, {life, movie}, {battery, line} {price,
digital}, {money, slow}, and {expensive, simple}.

Similar to must-links, cannot-links can be wrong too. Like must-links, there are also two
cases: (a) A cannot-link contains terms that have semantic correlations. For example, {battery,
charger} is not a correct cannot-link. (b) A cannot-link does not fit for a particular domain.
For example, {card, bill} is a correct cannot-link in the camera domain, but not appropriate for
restaurants. Wrong cannot-links are usually harder to detect and to verify than wrong must-
links. Due to the power-law distribution of natural language words [Zipf, 1932], most words
are rare and will not co-occur with most other words. The low co-occurrences of two words do
not necessarily mean a negative correlation (cannot-link). Chen and Liu [2014b] proposed to
detect and balance cannot-links inside the sampling process. More specifically, they extended
the Pélya urn model to incorporate the cannot-link knowledge, and also to deal with the issues
above.

6.3.4 EXTENDED POLYA URN MODEL

Gibbs sampler for the AMC model differs from that of LT M as LTM does not consider cannot-
links. A multi-generalized Pslya Urn (M-GPU) model was proposed in Chen and Liu [2014b]
for AMC. We have introduced the simple Pélya urn (SPU) model, and the generalized Pélya
urn (GPU) model in Section 6.2.3. We now extend the GPU model to the multi-generalized
Pélya urn model (IM-GPU).

6.3. AMC: ALIFELONG TOPIC MODEL FOR SMALL DATA 105
Instead of involving only one urn at a time as in the SPU and GPU models, the M-GPU

model considers a set of urns in the sampling process simultaneously [Chen and Liu, 2014b].
M-GPU allows a ball to be transferred from one urn to another, enabling multi-urn interactions.
'Thus, during sampling, the populations of several urns will evolve even if only one ball is drawn
from one urn. This capability makes the M-GPU model more powerful and suitable for solving
the complex problems discussed so far.

In M-GPU;, when a ball is randomly drawn, a certain number of additional balls of each
color are returned to the urn, rather than just two balls of the same color as in SPU. This is
inherited from the GPU model. As a result, the proportions of these colored balls are increased,
making them more likely to be drawn in this urn in the future. This is called the promotion of
these colored balls in Chen and Liu [2014b]. Applying the idea, when a word w is assigned to
a topic k, each word w’ that shares a must-link with w is also assigned to topic k by a certain
amount Ay . The definition of A, 4, is similar to the promotion matrix in the LI'M model
(see Section 6.2.3). Thus, we will not discuss it further here.

To deal with multiple senses problem in M-GPU, Chen and Liu [2014b] exploited the
fact that each word usually has only one correct sense or meaning under one topic. Since the
semantic concept of a topic is usually represented by some top words under it, the word sense
that is the most related to the concept is treated as the correct sense. If a word w does not have
multiple must-links, then there is no multiple sense problem. If w has multiple must-links, the
rationale here is to sample a must-link (say m) that contains w to be used to represent the likely
word sense from the must-link graph G. The sampling distribution will be given in the next
sub-section. Then, the must-links that share the same word sense with m, including m, are used
to promote the related words of w.

To deal with cannot-links, M-GPU defines two sets of urns to be used in sampling. The
first set is the set of topic urns U, dKeDN_H , where each urn is for one document and contains
balls of K colors (topics) and each ball inside has a color k € {1... K}. This corresponds to the
document-topic distribution in AMC. The second set of urns is the set of word urns U}, (1..K}
corresponding to the topic-word distributions, with balls of colors (words) w € {1...V}in each
word urn.

Based on the definition of cannot-link, two words in a cannot-link cannot both have large
probabilities under the same topic. As M-GPU allows multi-urn interactions, when sampling
a ball representing word w from a word urn U, the balls representing the cannot-words of
w, say w, (sharing cannot-links with w) can be transferred to other urns (see step 5 below),
i.e., decreasing the probabilities of those cannot-words (words in a cannot-link) under this topic
while increasing their corresponding probabilities under some other topic. The ball representing
word w, should be transferred to an urn which has a higher proportion of w,. That is, an urn
that has a higher proportion of w, is randomly sampled for w, to transfer to (step 5b below).
However, it is possible that there is no other urn that has a higher proportion of w,. There are two
ways to deal with this issue. (1) Create a new urn to move w, to, which was used in Chen et al.

106 6. LIFELONG TOPIC MODELING

[2013c]. This approach assumes that the cannot-link is correct. (2) Keep w, in the urn UkV as
the cannot-link may not be correct, so it is possible that U} is the right urn for w,. As discussed
in Section 6.3.3, a cannot-link can be wrong. For example, the model puts dazzery and /ife in the
same topic k where attery and /ife have the highest probabilities (or proportions). However, a
cannot-link {battery, life} wants to separate them after seeing them in the same topic. In this
case, we should not trust the cannot-link as it wants to split the correlated words into different
topics. Chen and Liu [2014b] took the second approach due to the noise in cannot-links.
Based on all the above ideas, the M-GPU sampling scheme is presented as follows.

1. Sample a topic k from U f and a word w from U kV sequentially, where d is the d'th doc-
ument in Dy 41.

2. Record k and w, put back two balls of color k into urn UX, and two balls of color w into
urn UkV .

3. Sample a must-link m that contains w from the prior knowledge base. Get a set of must-
links {m’} where m’ is either m or a neighbor of m in the must-link graph G.

4. For each must-link {w,w’} in {m'}, we put back Ay, number of balls of color w’ into
urn UkV based on matrix Ay 4.

5. For each word w, that shares a cannot-link with w:

(a) Draw a ball g, of color w, (to be transferred) from U kV and remove it from UkV. The
document of ball ¢, is denoted by d,. If no ball of color w, can be drawn (i.e., there

is no ball of color w, in UkV), skip steps (b) and (c).

(b) Produce an urn set {Uklf} such that each urn in it satisfies the following conditions:
(i) k" # k,
(ii) The proportion of balls of color w in U}, is higher than that of balls of color w,
in UY.

(c) If {U}} is not empty, randomly select one urn U}, from it. Put the ball ¢, drawn
from Step a) into U});. Also, remove a ball of color k from urn U, ‘{f and put back a
ball of k" into urn Udlf. If {U}}} is empty, put the ball g. back to U}".

6.3.5 SAMPLING DISTRIBUTIONS IN GIBBS SAMPLER

For each word w; in each document d, sampling consists of two phases based on the M-GPU
sampling process above.

Phase 1 (steps 1-4 in M-GPU): calculate the conditional probability of sampling a topic
for word w;. The process enumerates each topic k and calculates its corresponding probability,

which is decided by three sub-steps.

6.3. AMC: A LIFELONG TOPIC MODEL FOR SMALL DATA 107
(a) Sample a must-link m; that contains w;, which is likely to have the word sense consistent
with topic k, based on the following conditional distribution:

P(m; = mlk) P(wilk) x P(walk) | (6.9)

where w; and w, are the words in must-link m and one of them is the same as w;. P(w|k)
is the probability of word w under topic k given the current status of the Markov chain in

the Gibbs sampler, which is defined as:
Ywrei v X e + B
et (Tt At X e +)

where ng ,, refers to the number of times that word w appears under topic k. f is the

predefined Dirichlet hyper-parameter.

P(wlk) (6.10)

(b) After getting the sampled must-link m;, a set of must-links {m’} are created where m’ is
either m; or a neighbor of m; in the must-link graph G. The must-links in this set {m’} are
likely to share the same word sense of word w; according to the corresponding edges in the
must-link graph G.

(c) The conditional probability of assigning topic k to word w; is defined as below:

pzi =klz7' w,a, B, 1)
ngh o
X —
Y=1(ngh + o) ‘ (6.11)
« Z{w/,w,'}e{m/} Aw’,wi X nl:,lw/ + '3
V 3 b
Zv:l(Z{w’,v}e{m{)} Aw’,v X nk,lw’ + 'B)

is the count excluding the current assignment of z;, i.e., z7*. w refers to all the
words in all documents in the new document collection Dy 11, and wj; is the current word
to be sampled with a topic denoted by z;. n4 x denotes the number of times that topic k is
assigned to words in document d. ny ,, refers to the number of times that word w appears
under topic k. @ and B are predefined Dirichlet hyper-parameters. K is the number of
topics, and V is the vocabulary size. {m/} is the set of must-links sampled for each word v
following Phase 1 (a) and (b), which is recorded during the iterations.
Phase 2 (step 5 in M-GPU): this sampling phase deals with cannot-links. There are two
sub-steps.
(a) For every cannot-word (say w.) of w;, one instance (say ¢.) of w. from topic z; is sam-
pled, where z; denotes the topic assigned to word w; in Phase 1, based on the following
conditional distribution:

where n™* i

ng.k + o

, (6.12)
S (g g+ @)

P(g =qclz, w,a) x

108 6. LIFELONG TOPIC MODELING

where d. denotes the document of the instance ¢.. If there is no instance of w, in z;, skip

step b).

(b) For each drawn instance g, from Phase 2 (a), resample a topic k (not equal to z;) based on
the conditional distribution below:

P(zq, = klz7% w,a, B, A, q = qc)
< o, p(we k)] (P (We|ze))
—dc
ndc-,k + o
x K —dqc
Zk,=1(ndc,k’ + Ol)
Z{w’,wc}e{mg} Aw’,wg X nk’quf/ + B
14 —de s
Zv=1(2{w’,v}e{m;}})Lw/,v X nk,‘fv/ + ,8)

(6.13)

where z. (the same as z; sampled from (6.11)) is the original topic assignment. {m.} is the
set of must-links sampled for word w,. Superscript —g. denotes the counts excluding the
original assignments. I () is an indicator function, which restricts the ball to be transferred
only to an urn that contains a higher proportion of word w,. If there is no topic k that has
a higher proportion of w, than z., then keep the original topic assignment, i.e., assign z
to wy.

6.4 SUMMARY AND EVALUATION DATASETS
Although lifelong supervised learning (LSL) has been researched since the beginning of LL

at around 1995, little research had been done on lifelong unsupervised learning until recently.
Topic modeling is an unsupervised learning method. Several papers were published in the past
tew years on lifelong topic modeling. These methods all exploit the sharing of topics and concepts
across tasks and domains in natural language. As discussed earlier in chapter 1, natural language
processing (NLP) is quite suitable for LL precisely due to its extensive sharing of expressions,
concepts, and syntactic structures across domains and tasks. We thus believe LL can have a major
impact on NLP.

Here we would also like to highlight a question that people often ask about lifelong un-
supervised learning. That is, when faced with a new task, can we combine all the past and the
current data to form a big dataset to perform the task to achieve the same or even better results
for the new task? This combining data approach can be seen as a very simple form of LL. How-
ever, this approach is not suitable for lifelong topic modeling because of three key reasons. First,
with a large number of different domain datasets, there will be a huge number of topics, which
makes it very difficult for the user to set the number of topics. Second, much poorer topics are
likely to be the result due to the mix-up of the data from very different domains which cause
wrong words to be grouped together to form incoherent topics. Thus, true topics specific to the
new domain may be lost or mixed up with topics from other domains. Third, because of the fact

6.4. SUMMARY AND EVALUATION DATASETS 109

that the new data is only a tiny portion of the big data, topic modeling will not focus on those
small and domain-specific topics but only on those big topics that cut cross many domains. Then
those important domain-specific topics will be lost.

We now list some evaluation datasets, which are mainly constructed from product reviews.
Chen and Liu [2014a] created a dataset containing online reviews from 50 domains (types of
products), which are all electronic products. The reviews were crawled from Amazon.com. Each
domain has 1,000 reviews. This dataset has been used in Chen and Liu [2014a] and Wang
et al. [2016]. 'This dataset also has four larger review collections with 10,000 reviews in each
collection. The dataset is publicly available.! Chen and Liu [2014b] expanded this dataset by
adding another 50 domains of reviews, each of which contains reviews from a non-electronic
product or domain. Some example product domains include Bike, Tent, Sandal, and Mattress.
Again, each domain contains 1,000 reviews. This larger dataset is also available publicly.?

Ihttps://www.cs.uic.edu/~zchen/downloads/ICML2014-Chen-Dataset .zip
2https://www.cs.uic.edu/~zchen/downloads/KDD2014-Chen-Dataset.zip

https://www.cs.uic.edu/~zchen/downloads/ICML2014-Chen-Dataset.zip
https://www.cs.uic.edu/~zchen/downloads/KDD2014-Chen-Dataset.zip

111

CHAPTER 7

Lifelong Information
Extraction

'This chapter focuses on Jifelong information extraction. Information extraction (IE) is a rich area
for applying lifelong learning (LL) as the goal of IE is to continually extract and accumulate
useful information or knowledge as much as possible. In other words, the extraction process
is by nature continuous and cumulative. The extracted information earlier can be used to help
extract more information later with higher quality [Carlson et al., 2010a, Liu et al., 2016, Shu
etal., 2017b]. These all match the goal of LL. In this case, the knowledge base (KB) of LL often
stores the extracted information and some other forms of useful knowledge.

'The most well-known lifelong information extraction system is NELL, which stands for
Never-Ending Language Learner [Carlson et al., 2010a, Mitchell et al., 2015]. NELL is the only
lifelong semi-supervised learning system that we are aware of. NELL is also a good example of
the systems approach to LL. It is perhaps the only live LL system that has been reading the Web
to extract certain types of information (or knowledge) 24 hours a day and 7 days a week since
January 2010. Although several efforts have been made by other researchers to read the Web
to extract various types of knowledge to build large KBs, e.g., WebKB [Craven et al., 1998],
KnowltAll [Etzioni et al., 2004], and YAGO [Suchanek et al., 2007], they are not LL systems,
except ALICE [Banko and Etzioni, 2007]. ALICE works in an LL setting and is unsupervised.
Its goal is to extract information to build a domain theory of concepts and their relationships.
The extraction in ALICE is done using a set of handcrafted lexico-syntactic patterns (e.g., “<
? grains > such as buckwheat” and “buckwheat is a < ? food >”). ALICE also has some ability
to produce general propositions by abstraction, which deduces a general proposition from a set of
extracted fact instances. ALICE’s LL feature is realized by updating the current domain theory
with new extractions and by using the output of each learning cycle to suggest the focus of
subsequent learning tasks, i.e., the process is guided by earlier learned knowledge. This chapter
focuses on NELL and some more recent lifelong IE techniques such as AER [Liu et al., 2016]
and L-CRF [Shu et al., 2017b].

7.1 NELL: ANEVER-ENDING LANGUAGE LEARNER

A large part of human knowledge is gained by reading books and listening to lectures. Unfor-
tunately, computers still cannot understand human language in order to read books to acquire
knowledge systematically. The NELL system represents an effort to extract two types of knowl-

112 7. LIFELONG INFORMATION EXTRACTION

edge from reading Web documents. Since January 2010, it has been reading the Web non-stop
and has accumulated millions of facts with attached confidence weights (e.g., servedWith(tea,
biscuits)), which are called be/iefs, and are stored in a structured knowledge base.

NELL is a lifelong semi-supervised information extraction system, and it has only a small
number of labeled training examples for each of its learning tasks, which is far from sufficient
to learn accurate extractors to extract reliable knowledge. Without reliable knowledge, LL is
impossible because using wrong knowledge for future learning is highly detrimental. As we
discussed several times earlier in the book, identifying the correct past knowledge is a major
challenge for LL.. NELL made an attempt to solve this problem by extracting different types of
related knowledge using difterent types of data sources and by constraining the learning tasks so
that the tasks can reinforce or help each other and constrain each other to ensure each of them
extracts reasonably correct or robust knowledge.

The input to NELL consists of the following:

1. an ontology defining a set of target categories and relations to be learned (in the form
of a collection of predicates), a handful of seed training examples for each, and a set of
constraints that couple various categories and relations (e.g., Person and Sport are mutually
exclusive);

2. webpages crawled from the Web, which NELL uses to extract information; and

3. occasional interactions with human trainers to correct some of the mistakes made by

NELL.
With this input, the goa/ of NELL is two-fold.

1. Extract facts from the webpages to populate the initial ontology. Specifically, NELL con-
tinuously extracts the following two types of information or knowledge.

(a) category of a noun or noun phrase, e.g., Los Angeles is a cizy, Canada is a country,
New York Yankees is a baseball team.'

(b) relations of a pair of noun phrases. For example, given the name of a university (say
Stanford) and a major (say Computer Science), check whether the relation hasMa-
jor(Stanford, Computer Science) is true.

2. Learn to perform the above extraction tasks, also called the reading tasks, better than
yesterday. Learning is done in a semi-supervised manner.

To achieve these objectives, NELL works iteratively in an infinite loop, i.e., hence never-
ending or lifelong, like an EM algorithm. Each iteration performs two main tasks corresponding
to the two objectives:

IRecently learned knowledge examples in NELL can be found at http://rtw.ml.cmu.edu/rtw/.

http://rtw.ml.cmu.edu/rtw/

7.1. NELL: ANEVER-ENDING LANGUAGE LEARNER 113

1. Reading task: read and extract the two types of information or knowledge from the Web
to grow the KB of structured facts (or beliefs). Specifically, NELLs category and relation
extractors first propose extraction results as updates to the KB. The Knowledge Integra-
tor (KI) module then records these individual recommendations, makes the final decision
about the confidence assigned to each potential belief after considering various consistency
constraints, and then performs updates to the KB.

Because of a huge number of possible candidate beliefs and the large size of the KB, NELL
considers only the beliefs in which it has the highest confidences, limiting each extractor
or sub-system to propose only a limited number of new candidate beliefs for any given
predicate on any given iteration. This enables NELL to operate tractably and also to be
able to add millions of new beliefs over many iterations.

2. Learning fask: learn to read better with the help of the accumulated knowledge in the up-
dated KB and coupling constraints. The evidence for improved reading is shown by the
fact that the system can extract more information more accurately. Specifically, learning
in NELL optimizes the accuracy of each learned function. The training examples consist
of a combination of human-labeled instances (the dozen or so labeled seed examples pro-
vided for each category and relation in NELLs ontology), labeled examples contributed
over time through NELLs crowdsourcing website, a set of NELL self-labeled training
examples corresponding to NELLs current/updated knowledge base, and a large amount
of unlabeled Web text. The last two sets of the training examples propel NELLs LL and

self-improvement process over time.

Since semi-supervised learning often gives low accuracy because of the limited number of
labeled examples, NELL improves the accuracy and the quality of the extracted knowledge
by coupling the simultaneous training of many extractors. These extractors extract from
different data sources and are learned using different learning algorithms. The rationale
is that the errors made by these extractors are uncorrelated. When multiple subsystems
make uncorrelated errors, the probability that they all make the same error is much lower,
which is the product of individual probabilities (considering them as independent events).
'These multiple extractors are linked by coupling constraints. That is, the under-constrained
semi-supervised learning tasks can be made more robust by imposing constraints that arise
from coupling the training of many extractors for different categories and relations. Their
learning tasks are thus guided by one another’s results, through the shared KB and coupling
constraints.

Even with coupling constraints and sophisticated mechanisms to ensure extraction quality, errors
can still be made, which may propagate, accumulate, and even multiply. NELL mitigates this
problem further by interacting with some human trainer each day for about 10-15 minutes to
fix some of the errors to prevent their propagation and producing poorer and poorer results
subsequently.

114 7. LIFELONG INFORMATION EXTRACTION
7.1.1 NELLARCHITECTURE

NELLs architecture is shown in Figure 7.1. There are four main components in NELL: data
resources, knowledge base, subsystem components, and knowledge integrator.

Data Resources. Since the goal of NELL is to continuously read webpages crawled from
the Web to extract knowledge, webpages are thus the data resources.

Knowledge Base. Knowledge Base (KB) stores all the extracted knowledge that is ex-
pressed as beliefs. As mentioned above, two types of knowledge are stored in the knowledge
base: instances of various categories and relations. A piece of knowledge can be a candidate fact
or a belief. A candidate fact is extracted and proposed by the subsystem components, and may
be promoted to a belief, which is decided by Knowledge Integrator.

Subsystem Components. It contains several subsystems, which are the extractors and
learning components of NELL. As indicated earlier, in the reading phrase, these subsystems
perform extraction and propose candidate facts to be included in the knowledge base. In the
learning phrase, they learn based on their individual learning methods with the goal of improving
themselves using the current state of the knowledge base and the coupling constraints. Each
subsystem is built based on different extraction methods taking input from different parts of the
data resources. The four subsystems, CPL, CSEAL, CMC, and RL, are discussed in the next
section.

Knowledge Integrator. Knowledge Integrator (KI) controls the condition of promoting
candidate facts into beliefs. It consists of a set of hand-coded criteria. Specifically, KI decides
what candidate facts are promoted to the status of beliefs. It is based on a hard-coded rule. The
rule says that candidate facts with high confidence from a single source (those with posterior
> 0.9) are promoted. Low-confidence candidates are promoted if they have been proposed by
multiple sources. Mutual-exclusion and type-checking constraints are also used in KI. In partic-
ular, if a candidate fact does not satisfy a constraint (mutual-exclusion or type-checking) based
on the existing beliefs in the KB, it is not promoted. Once a candidate fact becomes a belief, it
never gets demoted.

7.1.2 EXTRACTORS AND LEARNING IN NELL

As we can see in Figure 7.1, there are four major subsystem components that perform extraction
and learning [Carlson et al., 2010a]. We discuss them now.

* Coupled Pattern Learner (CPL): In the reading phrase, the extractors in the CPL subsystem
extract both category and relation instances from unstructured free Web text using con-
textual patterns. At the beginning, they are the given seed patterns and later they are the
learned and promoted patterns from previous iterations. Example category and relation
extraction patterns are “mayor of X” and “X plays for Y”, respectively.

In the learning phrase, such patterns are learned in CPL using some heuristics procedures-
based co-occurrence statistics between noun phrases and existing contextual patterns (both

7.1. NELL: ANEVER-ENDING LANGUAGE LEARNER 115
Knowledge Base

Knowledge
Integrator

Data
Resources
(e.g., corpora)

Subsystem Components

Figure 7.1: NELL system architecture [Carlson et al., 2010a].

defined using part-of-speech tag sequences) for each predicate of interest. The learned
patterns essentially serve as classification functions that classify noun phrases by semantic
categories [Mitchell et al., 2015] (e.g., a Boolean-valued function that classifies whether
any given noun phrase refers to a city). Relationships between predicates are used to filter
out patterns that are too general.

Candidate instances and patterns extracted and learned are also filtered using mutual-
exclusion and type-checking constraints to remove those possible invalid instances and
patterns. Mutual-exclusion constraints enforce that mutually exclusive predicates cannot

oth be satisfie e same input x. For example, x cannot be both a person and a car.
both be satisfied by th put x. Fi ple, t be both a p d

e-checking constraints are used to couple or to link relation extractors (or contextua

Type-checking traint dt ple or to link relat tract textual
patterns for relation extraction) with category extractors (or contextual patterns for cate-
gory extraction). For example, given the relation universityHasMajor(x, y), x should be of
type/category university and y should be of type/category major. Otherwise, the relation
is likely to be wrong.

The remaining candidates are then ranked using simple co-occurrence statistics and es-
timated precisions. Only a small number of top-ranked candidate instances and patterns

are promoted and retained in the knowledge base for future use. Additional details about
CPL can be found in Carlson et al. [2010b].

116 7. LIFELONG INFORMATION EXTRACTION
* Coupled SEAL (CSEAL): CSEAL is an extraction and learning system that extracts facts

from semi-structured webpages using wrapper induction. Its core system is an existing
wrapper induction system called SEAL [Wang and Cohen, 2009]. SEAL is based on
an semi-supervised ML model called sez-expansion, also known as learning from positive
and unlabeled examples (PU learning) [Liu et al., 2002]. Set expansion or PU learning is
defined as follows. Given a set S of seeds of a certain target type (or positive examples),
and a set of unlabeled examples U (which is obtained by querying the Web using the
seeds), the goal of set-expansion is to identify examples in U that belong to S. SEAL uses
wrappers. For a category, its wrapper is defined by character strings which specify the left
context and right context of an entity to be extracted. The entities are mined from Web
lists and tables of the category. For example, a wrapper <li class=“player argl”> <h4> indicates that argZ should be a player. An instance is extracted by a wrapper
if it is found anywhere in the document matching with the left and right contexts of the
wrapper. The relations are extracted in the same manner. However, wrappers for these
predicates are learned independently in SEAL. SEAL does not have the mechanism for
exploiting mutual exclusion or type-checking constraints. CSEAL added these constraints
on top of SEAL so that the candidates extracted from the wrappers can be filtered out if
they violate the mutual-exclusion and type-checking constraints.

Again, the remaining candidates are ranked and only a small number of top-ranked candi-
date instances and patterns are promoted and retained in the KB for future use. Additional

details about CSEAL can be found in Carlson et al. [2010b] and Wang and Cohen [2009].

Coupled Morphological Classifier (CMC): CMC consists of a set of binary classifiers, one for
each category, for classifying whether the extracted candidate facts/beliefs by other com-
ponents/subsystems are indeed of their respective categories. To ensure high precision,
the system classifies only up to 30 new beliefs per predicate in each iteration, with a min-
imum posterior probability of 0.75. All classifiers are built using logistic regression with
L, regularization. The features are various morphological clues, such as words, capital-
ization, affixes, and parts-of-speech. The positive training examples are obtained from the
beliefs in the current KB, and negative examples are items inferred using mutual-exclusion
constraints and the current beliefs in the KB.

* Rule Learner (RuleL): RuleL is a first-order relational learning system similar to
FOIL [Quinlan and Cameron-Jones, 1993]. Its goal is to learn probabilistic Horn clauses
and to use them to infer new relations from the existing relations in the KB. This reasoning
capability represents an important advance of NELL that does not exist in most current
information extraction or LL systems.

In Mitchell et al. [2015], several new subsystem components were also proposed, e.g., NEIL
(Never Ending Image Learner), which classifies a noun phrase using its associated visual images,

and OpenEval (an online information validation technique), which uses real-time Web search to

7.2. LIFELONG OPINION TARGET EXTRACTION 117

gather the distribution of text contexts around a noun phrase to extract instances of predicates.
More information about them and others can be found in the original paper.

7.1.3 COUPLING CONSTRAINTS IN NELL

We have already seen two types of coupling constraints, i.e., mutual-exclusion and type-checking
constraints. NELL also uses several other coupling constraints to ensure the quality or precision
of its extraction and learning results. We believe that coupling constraints are an important
feature and novelty of NELL, which help solve a key problem in LL, i.e., how to ensure that
the learned or extracted knowledge is correct (see Section 1.4). Without a reasonable solution
to this problem, LL is difficult because errors can propagate and even multiply as the iterative
process progresses. Below are three other coupling constraints that NELL uses.

* Multi-view co-fraining coupling constraint: In many cases, the same category or relation
can be learned from different data sources, or views. For example, a predicate instance can
be learned from free text by CPL and also extracted from some semi-structured webpages
by CSEAL using its wrapper. This constraint requires that the two results should agree
with each other. In general, for extraction or learning categories, given a noun phrase X,
multiple functions that use different sets of noun phrase features (or views) to predict if
X belongs to a category Y; should give the same result. The same idea also applies to
extraction or learning of relations.

o Subset/superset coupling constraint: When a new category is added to NELLs ontology, its
parents (supersets) are also specified. For example, “Snack” is declared to be a subset of
“Food.” If X belongs to “Snack,” then X should satisfy the constraint of being “Food.”
'This constraint couples or links the learning tasks that extract “Snack” to those that learn
to extract “Food.”

* Horn clause coupling constraint: The probabilistic Horn clauses learned from FOIL [Quin-
lan and Cameron-Jones, 1993] give another set of logic-based constraints. For example,
X living in Chicago and Chicago being a city in the U.S. can lead to X lives in U.S. (with
a probability p). In general, whenever NELL learns a Horn clause rule to infer new beliefs
from existing beliefs in the KB, this rule serves as a coupling constraint.

7.2 LIFELONG OPINION TARGET EXTRACTION

'This section introduces an application of LL to a specific unsupervised IE task based on the work
in Liu et al. [2016]. The IE task is aspect or opinion target extraction from opinion documents,
which is a fundamental task in sentiment analysis [Liu, 2012]. It aims to extract opinion targets
from opinion text. For example, from the sentence “This phone has a great screen, but its battery
life is short,” it should extract “screen” and “battery life.” In product reviews, aspects are product

attributes or features.

118 7. LIFELONG INFORMATION EXTRACTION

In Liu et al. [2016], a syntactic dependency-based method called double propagation
(DP) [Qiu et al., 2011] was adopted as the base extraction method, which was augmented with
the LL capability. DP is based on the fact that opinions have targets and there are often syn-
tactic relations between sentiment or opinion words (e.g., “great” in “the picture quality is great”)
and target aspect (e.g., “picture quality”). Due to the syntactic relations, sentiment words can
be recognized by identified aspects, and aspects can be identified by known sentiment words.
The extracted sentiment words and aspects are used to identify new sentiment words and new
aspects, which are used again to extract more sentiment words and aspects. This bootstrapping
propagation process ends when no more sentiment words or aspects can be found. The extrac-
tion rules were designed based on dependency relations among sentiment words and aspects
produced by dependency parsing.

Figure 7.2 shows the dependency relations between words in “7he phone has a good screen.”
If “good” is a known sentiment word (given or extracted), “screen,” a noun modified by “good,”
is an aspect as they have a dependency relation amod. From a given seed set of sentiment words,
one can extract a set of aspects from a syntactic rule like “if'a word A, whose part-of-speech (POS)
is a singular noun (nn), has the dependency relation amod with (i.e., modified by) a sentiment word O,
then A is an aspect.” Similarly, one can use such rules to extract new aspects from the extracted
aspects, and new sentiment words from the extracted aspects.

dobj
det \
det nsubj Y/- amod
(DT] Y NN VBZ|(DT) [JJ (NN ()

The phone has a good screen

Figure 7.2: Dependency relations in the sentence “7he phone has a good screen.”
g p y &

7.2.1 LIFELONG LEARNING THROUGH RECOMMENDATION

Although effective, syntactic rule-based methods such as DP still have room for major improve-
ments. Liu et al. [2016] showed that incorporating LL can improve the extraction markedly.
To realize LL, Liu etal. [2016] used the idea of recommendation, in particular co/laborative
Jiltering [Adomavicius and Tuzhilin, 2005]. This type of recommendation uses the behavioral
information of other users to recommend products/services to the current user. Following the
idea, Liu et al. [2016] used the information in reviews of a large number of other products (data
of the previous tasks) to help extract aspects from reviews of the current product (data of the
new task). The recommendation is based on the previous task data and extraction results. This
method is called /ifelong IE through recommendations. Two forms of recommendations were used:
(1) semantic similarity-based recommendation and (2) aspect associations-based recommendation.

7.2. LIFELONG OPINION TARGET EXTRACTION 119

1. Semantic similarity-based recommendation aims to solve the problem of missing synony-
mous aspects of DP using word vectors trained from a large corpus of reviews for similarity
comparison. Word vectors are regarded as a form of prior or past knowledge learned from
the past data. Let us see an example. Using the DP method, “picture” is extracted as an
aspect from the sentence “7he picture is blurry,” but “photo” is not extracted from the sen-
tence “The phone is good, but not the photos.” One reason for the inability to extract “photo”
is that to ensure good extraction precision, many useful syntactic dependency rules with
low precision are not used. The proposed semantic similarity-based recommendation can
make use of the extracted aspect “picture” to recommend “photo” (“photo” is a synonym
of “picture”) based on the semantic similarity of the word vectors of the two words.

2. 'The second form of recommendation is via aspect associations or correlations. This form
is useful because in the first recommendation, “picture” cannot be used to recommend
“battery” as an aspect because their semantic similarity value is very small. The idea of using
the second form of recommendation is that many aspects are correlated or co-occur across
domains. For example, those products with the aspect “picture” also have a high chance
of using batteries, as pictures are usually taken by digital devices that need batteries. If
rules about such associations can be discovered, they can be used to recommend additional
aspects. For this purpose, association rules from data mining [Liu, 2007] were employed.
To mine associations, Liu et al. [2016] used the extraction results from the previous tasks
stored in the knowledge base S.

'The knowledge base contains two forms of information: the word vectors and the extraction
results from the previous/past tasks.

722 AERALGORITHM

'The proposed extraction algorithm is called AER (Aspect Extraction based on Recommenda-
tions) [Liu et al., 2016] and is shown in Algorithm 7.10, which consists of three main steps: base
extraction, aspect recommendation (which includes a knowledge learning sub-step discussed in
Section 7.2.3), and KB updating.

Step 1 (base extraction, lines 1-2): Given the new document data Dy for the (N +
1)th task for extraction and a set O of seed opinion or sentiment words, this step first uses the
DP method (DPextract) to extract an initial (or base) set A~ of aspects using a set R~ of high
precision rules (line 1). The set of high precision rules are selected from the set of rules in DP by
evaluating their precisions individually using a development set. The set A~ of extracted aspects
thus has very high precision but not high recall. Then, it extracts a set A" of aspects from a larger
set R of high recall rules (R~ € R*) also using DPextract (line 2). The set A™ of extracted
aspects thus has very high recall but low precision.

Step 2 (aspect recommendation, lines 3—7): 'This step recommends more aspects using
A~ as the base to improve the recall. To ensure recommendation quality, Liu et al. [2016]

120 7. LIFELONG INFORMATION EXTRACTION

required that the recommended aspects must be from the set A% = AT — A~ (line 3). As in-
dicated above, two forms of recommendation are performed, similarity-based using Sim-recom
(line 4) and association rule-based using AR-recom (line 6). Their respective results A* and
A® are combined with A~ to produce the final extraction result (line 7). Note that the word
vectors WV required by Sim-recom are stored in the knowledge base S. The association rules
AR used in AR-recom are mined from the extraction results of previous tasks also stored in the
knowledge base S.

Step 3 (knowledge base update, line 8): This step updates the knowledge base S, which
is simple, as each task is from a distinct domain in this paper [Liu et al., 2016]. That is, the set
of extracted aspects is simply added to the knowledge base S for future use.

We will not discuss step 1 and step 3 further as they are fairly straightforward. Our focus
is on the two recommendation methods, which will be introduced in Section 7.2.4. For the
recommendations to work, we first need to learn the past knowledge in terms of word vectors
WYV and association rules AR. We discuss knowledge learning next.

Algorithm 7.10 AER Algorithm

Input: New domain data Dy 41, high precision aspect extraction rules R~, high recall aspect
extraction rules R, seed opinion words O, and knowledge base S
Output: Extracted aspect set A

A~ « DPextract(Dy 41, R™, O) // A™: aspect set with high precision

At « DPextract(Dy 11, R*, O) // AT: aspect set with high recall

AWM — AT — A

A* <« Sim-recom(A~, A% WYV) // WV is the set of word vectors stored in the knowledge
base S

AR <« MineAssociationRules(S)

A? «— AR-recom(A~, A% AR)

A<« AU AU A

A < UpdateKB(A, S)

B e

® N > T

7.2.3 KNOWLEDGE LEARNING

Generating Word Vectors

In Liu et al. [2016], word vectors were trained using neural networks in Mikolov et al. [2013b].
Researchers have shown that using word vectors trained this way is highly effective for the
purpose of semantic similarity comparison [Mikolov et al., 2013b, Turian et al., 2010]. There
are several publicly available word vector resources trained from Wikipedia, Reuters News,

or Broadcast News for general NLP tasks such as POS tagging and Named Entity Recogni-

7.2. LIFELONG OPINION TARGET EXTRACTION 121

tion [Collobert and Weston, 2008, Huang et al., 2012, Pennington et al., 2014]. However, the
initial experiments in Liu et al. [2016] showed these word vectors were not accurate for their task.
They thus trained the word vectors using a large corpus of 5.8 million reviews [Jindal and Liu,
2008]. Clearly, the word vectors can also be trained by just using the data in the past domains,
but the paper did not try that. It will be interesting to see the difference in results produced with
word vectors trained from the two data sources. Note that using word vectors in extraction can
be regarded as a simple form of LL because the generation of word vectors basically uses the
data from previous tasks to learn a rich representation (word vector) of each word to be used in
the current extraction task. As the system sees more data, the word vectors can also be updated.

Mining Association Rules

Association rules are of the form, X —> Y, where X and Y are disjoint sets of items, i.e., a
set of aspects in our case. X and Y are called antecedent and consequent of the rule, respectively.
'The support of the rule is the number of transactions that contains both X and Y divided by
the total number of transactions, and the confidence of the rule is the number of transactions
that contains both X and Y divided by the number of transactions that contains X. Given a
transaction database DB, an association rule-mining algorithm generates all rules that satisfy
a user-specified minimum support and a minimum confidence constraint [Agrawal and Srikant,
1994]. DB contains a set of transactions. In our case, a transaction consists of all the aspects dis-
covered from one previous domain or task, which is stored in the knowledge base S. Association
rule mining has been well studied in data mining.

7.2.4 RECOMMENDATION USING PAST KNOWLEDGE

Recommending Aspects using Word Vectors
Algorithm 7.11 gives the details of Sim-recom(A~, A%, WV, which recommends aspects
based on aspect similarities measured using word vectors. For each term ¢ in A%/ which can be
a single word or a multi-word phrase, if the similarity between ¢ and any term in A~ is at least
¢ (line 2), which means that ¢ is very likely to be an aspect and should be recommended, then
add 7 into A* (line 3). The final recommended aspect set is A°.

The function Sim(z, .A™) in line 2 returns the maximum similarity between term ¢ and the
set of terms in A7, i.e.,

Sim(t, A7) = max{VS(¢;.¢;,) : t; € A7} . (7.1)

where ¢, is t’s vector, VS(¢;, d;,) is VS*(¢;,¢;,) if ¢ and ¢, are single words, otherwise,
VS(¢:, ¢+,) is VSP(ds, b1,). VS (¢, ¢:,) and VS?(¢;, ¢;,) compute single words similar-
ity and phrases or phrase-word similarity, respectively. Given two terms ¢ and ¢/, their semantic
similarity is calculated using their vectors ¢, and ¢, in YWV as below:

¢! b

— 7.2
@[] - ||l 72

VS (@i p0) =

122 7. LIFELONG INFORMATION EXTRACTION

Algorithm 7.11 Sim-recom Algorithm

Input: Aspect sets A~ and A%, word vectors WV
Output: Recommended aspect set A°

1: for each aspect term 1 € A% do
2: if Sim(¢, A7) > € then

3: AS < AS U {1}

4 endif

5: end for

Since there are no vectors for multi-word phrases in the pre-trained word vectors, the average
cosine similarities of words in the phrases is used to evaluate phrase similarities:

S YL VS By)
VS?(¢:. ¢1) = L <L/

where L is the number of single words in 7, and L’ is that of ¢’. The reason for using average
similarity for multi-word phrases is that it considers the length of the phrases, and sets lower
similarity value naturally if the lengths of two phrases are different.

; (7.3)

Recommending Aspects using Association Rules

Algorithm 7.12 gives the details of AR-recom, which recommends aspects based on aspect asso-
ciation rules. For each association rule r in AR, if the antecedent of r is a subset of A~ (line 2),
then recommend the terms in cons(r) N A% into the set A% (line 3). The function ante(r) re-
turns the set of aspects in r’s antecedent, and the function cons(r) returns the set of (candidate)
aspects in r’s consequent.

Algorithm 7.12 AR-recom Algorithm

Input: Aspect sets A~ and A% | association rules AR
Output: Recommended aspect set A?

1: for each association rule r € AR do
2: if ante(r) € A~ then

3: A% «— A% U (cons(r) N A%
4. endif
5. end for

For example, one association rule in AR could be: picture, display — video, purchase,
whose antecedent contains “picture” and “display,” and consequent contains “video” and “pur-

7.3. LEARNING ONTHE JOB 123

chase.” If both words “picture” and “display” are in A, and only “video” is in A%, then only
“video” is added into A“.

7.3 LEARNING ONTHE JOB

It is known that about 70% of our human knowledge comes from “on-the-job” learning. Only
about 10% is learned through formal training and the rest 20% is learned through observation
of others. For a machine learner to learn on the job or learn while working, it must continuously
learn after model training. This section describes a simple method that does a limited form of
learning on the job in the context of information extraction [Shu et al., 2017b]. Specifically, the
paper shows that if the system has performed extraction from many (past) domains and retained
their results as knowledge, Conditional Random Fields (CRF) [Lafferty et al., 2001] can lever-
age this knowledge in an LL manner to extract in a new domain better than the traditional CRF
without using this prior knowledge. The proposed method is called L-CRF (/ifelong CRF), and
it is applied to aspect (product feature/attribute) extraction in sentiment analysis.

'The main idea of L-CRF is that even after supervised model training, the model can still
improve its extraction in testing or application. The improvement is possible because of a fair
amount of aspect sharing across domains. Such sharing can be leveraged to help CRF perform
better for new domains.

The setting of L-CRF is as follows: A CRF model M has been trained with a labeled

training online review dataset. At a particular point in time, M has extracted aspects from data

in N previous domains Dj,..., Dy (which are unlabeled) and the extracted sets of aspects are
Ai, ..., An. Now, the system is faced with a new domain data Dy4;. M can leverage some
reliable prior knowledge in Ay, ..., Ay to make a better extraction from Dy than without

leveraging the prior knowledge.

7.3.1 CONDITIONAL RANDOM FIELDS

CREF learns from an observation sequence x to estimate a label sequence y: p(y|x; #), where 8
is a set of weights. Let / be the /-th position in the sequence. The core parts of CRF are a set of
feature functions F = { f5(y1, yi—1, xl)}}lf=1 and their corresponding weights 8 = {0 }}1:1:1.

Feature Functions: Two types of feature functions (FF) are used in Shu et al. [2017b].
One is Label-Label (1.2) FF:

Foyim) =Ly =iy = Vi e (7.4)
where) is the set of labels, and 1{-} an indicator function. The other is Label-Word (LW) FF:
Ay, x) =Wy =ilix; = v}, Vie Y, YveV , (7.5)

where V is the vocabulary. This FF returns 1 when the /-th word is v and the /-th label is v’s
specific label i; otherwise 0. x; is the current word, and is represented as a multi-dimensional
vector. Each dimension in the vector is a feature of x;.

124 7. LIFELONG INFORMATION EXTRACTION

The feature set {W, -1W, +1W, P, -1P, +1P, G} is used, where W is the word and P is
its POS-tag, -1W is the previous word, -1P is its POS-tag, +1W is the next word, +1P is its
POS-tag, and G is the generalized dependency feature.

Under the Label-Word FF type, two sub-types of FF are employed: Labe/-dimension FF
and Label-G FF. Label-dimension FF is for the first six features, and Label-G is for the G
feature.

'The Label-dimension (Ld) FF is defined as
fExg) = 1y = i} 1{x] = v?}, ¥i e yvod e V9, (7.6)

v

where V¥ is the set of observed values in feature d € {W, -1W, +1W, P, -1P, +1P} and V4 is
called feature d’s feature values. Equation (7.6) is a FF that returns 1 when x;’s feature d equals
to the feature value v¢ and the variable y; (/th label) equals to the label value i; otherwise 0.

We describe G and its feature function next, which also holds the key to the proposed
L-CRF.

7.3.2 GENERAL DEPENDENCY FEATURE

The general dependency feature G uses generalized dependency relations. What is interesting
about this feature is that it enables L-CRF to use past knowledge in its sequence prediction
at the test time in order to perform better. This will become clear shortly. This feature takes a
dependency pattern as its value, which is generalized from dependency relations.

The general dependency feature (G) of the variable x; takes a set of feature values V°.
Each feature value v° is a dependency pattern. The Labe/-G (LG) FF is defined as:

[EErx) = Wy = i}y = v9)L Vi e Y, VoS e VO . (7.7)

v

Such a FF returns 1 when the dependency feature of the variable x; equals to a dependency
pattern v° and the variable y; equals to the label value i.

Dependency Relation

A dependency relation? is a quintuple-tuple: (#ype, gov, govpos, dep, deppos), where type is the
type of the dependency relation, gov is the governor word, govpos is the POS tag of the governor
word, dep is the dependent word, and deppos is the POS tag of the dependent word. The /-th

word can either be the governor word or the dependent word in a dependency relation.

Dependency Pattern
Dependency relations are generalized into dependency patterns using the following steps.

1. For each dependency relation, replace the current word (governor word or dependent
word) and its POS tag with a wildcard since we already have the word (W) and the POS
tag (P) features.

2Dependency relations are obtained using Stanford CoreNLP: http://stanfordnlp.github.io/CoreNLP/.

7.3. LEARNING ONTHEJOB 125

2. Replace the context word (the word other than the /-th word) in each dependency relation
with a knowledge label to form a more general dependency pattern. Let the set of aspects
annotated in the training data be K’. If the context word in the dependency relation ap-
pears in K, we replace it with a knowledge label “A” (aspect); otherwise “O” (other).

For example, we work on the sentence “The battery of this camera is great.” The depen-
dency relations are given in Table 7.1. Assume the current word is “battery,” and “camera” is
annotated as an aspect. The original dependency relation between “camera” and “battery” pro-
duced by a parser is (nmod, battery, NN, camera, NN). Note that the word positions are not
used in the relations in Table 7.1. Since the current word’s information (the word itself and its
POS-tag) in the dependency relation is redundant, it is replaced with a wild-card. The relation
becomes (nmod, ¥, camera, NN). Secondly, since “camera” is in K’, “camera” is replaced with a
general label “A”. The final dependency pattern becomes (nmod,*, A, NN).

Table 7.1: Dependency relations parsed from “The battery of this camera is great”

Index ‘ Word ‘ Dependency Relations

1 The | {(det, battery, 2, NN, The, 1, DT') }

2 battery | {(nsubj, great, 7,] , battery, 2, NN), (det, battery, 2, NN, The, 1, DT), (nmod,
battery, 2, NN, camera, 5, NN) }

3 of {(case, camera, 5, NN, of, 3, IN) }

this | {(det, camera, 5, NN, this, 4, DT") }

5 camera | {(case, camera, 5, NN, of, 3, IN), (det, camera, 5, NN, this, 4, DT), (nmod,
battery, 2, NN, camera, 5, NN) }

6 is {(cop, great, 7, J] , is, 6, VBZ) }

great | {(root, ROOT, 0, VBZ, great, 7,]), (nsubj, great, 7, JJ , battery, 2, NN), (cop,
great, 7, J] , is, 6, VBZ) }

We now explain why dependency patterns can enable a CRF model to leverage the past
knowledge. The key is the knowledge label “A” above, which indicates a likely aspect. Recall
that our problem setting is that when we need to extract from the new domain Dy using
a trained CRF model M, we have already extracted from many previous domains Dj,..., Dy
and retained their extracted sets of aspects A1, ..., Ay. Then, we can mine reliable aspects from
A1, ..., An and add them in K?, which adds many knowledge labels in the dependency patterns
of the new data Dy 1 due to sharing of aspects across domains. This enriches the dependency
pattern features, which consequently allows more aspects to be extracted from the new domain
data DN+1 .

126 7. LIFELONG INFORMATION EXTRACTION
7.3.3 THE L-CRF ALGORITHM

We now present the L-CRF algorithm. As the dependency patterns for the general dependency
teature do not use any actual words and they can also use the prior knowledge, they are quite
powerful for cross-domain extraction (the test domain is not used in training).

Let K be a set of reliable aspects mined from the aspects extracted in past domain datasets
using the CRF model M. Note that it is assumed that M has already been trained using some
labeled training data D’. Initially, K is K’ (the set of all annotated aspects in the training data
D"). The more domains M has worked on, the more aspects it extracts, and the larger the set
K gets. When faced with a new domain Dy 41, K allows the general dependency feature to
generate more dependency patterns related to aspects due to more knowledge labels “A” as we
explained in the previous section. Consequently, CRF has more informed features to produce
better extraction results.

L-CRF works in two phases: zraining phase and lifelong extraction phase. The training phase
trains a CRF model M using the training data D’, which is the same as the normal CRF training,
and will not be discussed further. In the lifelong extraction phase, M is used to extract aspects
from incoming domains (M does not change and the domain data are unlabeled). All the results
from the domains are retained in the past aspect store S. At a particular time, it is assumed M
has been applied to N past domains, and is now faced with the N + 1 domain. L-CRF uses M
and reliable aspects (denoted Ky 1) mined from S and K* (K = K' U Ky 41) to extract from
Dy +1. Note that aspects K; from the training data are considered always reliable as they are
manually labeled, thus a subset of K. Not all extracted aspects from past domains can be used
as reliable aspects due to many extraction errors. But those aspects that appear in multiple past
domains are more likely to be correct. Thus, K contains those frequent aspects in S. The lifelong
extraction phase is in Algorithm 7.13.

Lifelong Extraction Phase: Algorithm 7.13 performs extraction on Dy iteratively.

1. It generates features (F) on the data Dy (line 3), and applies the CRF model M on F
to produce a set of aspects Ay 41 (line 4).

2. AN+1 is added to S, the past aspect store. From S, we mine a set of frequent aspects
Kn +1. The frequency threshold is A.

3. If Kn41 is the same as K, from the previous iteration, the algorithm exits as no new
aspects can be found. We use an iterative process because each extraction gives new results,
which may increase the size of K, the reliable past aspects or past knowledge. The increased
K may produce more dependency patterns, which can enable more extractions.

4. Else: some additional reliable aspects are found. M may extract additional aspects in the
next iteration. Lines 10 and 11 update the two sets for the next iteration.

The proposed L-CRF method was evaluated and compared with baselines. Experimental results
show that L-CRF performs markedly better than CRF in the cross-domain setting, where one

7.4. LIFELONG-RL: LIFELONG RELAXATION LABELING 127
Algorithm 7.13 Lifelong Extraction of L-CRF

1: Kp <~ 0

2: loop

3: F < FeatureGeneration(Dy 1, K)
4 An+1 < Apply-CRF-Model(M, F)
5: S <~ SU{AN+1}

6: Ky41 < Frequent-Aspects-Mining(S, 1)
7: if Ky, = Kn11 then

8: break

9: else

10: K<« K'UKpyy1

11: Kp < KN—H
12: S(—S—{AN+1}
13: endif
14: end loop

domain of data is used for training and the resulting model is tested on other domains. It also
outperforms CRF in the in-domain setting, where the training and the testing data are from
the same domain.

To close this section, we would like to point out that the technique presented in this section
is highly limited because it does not update or improve the model itself. Moreover, learning on
the job also has many types. For example, the problems solved in Chapter 8 and, to a great
extent, in Chapter 5 can be regarded as learning on the job as well because they both involve
learning while working on applications.

7.4 LIFELONG-RL: LIFELONG RELAXATION LABELING

In Shu et al. [2016], the authors proposed a /ifelong relaxation labeling method called Lifelong-
RL to incorporate LL in relaxation labeling [Hummel and Zucker, 1983] for belief propagation.
Lifelong-RL was applied to a sentiment analysis task. This section gives an overview of Lifelong-
RL. But first, we introduce the relaxation labeling algorithm. We then briefly describe how to
incorporate the LL capability in relaxation labeling. For the application to the sentiment analysis
task, please refer to the original paper.

7.4.1 RELAXATION LABELING

Relaxation Labeling is an unsupervised graph-based label propagation algorithm that works it-
eratively. The graph consists of nodes and edges. Each edge represents a binary relationship
between two nodes. Each node n; in the graph is associated with a multinomial distribution

128 7. LIFELONG INFORMATION EXTRACTION

P(L(n;)) (L(n;) being the label of ;) on a label set Y. Each edge is associated with two con-
ditional probability distributions P(L(n;)|L(n;)) and P(L(n;)|L(n;)), where P(L(n;)|L(n;))
represents how the label L(n;) influences the label L(n;) and vice versa. The neighbors Ne(n;)
of a node n; are associated with a weight distribution w(n;n;) with 3, cne(n,) w(njlni) = 1.

Given the initial values of these quantities as inputs, relaxation labeling iteratively up-
dates the label distribution of each node until convergence. Initially, we have P®(L(n;)). Let
AP™1(L(n;)) be the change of P(L(n;)) at iteration r + 1. Given P"(L(n;)) at iteration r,
AP™t1(L(n;)) is computed by:

AP N (L)) =) (w(nﬂni) x Y P(L(;)|L(nj) = y) x P"(L(nj) = y)) . (7.8)

n; €Ne(n;) yeyY
Then, the updated label distribution for iteration r + 1, P"*1(L(n;)), is computed with:

P"(L(ni)) x (1 + AP (L(ny)))
Yyey PT(L(ni) = y) x (1 + AP™1(L(n;) = y))

Once relaxation labeling ends, the final label of node n; is its highest probable label: L(n;) =

argmax(P(L(n;) = y)).
yeyY
Note that P(L(n;)|L(nj)) and w(nj|n;) are not updated in each relaxation labeling iter-

ation but only P(L(n;)) is. P(L(n;)|L(n;)), w(nj|n;), and P°(L(n;)) are provided by the user
or computed based on the application context. Relaxation labeling uses these values as input
and iteratively updates P (L(n;)) based on Equations (7.8) and (7.9) until convergence. Next we
discuss how to incorporate LL in relaxation labeling.

P (L(ny) = (7.9)

7.4.2 LIFELONG RELAXATION LABELING

For LL, as usual, it is assumed that at any time step, the system has worked on N past domain
data D? = {D;,D,, ..., Dy}. For each past domain data D; € DN | the same Lifelong-RL al-
gorithm has been applied and its result has been saved in the knowledge base (KB). Then the
algorithm can borrow some useful prior/past knowledge in the KB to help relaxation labeling
in the new/current domain Dy 4. Once the result of the current domain is produced, it is also
added to the KB for future use.

We now discuss the specific types of information or knowledge that can be obtained from
the previous tasks to help relaxation labeling in the future, which are thus stored in the KB.

1. Prior edges: In many applications, the graph is not given. Instead, it has to be constructed
based on the data from the new task/domain data Dy 1. However, due to the limited
data in Dy 41, some edges between nodes that should be present are not extracted from
the data. But such edges between the nodes may exist in some past domain data. Then,
those edges and their associated probabilities can be borrowed.

7.5. SUMMARY AND EVALUATION DATASETS 129

2. Prior labels: Some nodes in the new task/domain may also exist in some previous
tasks/domains. Their labels in the past domains are very likely to be the same as those
in the current domain. Then, those prior labels can give us a better idea about the initial
label probability distributions of the nodes in the current domain Dy 4.

To leverage those edges and labels from the past domains, the system needs to ensure that
they are likely to be correct and applicable to the current task. This is a challenging problem.
Interested readers, please refer to the original paper [Shu et al., 2016].

7.5 SUMMARY AND EVALUATION DATASETS

Information extraction is naturally a continuous process as there is always knowledge to be ex-
tracted. It is also natural that the knowledge extracted earlier can help subsequent extractions.
In this chapter, we first described the well-known NELL system as an excellent example of life-
long semi-supervised information extraction system. We introduced its key ideas, architecture,
and various sub-systems and algorithms. It is by no means exhaustive as many specific aspects of
the system were not given in-depth treatments. The system is also continuously evolving and is
becoming more and more powerful. What is very valuable about NELL is that it is perhaps the
only non-stop or continuous learning system that extracts information from both unstructured
text and semi-structure documents on the Web. We believe that more such real-life LL systems
should be constructed to truly realize continuous learning, knowledge accumulation, and prob-
lem solving. Such systems will allow researchers to gain true insights into LL. on how LL may
work in practice and what the technical challenges are. These insights will help us design better
and more practically useful LL systems and techniques.

'This chapter also discussed three other papers. One is about opinion target (or aspect) ex-
traction using LL. Its LL idea is based on multi-domain recommendation, which is essentially a
meta-mining method. One is about learning after model building. This is a new idea because in
traditional learning, after a model is built, it is simply applied to applications and there is no fur-
ther learning during the application process. Finally, the chapter discussed a belief propagation
method with the help of LL. Here, we saw that the past knowledge can provide more accurate
prior probabilities and also help expand the graph itself to provide more information for more
accurate propagation.

Regarding experimental datasets, NELL uses webpages continuously crawled from the
Web. The other papers used product reviews. The product review datasets have been listed in
the last section of Chapter 6. Two datasets have been used in the evaluation of the techniques
proposed in Liu et al. [2016] and Shu et al. [2017b]. These are aspect-annotated datasets and are
publicly available. One has five review collections and the other has three review collections [Liu
et al., 2015a].3

3https://www.cs.uic.edu/~1iub/FBS/sentiment-analysis.htm

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.htm

131

CHAPTER 8

Continuous Knowledge
Learning in Chatbots

'This chapter discusses the emerging research topic of /ifelong interactive knowledge learning for
chatbots [Mazumder et al., 2018]. Continuous learning in an interactive environment is a key
capability of human beings. One can only learn so much by being told or supervised because
the world is simply too complex to be completely learned this way. In fact, we humans probably
learn a great deal of our knowledge through interactions with other humans and the environment
around us which constantly give us explicit and implicit feedback. This learning process is called
self~supervised because it does not require human annotated/labeled training data. In the context
of chatbots, lifelong interactive learning is critical because in order for a chatboot to be truly
intelligent in human-machine conversation, it has to continually learn new knowledge in order
to improve itself and to understand and to get to know each of its conversation partners. Note
that we use the term chatbots to refer to all kinds of conversational agents, such as dialogue
systems and question-answering systems.

Chatbots have a long history in Al and natural language processing (NLP). They became
particularly and increasingly popular in the past few years due to the commercial success of some
chatbots or virtual assistants such as Echo and Siri. Numerous chatbots have been developed
or are under development, and many researchers are also actively working on techniques for
chatbots.

Early chatbot systems were mostly built using markup languages such as AIML,' hand-
crafted conversation generation rules, and/or information retrieval techniques [Ameixa et al.,
2014, Banchs and Li, 2012, Lowe et al., 2015, Serban et al., 2015]. Recent neural conversation
models [Li et al., 2017b, Vinyals and Le, 2015, Xing et al., 2017] are able to perform some lim-
ited open-ended conversations. However, since they do not use explicit knowledge bases (KBs)
and do not perform inference, they often suffer from generic and dull responses [Li et al., 20174,
Xing et al., 2017]. More recently, Ghazvininejad et al. [2017] and Le et al. [2016] proposed to
use KBs to help generate responses for knowledge-grounded conversation. However, a major
weakness of the existing chat systems is that they do learn new knowledge during conversation,
i.e., their knowledge is fixed beforehand and cannot be expanded or updated during the conver-
sation process. This seriously limits the scope of their applications. Even though some existing
systems can use very large KBs, these KBs still miss a large number of facts (knowledge) [West

http://www.alicebot.org/

132 8. CONTINUOUS KNOWLEDGE LEARNING IN CHATBOTS

etal., 2014]. It is thus important for a chatbot to continuously learn new knowledge in the con-
versation process to expand its KB and to improve its conversation capability, i.e., learning on
the job.

Since there is little work in this emerging area, this chapter presents only one work that
aims to build a lifelong interactive knowledge learning engine for chatbots [Mazumder et al.,
2018]. The goal of the engine is to learn a specific type of knowledge called factual knowledge
during the interactive conversation process. A piece of such knowledge is called a facz and is
represented as a triple: (s, r, t), which says that the source entity s and target entity ¢ are linked
by the relation r. For example, (Obama, CitizenOf, USA) means that Obama is a citizen of USA.

8.1 LILI: LIFELONG INTERACTIVE LEARNING AND
INFERENCE

Mazumder et al. [2018] modeled the interactive knowledge learning as an open-world knowledge
base completion problem, which is an extension to the traditional now/ledge base completion (KBC)
problem. KBC aims to infer new facts (knowledge) automatically from the existing facts in a
given KB. It is defined as a binary classification problem. Given a query triple, (s, r, 1), we
predict whether the source entity s and target entity ¢ can be linked by the relation r. Previous
approaches [Bordes et al., 2011, 2013, Lao et al., 2011, 2015, Mazumder and Liu, 2017, Nickel
et al., 2015] solve this problem under the c/osed-world assumption, i.e., s, r and ¢ are all known
to exist in the KB. This is a major weakness because it means that no new knowledge or facts
may contain unknown entities or relations. Due to this limitation, KBC is not sufficient for
knowledge learning in conversations because in a conversation, the user can say anything, which
may contain entities and/or relations that are not already in the existing KB.

Mazumder et al. [2018] removed the closed-world assumption of KBC, and allowed all s,
r,and to be unknown. The new problem is called open-world knowledge base completion (OKBC).
OKBC generalizes KBC and can naturally serves as a model for knowledge learning in conver-
sation. In essence, OKBC is an abstraction of the knowledge learning and inference problem in
conversation. The problem is solved in the open and interactive conversation process.

'The paper claimed that in a conversation, two key types of factual information, true facts
and queries, can be extracted from the user utterance. Queries are facts whose truth values need
to be determined. The work does not deal with subjective information such as beliefs and opin-
ions. The paper also does not study fact or relation extraction from natural language text (user
utterances) as there has been an extensive work on these topics in natural language processing
(NLP). It assumes that an extraction system is already in place.

Mazumder et al. [2018] dealt with the two types of information as follows. For a true
fact, it is incorporated into the KB. Here the system needs to make sure that it is not already in
the KB, which involves relation resolution and entity linking. The paper again assumes that an
existing system can be used to do this. After a fact is added to the KB, it may predict that some
related facts involving some existing relations in the KB may also be true. For example, if the user

8.1. LILI: LIFELONG INTERACTIVE LEARNING AND INFERENCE 133

says “Obama was born in USA,” the system may guess that (Obama, CitizenOf;, USA) (meaning
that Obama is a citizen of USA) could also be true based on the current KB. To verify this fact,
it needs to solve a KBC problem by treating (Obama, CitizenOf, USA) as a query. This is a KBC
problem because the fact (Obama, BornIn, USA) extracted from the original sentence has been
added to the KB. Then Obama and U.S. are in the KB. If the KBC problem is solved, it learns
a new fact (Obama, CitizenOf, USA) in addition to the extracted fact (Obama, Bornln, USA).
For a query fact, e.g., (Obama, Bornln, USA), extracted from a user question “Was Obama
born in USA?” the system needs to solve an OKBC problem if any of “Obama,” “Bornln,” or
“USA” is not already in the KB.

We can see that OKBC is the core problem of a knowledge learning engine for con-
versation. Thus, Mazumder et al. [2018] focused on solving the OKBC problem. It assumes
that other tasks such as fact/relation extraction and resolution and inferring related facts of an
extracted fact are solved by other sub-systems or existing algorithms.

'The paper solves the OKBC problem by mimicking how humans acquire knowledge and
perform reasoning in an interactive conversation. Whenever we humans encounter an unknown
concept or relation while answering a query, we perform inference using our existing knowledge.
If our knowledge does not allow us to draw a conclusion, we typically ask questions to others
to acquire the related knowledge and use it in the inference. The process typically involves an
inference strategy (a sequence of actions), which interleaves a sequence of processing and interac-
tive actions. A processing action can be the selection of related facts, deriving inference chain,
etc., that advances the inference process. An interactive action can be deciding what to ask, for-
mulating a suitable question to ask, etc., that enable us to interact. The process helps grow the
knowledge over time and the newly gained knowledge enables the system to communicate bet-
ter in the future. This process is called /ifelong interactive learning and inference (LiLi). Lifelong
learning is reflected by the fact that the newly acquired facts are retained in the KB and used in
inference for future queries, and that the accumulated knowledge in addition to the updated KB
including past inference performances are leveraged to guide future interactions and learning.

LiLi has the following capabilities:

1. formulating an inference strategy for a given query that embeds processing and interactive
actions;

2. learning interaction behaviors (deciding what to ask and when to ask the user);
3. leveraging the acquired knowledge in the current and future inference process; and
4. performing 1, 2, and 3 in a lifelong manner for continuous knowledge learning.

LiLi starts with the closed-world KBC approach pash-ranking (PR) [Gardner and
Mitchell, 2015, Lao et al., 2011] and extends KBC to open-world knowledge base completion
(OKBC). For a relation r, PR works by enumerating paths (except single-link path r) between
entity-pairs linked by r in the KB and use them as features to train a binary classifier to predict

134 8. CONTINUOUS KNOWLEDGE LEARNING IN CHATBOTS

whether a query (s, r,¢) should be in the KB. Here, a path between two entities is a sequence
of relations linking them. In Mazumder et al. [2018], the latest PR method, C-PR [Mazumder
and Liu, 2017], was adopted and extended to make it work in the open-world setting. C-PR
enumerates paths by performing bidirectional random walks over the KB graph while leverag-
ing the context of the source-target entity-pair. It also adopts and extends the compositional
vector space model in Neelakantan et al. [2015] and Das et al. [2016] with continuous learning

capability for prediction.

User: (Obama, CitizenOf, USA)? “Is Obama a citizen of USA?” [Query]

LiLi: I do not know what “CitizenOf’ mean? Can you provide me an example? [As for Clue]
User: (David Cameron, CitizenOf, UK). “David Cameron is a citizen of UK.” [SF1]

LiLi: Got it. Can you tell me how “Obama” and “Honolulu” are related? [CLQ]

User: (Obama, Bornln, Honolulu). “Obama was born in Honolulu.” [SF2]

LiLi: Gotit. Can you tell also me how “Honolulu” and “Hawaii” are related? [MLQ]

User: (Honolulu, CapitalOfState, Hawaii). “Honolulu is the state capital of Hawaii.” [SF3]
LiLi: (Obama, CitizenOf, USA) is correct. [Answer]

Figure 8.1: An example of interactive inference and learning. Note that LiLi only works with
triples. Each triple above is assumed to be extracted from the sentence after it.

Given an OKBC query (s, r, t) (e.g., “(Obama, CitizenOf, USA),” which means whether
Obama a citizen of USA), LiLi interacts with the user (if needed) by dynamically formulating
questions (see the interaction example in Figure 8.1?) and leverages the interactively acquired
knowledge (supporting facts (SFs) in the figure) for continued inference. To do so, LiLi for-
mulates a query-specific inference strategy and executes it. LiLi is designed in a Reinforcement
Learning (RL) setting that performs sub-tasks like formulating and executing a strategy, training
a prediction model for inference, and retaining the knowledge for future use. The effectiveness
of LiLi was empirically verified using two standard real-world KBs: Freebase® and WordNet.?

8.2 BASICIDEAS OF LILI

As explained above, OKBC naturally serves as a model for knowledge learning in conversation.
'The question now is how to solve the OKBC problem. The key idea in Mazumder et al. [2018] is
to map OKBC to KBC through interaction with the user by asking user questions. KBC already
has existing solutions, e.g., C-PR.

2Note that the user query and system response are represented as triples as this paper does not build a conversation system.
It only builds a core knowledge acquisition engine. Also, the query may be from a user or a system, e.g., a question-answer
system or a conversation system that has extracted a candidate fact and wants to verify it and add it to the KB. This paper
also does not study the case that the query fact is already in the KB, which is easy to verify. Moreover, as this work focuses
on knowledge learning and inference rather than conversation modeling it simply uses template-based question generation to
model LiLi’s interaction with the user.

3https://everest.hds.utc.fr/doku.php?id=en: smemlj12

https://everest.hds.utc.fr/doku.php?id=en:smemlj12

8.2. BASICIDEASOFLILI 135

Mapping open-world to close-world. Clearly, the closed-world model KBC cannot solve
the open-world OKBC problem. For example, the KBC method C-PR cannot extract path
teatures and learn a prediction model when any of s, r, or ¢ is unknown. LiLi solves this problem
through interactive knowledge acquisition. If r is unknown, LiLi asks the user to provide a clue
(an example of r). And if s or ¢ is unknown, LiLi asks the user to provide a link (relation) to
connect the unknown entity with an existing entity (automatically selected) in the KB. Such a
query is referred to as a connecting link query (CLQ). The acquired knowledge, which basically
makes s, r, and ¢t known in the KB, reduces OKBC to KBC and makes the C-PR inference task
feasible.

LiLi is designed as a combination of two interconnected models.

1. An RL model that learns to formulate a query-specific inference strategy for performing
the OKBC task. LiLi’s strategy formulation is modeled as a Markov Decision Process
(MDP) with finite state (S) and action (A) spaces. A state S € S consists of 10 binary
state variables (Table 8.1), each of which keeps track of the results of an action a € A
(Table 8.2) taken by LiLi and thus, records the progress made in the inference process so
far. We can see actions for user interactions in Table 8.2 that can turn the OKBC problem
into a KBC problem. The RL algorithm Q-learning [Watkins and Dayan, 1992] with
e-greedy strategy is used to learn the optimal policy for training the RL model.

2. A lifelong prediction model for predicting whether a triple should be in the KB, which
is invoked by an action while executing the inference strategy, is learned for each relation
as in C-PR. LiLi uses deep learning to build the model. Since a model trained on a few
examples (e.g., clues acquired for unknown r) with randomly initialized weights of the
neural network model often perform poorly due to underfitting, it transfers the knowledge
(weights) from the past most similar (with regard to r) task in an LL. manner. LiLi uses
a relation-entity matrix M to find the past most similar task for r (discussed below).
See Mazumder et al. [2018] for more details.

'The framework improves its performance over time through user interaction and knowledge
retention. Compared to the existing KB inference methods, LiLi overcomes the following two
challenges for OKBC.

1. Spareseness of KB. A main issue of all PR methods like C-PR is the connectivity of
the KB graph. If there is no path connecting s and ¢ in the graph, path enumeration of C-PR
gets stuck and inference becomes infeasible. In such cases, LiLi uses a template relation (“@-?-
@) as the missing link marker to connect entity-pairs and continues feature extraction. A path
containing “@-?-@” is called an incomplete path. Thus, the extracted feature set contains both
complete (no missing link) and incomplete paths. Next, LiLi selects an incomplete path from
the feature set and asks the user to provide a link for path completion. Such a query is referred

to as missing link query (MLQ).

136 8. CONTINUOUS KNOWLEDGE LEARNING IN CHATBOTS
2. Limitation in user knowledge. If the user is unable to respond to MLQs or CLQs,

LiLi uses a guessing mechanism to fill the gap. This enables LiL.i to continue its inference even if
the user cannot answer a system’s question.

Table 8.1: State bits and their meanings.

State Bits ‘ Name

‘ Description

QERS Query Entities and Whether the query source (s) and target () entities and
Relation Searched query relation (r) have been searched in KB or not
SEF Source Entity Found Whether the source entity (s) has been found in KB or not
TEF Target Entity Found Whether the target entity (¢) has been found in KB or not
QRF Query Relation Found | Whether the query relation (r) has been found in KB or not
CLUE Clue Bit Set Whether the query is a clue or not
ILO Interaction Limit Over | Whether the interaction limit is over for the query or not
PFE Path Feature Extracted | Whether path feature extraction has been done or not
NEFS Non-empty Feature Set | Whether the extracted feature set is non-empty or empty
CPF Complete Path Found | Whether the extracted path features are complete or not
INFI Inference Invoked Whether Inference instruction has been invoked or not

Table 8.2: Actions and their descriptions.

ID ‘ Description

ao

Search source (h), target (t) entities and query relation (r) in KB

ai

Ask user to provide an example/clue for query relation r

az

Ask user to provide missing link for path feature completion

as

Ask user to provide the connecting link for augmenting a new entity with KB

ay

Extract path features between source (s) and target () entities using C-PR

as

Store query data instance in data buffer and invoke prediction model for inference

8.3 COMPONENTS OF LILI

As LL needs to retain knowledge learned from past tasks and use it to help future learning, LiLLi

uses a Knowledge Store (KS) for knowledge retention. KS has four components:

1. Knowledge Graph (G): G (the KB) is initialized with base KB triples and gets expanded
and updated over time with the acquired knowledge.

8.4. ARUNNING EXAMPLE 137

2. Relation-Entity Matrix (M): M is a sparse matrix, with rows as relations and columns
as entity-pairs and is used by the prediction model. Given a triple (s, r, 1) € G, we set
M(r, (s, t)] = 1 indicating r occurs for pair (s, 7).

3. Task Experience Store (7): T stores the predictive performance of LiLi on past learned
tasks in terms of Matthews correlation coefficient (MCC)* that measures the quality of bi-
nary classification. So, for two tasks r and r’ (each relation indicates a task), if 7[r] >

T1r'] [where T[r]=MCC(r)], we say C-PR has learned r well compared to r’.

4. Incomplete Feature DB (I1pg): I1pp stores the frequency of an incomplete path 7 in
the form of a tuple (r, 7, el?’j) and is used in formulating MLQs. M pg[(r, 7, el 1=N
implies Lili has extracted incomplete path 7 N times involving entity-pair e[; [(ei, €))]

for query relation r.

'The RL model learns even after training whenever it encounters an unseen state (in test-
ing) and thus, gets updated over time. KS is updated continuously over time as a result of the
execution of LiLi and takes part in future learning. The prediction model uses LL, where we
transfer knowledge (parameter values) from the model for the past most similar task to help
learn the current task. Similar tasks are identified by factorizing M and computing a task sim-
ilarity matrix M;p,. Besides LL, LiLi uses T to identify poorly learned past tasks and acquire
more clues for them to improve its skillset over time.

LiLi also uses a stack, called Inference Stack (ZS) to hold query and its state information
for RL. LiLi always processes stack top (ZS[top]). The clues from the user get stored in ZS on
top of the query during strategy execution and processed first. Thus, the prediction model for r
is learned before performing inference on a query, transforming OKBC to a KBC problem.

8.4 ARUNNING EXAMPLE

'The working of LiLi is involved. For details, please refer to Mazumder et al. [2018]. Here we
provide a running example by working on the example shown in Figure 8.1. LiLi works on the
example as follows: First, LiLi executes ag and detects that the source entity “Obama” and query
relation “CitizenOf” are unknown. Thus, LiLi executes a; to acquire clue (SF1) for “CitizenOf”
and pushes the clue (+ve example) and two generated -ve examples into ZS. Once the clues are
processed and a prediction model is trained for “CitizenOf” by formulating separate strategies
for them, LiLi becomes aware of “CitizenOf.” Now, as the clues have already been popped from
ZS, the query becomes ZS[top] and the strategy formulation process for the query resumes.
Next, LiLi asks user to provide a connecting link for “Obama” by performing az. Now, the
query entities and relation being known, LiLi enumerates paths between “Obama” and “USA”
by performing a4. Let an extracted path be “Obama — BornIn — Honolulu — Q—-?—@Q —
Hawaii — StateOf — USA” with missing link between (Honolulu, Hawaii). Lili asks

“https://en.wikipedia.org/wiki/Matthews_correlation_coefficient

https://en.wikipedia.org/wiki/Matthews_correlation_coefficient

138 8. CONTINUOUS KNOWLEDGE LEARNING IN CHATBOTS

the user to fill the link by performing a, and then, extracts the complete feature “Bornln —
CapitalOfState — State Of.” The feature set is then fed to the prediction model and infer-
ence is made as a result of as. Thus, the formulated inference strategy is: “(ag, a1, as, as,az, as).”

8.5 SUMMARY AND EVALUATION DATASETS

In this chapter, we discussed an initial attempt to build an engine for continuous knowledge
learning in human-machine conversation. We first showed that the problem underlying the
engine can be formulated as an open-world knowledge base completion (OKBC) problem. We
then briefly described the lifelong interactive learning and inference (LiLi) approach to solving
the OKBC problem. OKBC is a generalization of KBC (knowledge base completion). LiLi
solves the OKBC problem by mapping OKBC to KBC through interacting with the user. The
process is formulated as a query-specific inference strategy and modeled as and learned through
RL. The resulting strategy is then executed to solve the problem which involves interacting with
the user in a lifelong manner.

'This work, however, is still preliminary, and has several weaknesses. First, it is not inte-
grated with a chatbot system, and it assumes that the tasks of relation extraction, resolution,
entity linking, etc., can be done by existing techniques. However, although there are many ex-
isting techniques for them, these tasks are still very challenging. Second, it is only designed for
learning factual knowledge that can be expressed as triples. Many other forms of knowledge are
not considered.

About evaluation datasets, three well-known KBs (1) FB15k,° (2) WordNet,® and
(3) ConceptNet® are used in Mazumder et al. [2018]. For candidate fact extraction and con-
versation generation, one can learn using (1) a traditional relation extraction dataset such as the
one used in TAC KBP Slot Filling challenge [Angeli et al., 2015], and (2) publicly available
benchmark conversation datasets such as the Ubuntu dialogue corpus [Lowe et al., 2015], Cor-
nell Movie—Dialogs Corpus’ Danescu-Niculescu-Mizil and Lee [2011] and Wikipedia Talk
Page Conversations Corpus® Danescu-Niculescu-Mizil et al. [2012], respectively.

Shttps://everest.hds.utc.fr/doku.php?id=en: smemlj12
®https://github.com/commonsense/conceptnet5/wiki/Downloads
"http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
8http ://www.cs.cornell.edu/~cristian/Echoes_of_power.html

 https://everest.hds.utc.fr/doku.php?id=en:smemlj12
https://github.com/commonsense/conceptnet5/wiki/Downloads
http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
http://www.cs.cornell.edu/~cristian/Echoes_of_power.html

139

CHAPTER 9

Lifelong Reinforcement
Learning

'This chapter discusses /ifelong reinforcement learning. Reinforcement learning (RL) is the prob-
lem where an agent learns actions through trial-and-error interactions with a dynamic envi-
ronment [Kaelbling et al., 1996, Sutton and Barto, 1998]. In each interaction step, the agent
receives input on the current state of the environment. It chooses an action from a set of possible
actions. The action changes the state of the environment. Then, the agent gets the value of this
state transition, which can be a reward or penalty. This process repeats as the agent learns a tra-
jectory of actions to optimize its objective, e.g., to maximize the long-run sum of rewards. The
goal of RL is to learn an optimal policy that maps states to actions (possibly stochastically). There
is a recent surge in research in RL due to its successful use in the computer program called A4/-
phaGo [Silver et al., 2016], which won 4-1 against one of the legendary professional Go players
Lee Sedol in March 2016." More recently, AlphaGo Zero [Silver et al., 2017]* was designed
to learn to master the game of Go from scratch without human knowledge, and it has achieved
superhuman performance.

Let us see an example of a RL setting [Tanaka and Yamamura, 1997]. This example in-
volves an agent trying to find gold in an N x N gridworld maze. The agent can choose one
action from a set of possible actions, moving left/right/up/down and picking up an item. The
maze, which is the environment, may have obstacles, monsters, and gold. When the agent picks
up the gold, it gets a positive reward (say +1,000). If the agent is killed by a monster, it gets a
negative reward (say —1,000). When the agent steps into an obstacle, it will retreat to the pre-
vious location. The agent keeps interacting with the environment through actions and reward
feedback to learn the best sequence of actions. The goal is to maximize the total reward (final
reward—cost of all actions taken).

RL is different from supervised learning in that there is no input/output pair in RL. In
supervised learning, the manual label indicates the best output label for an input. However, in
RL, after an action is taken, the agent is no told which action would have been in its best long-
term interests. So the agent needs to gain useful experience and learn an optimal sequence of
actions through interactions with the environment via feedback.

Ihttps://deepmind.com/alpha-go
’https://deepmind.com/blog/alphago-zero-learning-scratch/

https://deepmind.com/alpha-go
https://deepmind.com/blog/alphago-zero-learning-scratch/

140 9. LIFELONG REINFORCEMENT LEARNING

However, in order to achieve high-quality performance, the agent usually needs a large
amount of quality experience. This is particularly true in high-dimensional control problems.
The high cost of gaining such experience is a challenging issue. In order to overcome it, /ifelong
reinforcement learning (lifelong RL) has been proposed and studied by several researchers. The
motivation is to use the experience accumulated from other tasks to improve the agent’s decision
making in the current new task.

Lifelong RL was first proposed by Thrun and Mitchell [1995] who worked on a lifelong
robot learning problem. They showed that with knowledge memorization, the robot can learn
faster while relying less on real-world experimentations. Ring [1998] proposed a continual-
learning agent that aims to gradually solve complicated tasks by learning easy tasks first. Tanaka
and Yamamura [1997] treated each environment as a task, and constructed an artificial neural
network for each task/environment. They then used the weights of the nodes in the neural net-
works for existing tasks to initialize the neural network for the new task. Konidaris and Barto
[2006] proposed to use approximations of prior optimal value functions for initialization in a
new task. The intuition is that an agent can be trained on a sequence of relatively easy tasks to
gain experience and develop a more informative measure of reward, which can then be leveraged
when performing harder tasks. Wilson et al. [2007] proposed a hierarchical Bayesian lifelong
RL technique in the framework of Markov Decision Process (MDP). In particular, they added
a random variable to indicate MDP classes, and assumed that the MDP tasks being assigned to
the same class are similar to each other. A nonparametric infinite mixture model was proposed to
take into account the unknown number of MDP classes. Ferndndez and Veloso [2013] proposed
a policy reuse method in lifelong RL where policies learned from prior tasks are probabilistically
reused to help a new task. A nonlinear feedback policy that generalizes across multiple tasks is
also used as knowledge in Deisenroth et al. [2014]. Knowledge policy is defined as a function
of both state and task, which can account for unknown states in an existing task and states in a
new task. Brunskill and Li [2014] studied lifelong RL via PAC-inspired option discovery. They
showed that the learned options from previous experience can potentially accelerate learning in
the new task. Bou Ammar et al. [2014] proposed a Policy Gradient Efficient Lifelong Learn-
ing Algorithm (PG-ELLA) that extends ELLA [Ruvolo and Eaton, 2013b] for lifelong RL.
Along the same line, Bou Ammar et al. [2015a] proposed a cross-domain lifelong reinforcement
learner based on policy gradient methods. Later, Bou Ammar et al. [2015¢] added constraints
to PG-ELLA for safe lifelong learning. Tessler et al. [2017] proposed a lifelong learning sys-
tem that transfers reusable skills to solve tasks in Minecraft (a video game). The knowledge is
represented by deep networks. Tutunov et al. [2017] proposed a distributed Newton method for
lifelong policy search. Zhan et al. [2017] focused on scalability of lifelong RL and proposed an
algorithm to reach linear convergence rates in operations. El Bsat and Taylor [2017] proposed
a multitask policy search framework that also achieves linear convergence speed. This chapter
reviews the representative techniques proposed for lifelong RL.

9.1. LIFELONG REINFORCEMENT LEARNING THROUGH MULTIPLE ENVIRONMENTS 141

9.1 LIFELONG REINFORCEMENT LEARNING
THROUGH MULTIPLE ENVIRONMENTS

Tanaka and Yamamura [1997] proposed a lifelong RL technique that treats an environment
as a task. In their problem setting, there is a set of tasks, i.e., a set of environments. The tasks
are independent of one anther. For example, there is a set of mazes and each maze setting is an
environment. In each of the mazes, the places of start and gold are fixed while other environment
factors such as the places of obstacles and monsters, or the maze size, are different. Clearly, the
environments and the tasks are assumed to share some common properties.

A two-step algorithm was proposed for learning [Tanaka and Yamamura, 1997]: (a) ac-
quiring bias from previous N tasks and (b) incorporating bias into the new (N + 1)th task. The
bias here is the knowledge in the LL context to be exploited. The bias consists of two parts:
initial bias and learning bias. The initial bias is used to initialize the model starting stage. The
learning bias is used to influence the modeling or learning process. A neural network was used
as an example model in this work. To incorporate bias, the authors applied a stochastic gradient
method [Kimura, 1995] with a new update equation. The details are discussed in the subsection
below.

9.1.1 ACQUIRING AND INCORPORATING BIAS

For each task/environment, a neural network is constructed. To simplify the model, the authors
used a two-layer neural network. In each task ¢, each neural network node (i, j) has a weight
i ;- The intuition is that if the weight of a node does not change much throughout the learning
process of the tasks, it can be used as an invariant node. On the other hand, if the weight of a
node varies a lot, it is likely to be a task-dependent node.
Based on this idea, two types of biases are acquired from the previous N tasks and they
are then applied in the learning phrase of the new (N + 1)th task.

1. Initial bias: In RL, the initial random walk stage is usually very expensive. It is thus im-
portant to have a good initialization in order to improve the speed of convergence and the
final performance. Initial bias is used to provide a good initial stage in order to reduce this
cost. The initial weight of a node (i, j) for the (N + l)th task is the average weight of the

same node across all the previous N tasks, i.e., 3 Ly~ TH

2. Learning bias: Since the stochastic gradient method [Kimura, 1995] is used, the weight of
each node can have a different learning rate based on their variance in the previous tasks.
Following this intuition, those nodes that have varying weights in the previous tasks are
more likely to be task dependent, and thus require slightly larger learning rates than those
nodes with little weight changes. So for a node (i, j) in the (N + 1)th task, its weight
update is performed as follows:

wf:’jH «—w N+1 +apfi (1 —y)AwN+1, and 9.1)

142 9. LIFELONG REINFORCEMENT LEARNING

Bi,j =€|1+ max w¥H — min wNtH) . (9.2)
=L..N P =1, N b
Here « is the universal learning rate for all nodes. B; ; is the learning bias for each node
and it controls the learning rate. € is the bias parameter.

In a nutshell, the neural network for the (N + 1)th task is initialized with initial bias and then
updated via learning bias with gradient-updating equations of Equations (9.1) and (9.2).

9.2 HIERARCHICAL BAYESIAN LIFELONG
REINFORCEMENT LEARNING

Wilson et al. [2007] worked on RL in the framework of Markov Decision Process (MDP). The
way to solve an MDP problem is to find an optimal policy that minimizes the total expected
costs/penalties. Instead of working on only one MDP task in isolation, the authors considered
a sequence of MDP tasks, and proposed a model called MTRL (Multi-Task Reinforcement
Learning). Although the term multi-task is used in the name, MTRL is in fact an online multi-
task learning (MTL) method, which is considered as an LL method. The key idea of MTRL is
the use of the hierarchical Bayesian approach to model “classes” of MDPs. Each class (or cluster)
has some shared structure, which is regarded as the shared knowledge and is transferred to a new
MDP of the class. This strong prior makes the learning of the new MDP much more efficient.

9.2.1 MOTIVATION

'This work assumes that the MDP tasks are chosen randomly from a fixed but unknown dis-
tribution [Wilson et al., 2007]. As a result, the MDP tasks share some aspects that enable the
knowledge extraction and transfer. To understand why the shared aspects may help the agent
more quickly learn the optimal policy for a new MDP task, let’s follow the gold-finding example
at the beginning of the chapter.

Each MDP task is to find gold in a maze. The maze may contain obstacles, monsters, and
gold. Depending on the type of environment, certain types of rocks might be good indicators
of the presence of gold while some other types of rocks may be correlated with the absence of
gold. Also, some signals such as noise or smell may come from monsters nearby. If an agent
learns everything from scratch, it may take a long time to learn all these rules and adjust its
behaviors. However, with the observations from previous MDP tasks, the agent may learn some
useful knowledge, e.g., some monsters carry a strong smell. Using such knowledge, the agent
can quickly adjust itself to avoid this type of monster when it detects the smell. The idea is that
given the knowledge from the previous MDP tasks and a small amount of experience in the new
MDP task, the agent can exploit the knowledge to explore the new MDP environment much
more efficiently.

9.2. HIERARCHICAL BAYESIAN LIFELONG REINFORCEMENT LEARNING 143
9.2.2 HIERARCHICAL BAYESIAN APPROACH

Bayesian modeling was applied to tackle the problem in the paper. In the single-task scenario,
a Bayesian model-based RL computes the posterior distribution P(M|®, O) where M denotes
a random variable over MDPs. O is the observation set and © is the set of model parameters.
'This distribution is used to help the agent choose actions. It will evolve with more actions and
observations. One naive way to extend this single-task approach to LL is to assume that all
the MDP tasks are the same and treat the observations as coming from a single MDP task.
Obviously, if the MDP tasks are not the same, this naive method does not perform well.

To consider the differences between MDP tasks, Wilson et al. [2007] proposed a hier-
archical Bayesian model that adds a random variable C to indicate MDP classes (or groups of
similar MDPs). The assumption is that the MDP tasks within the same class assignment are
similar to each other while the MDP tasks with different class assignments are very different
from each other. Here, M denotes an MDP task and M denotes a random variable over MDPs.
The sequence of MDP tasks are represented by My, Mo, Instead of having the posterior
distribution as P(M|®, O) in the single-task case, the posterior distribution for i th task in the
hierarchical case is modeled as P(M |¥, O;) where ¥ = {©,C}. ® denotes the parameters un-
der each class and C means all class assignments. O; is the observation set for task M;. Using
this posterior distribution, an approximate MDP M; is learned by leveraging previous tasks to
approximate M;. This addition of the class layer makes the model hierarchical. The intuition is
that the knowledge in a class can be transferred to an MDP task within the same class, but not
to an MDP task outside the class.

To take into account the unknown number of MDP tasks in lifelong RL, a nonparametric
infinite mixture model was used in the class layer. In the nonparametric infinite mixture model,
it is assumed that there is an infinite number of classes (or mixture components), which account
for the case of seeing a new MDP task that is dissimilar to all previous ones. Specifically, the
Dirichlet process is applied. Dirichlet process is a stochastic process involving a base distribution
Gy and a positive scaling parameter . The parameter o governs the probability with which the
Dirichlet Process assumes a new class should be assigned. This new class is also called an auxiliary
class. Using the above process, a Gibbs sampling process can be designed to repeatedly sample
class assignments until convergence.

9.2.3 MTRLALGORITHM

We now present the MTRL algorithm (see Algorithm 9.1). At the beginning, without having
any MDP task, the hierarchical model parameters W are initialized to uninformed values (line
1). When each new MDP task M; arrives (line 2), the algorithm goes through two steps: (1) it
applies the knowledge W learned from the previous MDP tasks to learn an approximate MDP
M; for M; (lines 4-10) and (2) it updates the old knowledge to generate the new knowledge
from My, ..., M; (line 12) after considering the new task.

144 9. LIFELONG REINFORCEMENT LEARNING

Algorithm 9.1 Hierarchical Bayesian MTRL Algorithm

Input: A sequence of MDP tasks M, Mo, ...
Output: Hierarchical model parameters W

1: Initialize the hierarchical model parameters W

2: for each MDP task M; fromi =1,2,... do

3. // Step 1: apply the past knowledge for fast learning of the new MDP task M;

4 O; = 0;// O; is the observation set for the environment in M;

5. while policy 7; has not converged do

6: M; < SampleAnMDP(P(M |V, O;)) // P(M ¥, O;) is the posterior distribution
7: i = Solve(M;) // e.g., by value iteration

8 Run 7; in M; for k steps

9: O; = O;U {observations from k steps}
10: end while

11: // Step 2: learn the new parameters (knowledge) from M;, ..., M;
122 W<« UpdateModelParameters(\I’|M Lo M)
13: end for

For step 1, the function Sample AnMDP samples a set of MDPs based on the posterior
distribution P(M |¥, O;), where M denotes a random variable over all MDPs, and returns an
MDP with the highest probability (say M;). This is how the past knowledge is used. We will
explain this function in Section 9.2.5. An optimal policy 7; is then learned for M; (line 7) using
a method like value iteration [Sutton and Barto, 1998]. After ; is obtained, it is applied for k
steps in the M; environment (line 8). This part is similar to Thompson sampling [Strens, 2000,
Thompson, 1933, Wang et al., 2005] except that a set of MDPs is sampled first and the one
with the highest probability is selected. The observations gathered from the k steps are added
into the observation set O;, which changes the posterior distribution P(M |¥, O;). The system
then goes to the next iteration to sample a new M;. This process is repeated until the policy 7;
converges.

For step 2, line 12 learns a new set of hierarchical model parameters W from M Lowees Mi ,
which contains the class assignment for each MDP task and the model parameters associated
with each class. Note that the function UpdateModelParameters (see Section 9.2.4) can auto-
matically decide the number of classes, as well as the inherent class structure in the hierarchical
model.

9.2.4 UPDATING HIERARCHICAL MODEL PARAMETERS

We first describe how to update the hierarchical model parameters W (line 12 in Algorithm 9.1).
Details about sampling of an MDP (line 6) will be discussed in the next subsection. Gibbs

9.2. HIERARCHICAL BAYESIAN LIFELONG REINFORCEMENT LEARNING 145

sampling is used to find the proper set of model parameters (see Algorithm 9.2). The techniques
in Algorithm 9.2 can handle the situation where the base distribution Gy is not conjugate to the
component distribution. In Gibbs sampling, the Markov chain state includes ® and C, where
® = {01....,0k} (K is the number of existing classes) is the set of class parameters and C =
{Ci....,Ci}isthe set of class assignments. The use of auxiliary classes allows for the assignments
of novel or new classes. m is the number of such auxiliary classes and is empirically set to a small
value.

Algorithm 9.2 Update Hierarchical Model Parameters

Input: Model estimates {My, ..., M;} for MDP tasks {M;,..., M;}, MDP distribution F
given a class, Dirichlet Process DP(Gy,)
Output: Updated hierarchical model parameters W

1: Let i be the total number of MDPs seen so far.
2: Let m be the number of auxiliary classes
3: Initialize the Markov chain state (®g, Cgo)
4: k<0
5: while Gibbs sampling is not converged do
6: K = |0]
7. forc=K+1to K+ mdo
8: Draw 6, from Gy
9 O = O U {6}
10: end for
11: ‘if = {@)k,Ck}
122 forj =1toi do
13: cj = SamplingCIassAssignment(\il, Mj, F,K.,m,Ggy,a)
14: end for
15: Remove all classes with zero MDPs
16: Ogy1 = Sample(P(Oklcy, ..., ci))
17: Cr ={c1,...,¢i}
18 k< k+1
19: end while
20: return U = {O, Ci}

In Algorithm 9.2, the Markov chain state is initialized with the current parameters (line
3). Lines 7-10 draw the parameters for each auxiliary class. Lines 12-14 call Algorithm 9.3 to
sample a class assignment for each M; . Given the class assignments, a new set of class parameters
are sampled (line 16). The sampling depends on the specific form of MDP distribution, and
was not specified in the paper. After the burn-in period, Gibbs sampler keeps running until

146 9. LIFELONG REINFORCEMENT LEARNING

it converges. The final Markov state is returned to update the hierarchical model parameters

(line 20).

9.2.5 SAMPLING AN MDP
Finally, we describe the function Sample AnMDP (line 6 in Algorithm 9.1), which samples

an MDP. For accurate sampling, the agent or system needs to have an accurate hierarchical
model. Then it should update its model parameters ¥ (knowledge) whenever a new observation
is available. However, this is computationally expensive for LL, considering that the number
of observations and the number of MDP tasks can both be large. Instead, Wilson et al. [2007]
proposed to keep the parameters W fixed when learning a new MDP. That’s why line 12 in Al-
gorithm 9.1 is outside of the while loop (lines 5-10). Note that ¥ includes the class assignments
C and class parameters ®, which together is called an informed prior, and they remain fixed
during the exploration of a new MDP.

The process of generating an MDP is such that a class ¢ is sampled first and the MDP M;
is sampled afterward based on the class. The class is sampled with the help of Algorithm 9.3.
Here is how the past knowledge is used to help future learning. That is, if ¢ belongs to a known
class ¢ € {1,..., K}, then the information in 6, is used as the prior knowledge for exploration
(see below). Otherwise, the agent uses a new class and samples the class parameters 6, from the
prior Go (no past knowledge is used).

SampleAnMDP works as follow: at the beginning, M; is initialized by sampling from
the informed prior, and C; is initialized similarly. In subsequent iterations, after each set of
observations (line 8 in Algorithm 9.1), the agent samples a sequence of class assignments C; by
running Algorithm 9.3 multiple times and picks the most probable one as the class assignment
for M;. Recall that « controls how likely the returned class ¢ is an auxiliary class (unseen class),
ie, K +1<c¢ <K + m(line 4 of Algorithm 9.3). Once the class ¢ is sampled, the agent then
samples an MDP from class ¢ using the posterior distribution P(M;|6,, O;). The algorithm is
generic and applicable to different forms of MDP distribution F which lead to distinct specific
sampling procedures. See the original paper, Wilson et al. [2007], for additional details.

9.3 PG-ELLA: LIFELONG POLICY GRADIENT
REINFORCEMENT LEARNING

Instead of augmenting the stochastic gradient method with LL capability in Section 9.1, Bou
Ammar et al. [2014] employed a policy gradient method [Sutton et al., 2000]. Specifically,
Bou Ammar et al. [2014] extended a single-task policy gradient algorithm to an LL algorithm
called Policy Gradient Efficient Lifelong Learning Algorithm (PG-ELLA). The lifelong idea in
PG-ELLA is similar to that in ELLA [Ruvolo and Eaton, 2013b] (Section 3.4). In this section,
we first introduce policy gradient RL and then present the PG-ELLA algorithm. Throughout

this section, we adopt the notations in Bou Ammar et al. [2014].

9.3. PG-ELLA: LIFELONG POLICY GRADIENT REINFORCEMENT LEARNING 147

Algorithm 9.3 Sampling Class Assignment

Input: Hierarchical model parameters W, MDP parameter estimate M i, MDP distribution F
given a class, the number of existing classes K, the number of auxiliary classes m, Dirichlet
Process DP(Gy, o)

Output: Class assignment C; for M i

1: Let i be the total number of MDPs seen so far

2: Letn_j . be the number of MDPs assigned to class ¢ without considering class assignment
of M]'

3: Let F. ; denotes F(6., M;), the probability of M; in class ¢ (the exact form may differ in
different problems)

4: Sample and return C; according to:

n_j;.c
P(Cj:C)O(ch’j7 ISCSK

MM Fej. K+1<c<K+m

9.3.1 POLICY GRADIENT REINFORCEMENT LEARNING

In RL, an agent sequentially chooses actions to perform to maximize its expected reward or re-
turn. As mentioned earlier, such problems are typically formalized as a Markov Decision Process
(MDP) (X, A, P,R,A). X C R4 is the set of states that is potentially infinite with d being the
dimension of the environment. A C R% is the set of all possible actions and d, is the number of
possible actions. P : X x A x X — [0, 1] is the state transition probability function, i.e., given a
state and an action, it gives the probability of the next state. R : X x A — R is the reward func-
tion that provides the agent feedback. A € [0, 1) is the degree to which rewards are discounted
over time.

At each time step &, being in the state x;, € X, the agent must choose an action a; € A.
After the action is taken, the agent transits to a new state xj4+1 ~ p(Xp+1|xs, an) as given by P.
At the same time, a reward r,11 = R(xp, ap) is sent to the agent as feedback. A po/icy is defined
as a probability distribution over pairs of state and action, 7 : X x A — [0, 1]. w(a|x) indicates
the probability of choosing action a given state x. The goal of RL is to find an optimal policy
n* that maximizes the expected return for the agent. The actual sequence of state-action pairs
forms a trajectory T = [Xo.n . ao:] over a possibly infinite horizon H.

Policy gradient methods have been widely applied in solving high-dimensional RL prob-
lems [Bou Ammar et al., 2014, Peters and Schaal, 2006, Peters and Bagnell, 2011, Sutton et al.,
2000]. In a policy gradient method, the policy is represented by a parametric probability distri-
bution mg (a|x) = p(a|x; @) that stochastically chooses action a given state x based on a vector
6 of control parameters. The objective is to find the optimal parameters * that maximize the

148 9. LIFELONG REINFORCEMENT LEARNING

expected average return:
70) = /T pe(R(D)dr 9.3)

where T denotes the set of all possible trajectories. The distribution over the trajectory t is

defined as:
H-1

Po(t) = Po(xo) [pnsalxn an)mo(anlxn) - (9.4)
h=0

Here Py(xo) represents the probability of the initial state. The average return 2R(t) is defined as:

| H-1
R(r) = H Z Th+1 - 9.5)
h=0

Most policy gradient algorithms learn the parameters # by maximizing a lower bound on
the expected return of 7(0) (Equation (9.3)). It compares the result of the current policy g
and that of a new policy 75. As in Kober and Peters [2011], this lower bound can be obtained
using Jensen’s inequality and the concavity of the logarithm:

logj(é) = log/T rg(DR()dt

_ po(t)
= log/T 20 (D) g (DR()dt
Pg ()

> /T Po (R(0) log 25

_ f 6 (D)9() log L2
T)Z162)

o Dz (po (DR@)|| (1)) = Tr.00) |
where Dg;, denotes the KL-Divergence. From the above, one can minimize the KLL.-Divergence

between the trajectory distribution pg of the current policy g times its reward function R and
the trajectory distribution pg of the new policy 7.

9.6)

dt (using Jensen’s inequality)

dt

9.3.2 POLICY GRADIENT LIFELONG LEARNING SETTING

The problem setting of policy gradient LL is similar to the problem setting of ELLA (Efficient
Lifelong Learning Algorithm) (Section 3.4.1). That is, the reinforcement learning tasks arrive
sequentially in a lifelong manner. Each task 7 is an MDP (X t At P RY,)Lt) with the initial
state distribution P{. Different from the supervised learning, each reinforcement learning task
does not contain labeled training data. In each task, the agent learns multiple trajectories before
moving to the next task. Let N be the number of tasks encountered so far. N may be unknown to
the agent. The goal is to learn a set of optimal policies {m,, 75, ..., n; ~ + with corresponding

/] /]
parameters (01*,0%* ... 9N*).

9.3. PG-ELLA: LIFELONG POLICY GRADIENT REINFORCEMENT LEARNING 149
9.3.3 OBJECTIVE FUNCTION AND OPTIMIZATION

Similar to ELLA, PG-ELLA also assumes that each task model’s parameters 6’ can be repre-
sented by a linear combination of a set of shared latent components L (shared knowledge) and

a task-specific coefficient vector s, i.e., 8 = Ls’ [Bou Ammar et al., 2014]. In other words,

PG-ELLA maintains k sparsely shared basis model components for all task models. The k basis

Rdxk

model components are represented by L C , where d is the model parameter dimension.

The task-specific vector s’ should be sparse in order to accommodate the differences among

tasks. The objective function of PG-ELLA is as follows:

N
1 .
Do min (=7 (67) + st} + A LG 9.7
=1 °
where || - ||; is the L norm, which is controlled by u as a convex approximation to the true

vector sparsity. | L||% is the Frobenius norm of matrix L, and A is the regularization coefficient
for matrix L. This objective function is closely related to Equation (3.4) in ELLA. This objective
function is not jointly convex in L and s’. Thus, the alternating optimization strategy was adopted
to find a local minimum, i.e., optimizing L while fixing s’ and optimizing s’ while fixing L.
Combining Equations (9.6) and (9.7), we obtain the objective function below:

N

1 -

& Domin{=Je (0) + puls' o} + 2 L0 (9.9)
t=1

Note the following for J¢ ¢ (5 h):

t
Jr.e (0~t) [0 —/ Pt (T)R (1) log LZAQRSCO) dt (9.9)
teT! Pyt (v)
So the objective function can be rewritten as:
I Pyt (MR (1)
—) min f por (OR (D) log | —"—2de | +plls'[iy +AILIF . (9.10)
N - ¥ TeT! Pg’(f)

Again similar to ELLA, there are two major inefficiencies when solving the objective
function: (a) the explicit dependence of a// available trajectories of all tasks, and (b) the evaluation
of a single candidate L depends on the optimization of s’ for each task . To address the first issue,
the second-order Taylor approximation is used to approximate the objective function. Following
the steps in Section 3.4.3, one can yield the approximate objective function below:

N

1 (A

~ > min {16 = L' |, + puls'lla} + AILIG 9.11)
=1 °

150 9. LIFELONG REINFORCEMENT LEARNING

L, , Po (DN (1)
H = 2V§t,§t [ce’]I‘f pot(‘[)% (‘L’)lOg(pét(f))d‘[} §t=ét and
N , , Pt (R (¥)
gt — (R (1) log [2222) g
gm{/ Por (D °g< Py ®) }

'The second issue arises when computing the objective function for a single L. For each
single candidate L, an optimization problem must be solved to recompute each of the s’’s. When
the number of tasks become large, this procedure becomes very expensive. The approach to rem-
edying this issue follows that in Section 3.4.4. When task 7 is encountered, only s’ is updated
while s for all other tasks ¢/ remain the same. Consequently, any changes to 8° will be trans-
ferred to other tasks only through the shared base L. Ruvolo and Eaton [2013b] showed that
this strategy does not significantly affect the quality of model fit when there are a large num-
ber of tasks. Using the previously computed values of s, the following optimizing process is
performed:

s' < argmin [|0" — Lys' | % + wlls' 1 , with fixed Ly,, and

st

N
1 A)
L < argmin — 3 (18" = L' I3, + ulls' 1) + ALl with fixed '
L
=1
where Ly, refers to the value of the latent components at the mth iteration and ¢ is assumed to be

the particular task that the agent is working on. Additional details can be found in Bou Ammar
et al. [2014].

9.3.4 SAFE POLICY SEARCH FOR LIFELONG LEARNING

PG-ELLA employs unconstrained optimization in learning. However, such unconstrained op-
timization could be fragile since the agent may learn to perform dangerous actions and cause
physical damage to the agent or environment. Based on PG-ELLA, Bou Ammar et al. [2015¢]
proposed a safe lifelong learner for policy gradient reinforcement learning using an adversar-
ial framework. It considered the safety constraints on each task when optimizing the overall
performance. The objective function in Bou Ammar et al. [2015¢] is:

min [> " (Ls)] + plls' | + AITI (9.12)

sit. A'Ls" <b' Vre{l,2,...,N}
)'min(LLT) = V4 and A'max(LLT) = q

where constraints A’ € R9*¢ where d is the model parameter dimension, and b’ € R repre-
sent the allowed policy combinations. A, and A 4y are the minimum and maximum eigenval-
ues. p and ¢ are bounding constraints on Frobenius norm to ensure the shared knowledge is

9.3. PG-ELLA: LIFELONG POLICY GRADIENT REINFORCEMENT LEARNING 151

effective and safe to use. 1" is the design weight for each task. The above objective function aims
to make sure that the knowledge is safely transferred across tasks and avoid causing the agent to
learn and perform irrational actions. For the method used in solving the optimization problem,
please refer to Bou Ammar et al. [2015¢].

9.3.5 CROSS-DOMAIN LIFELONG REINFORCEMENT LEARNING

'The works in Bou Ammar et al. [2014, 2015¢] above assume that the tasks come from a single
task domain, i.e., they share a common state and action space. When the tasks have different
state and/or action spaces, an infer-task mapping [Taylor et al., 2007] is usually needed to serve as
a bridge between tasks. Taylor et al. [2007] studied transfer learning for reinforcement learning
in this setting, i.e., transferring from one source domain to one target domain where the two
domains have different state and action spaces. Given that an inter-task mapping is provided
to an agent as input, Taylor et al. [2007] showed that the agent can learn one task and then
significantly reduce the time it takes to learn another task.

Also in the transfer learning setting, Bou Ammar et al. [2015b] proposed an algorithm to
automatically discover the inter-task mapping between two tasks. They focused on construct-
ing an inter-state mapping and demonstrated the effectiveness of applying it from one task to
another. The proposed method contains two steps. (1) It learns an inter-state mapping using
the Unsupervised Manifold Alignment (UMA) method in Wang and Mahadevan [2009]. In
particular, two sets of trajectories of states are collected from the source task and target task,
respectively. Then, each set is transformed to a state feature vector on which UMA is applied.
(2) Given the learned inter-state mapping, a set of initial states in the target task is mapped into
the states in the source task. Then, based on the mapped source task states, the optimal source
task policy is used to produce a set of optimal state trajectories. Such optimal state trajectories
are then mapped back to the target task to generate target task-specific trajectories. However,
the work in Wang and Mahadevan [2009] does not generalize well to the LL scenario as it only
learns the mapping between a pair of tasks. It is computationally expensive to learn the mapping
between each pair of tasks from a large pool of tasks for LL. Isele et al. [2016] also proposed a
zero-shot LL method that models the inter-task relationship via task descriptors.

Bou Ammar et al. [2015a] proposed a more efficient method to maintain and transfer
knowledge in a sequence of tasks in the lifelong setting. It is closely related to PG-ELLA [Bou
Ammar et al., 2014]. The difference is that Bou Ammar et al. [2015a] allows the tasks to come
from different domains, i.e., from different state and/or action spaces. Bou Ammar et al. [2015a]
assumed that all tasks can be grouped into different task groups where tasks within a task group
are assumed to share a common state and action space. Formally, instead of formulating the task
parameters as 7 = Ls’ as in PG-ELLA (Section 9.3.3), Bou Ammar et al. [2015a] formulated
them as 8 = B®)s’ where g is the task group of B, which is the latent model components
shared within g. Similar to PG-ELLA, s’ is assumed to be sparse to accommodate distinct tasks.
Furthermore, B(®) is assumed to be W)L where L is the global latent model components (same

152 9. LIFELONG REINFORCEMENT LEARNING

as that in PG-ELLA), and ¥(®) maps the shared latent components L into the basis for each
group g of tasks. Basically, Bou Ammar et al. [2015a] added another layer, i.e., task group, to
model the tasks from different domains. Theoretical guarantees were provided on the stability
of the approach as the number of tasks and groups increases. Please refer to the original paper
in Bou Ammar et al. [2015a] for additional details.

9.4 SUMMARY AND EVALUATION DATASETS

This chapter introduced the existing LL work in the context of RL. Again, the current work is
not extensive. This is perhaps partly due to the fact that RL was not as popular as traditional
supervised learning in the past because of fewer real-life applications. However, RL has come
to the mainstream due to the AlphaGo’s success in beating the best human player in the board
game of Go [Silver et al., 2016, 2017]. Although games have been the traditional application
area of RL, it has significantly more applications than just games. With the increased popularity
of physical as well as software robots (such as chatbots and intelligent personal assistants) that
need to interact with human beings and other robots in real-life environments, RL will become
more and more important. Lifelong RL will be important too because it is very hard to collect a
large number of training examples in such real-life interactive environments with each individual
human person or robot. The system has to learn and accumulate knowledge from all possible
environments that it has experiences in to adapt itself to a new environment quickly and to
perform its task well.

Evaluation Datasets

Finally, to help researchers in the field, we summarize the evaluation datasets used in the papers
discussed in this chapter. Tanaka and Yamamura [1997] used 9 x 9 mazes data in their evalu-
ation. Wilson et al. [2007] tested their hypotheses using a synthetic colored maze data where
the task is to go from one location to another following the least cost path. PG-ELLA [Bou
Ammar et al., 2014] was evaluated on three benchmark dynamic systems: Simple Mass Spring
Damper [Bou Ammar et al., 2014], Cart-Pole [Bocsi et al., 2013], and Three-Link Inverted
Pendulum [Bou Ammar et al., 2014]. Simple Mass Spring Damper and Cart-Pole were also
used in Bou Ammar et al. [2015¢]. Other than the three dynamic systems, Quadrotor [Bouab-
dallah, 2007] was also used for evaluation in Bou Ammar et al. [2015b]. Bou Ammar et al.
[2015a] additionally considered Bicycle and Helicopter systems. Tessler et al. [2017] used the
environment State space.

153

CHAPTER 10

Conclusion and Future
Directions

'This book surveyed many existing ideas and techniques of lifelong (machine) learning (LL). It
also briefly covered closely related learning paradigms such as transfer learning and multi-task
learning (MTL), and discussed their differences from LL. There have been some confusions
among researchers and practitioners about the differences between these learning paradigms,
which is not surprising as they are indeed similar and related. Hopefully, our new definition
of LL in Section 1.4 and subsequent discussions in Chapter 2 help clarify the differences and
resolve the confusions.

Although LL was originally proposed in 1995, as mentioned in chapter 1, the research in
the field has not been extensive due to many factors, e.g., its own difficulty, lack of big data in
the past, and the emphasis of statistical and algorithmic learning in the machine learning (ML)
community in the past two decades. However, with the resurgence of Al and the progress and
maturity of statistical ML algorithms, LL is becoming increasingly important because the ulti-
mate goal of ML is to learn continuously, interactively, and autonomously in diverse domains
and in open environments to enable intelligent agents to become more and more knowledge-
able and better and better at learning. Applications such as intelligent assistants, chatbots, self-
driving cars, and other software and hardware robots all call for LL. A system is not intelligent
in the general sense without the ability to learn many different types of knowledge, accumu-
late the knowledge over time, and use the knowledge to learn more and to learn better. Even
if a system is extremely good at performing one difficult task, e.g., playing Go like AlphaGo
or playing chess like Deep Blue, it is not an intelligent system in the general sense. Because
of the physical limitations of human brains, our thinking, reasoning, and problem solving are
probably not or cannot be optimized for complex tasks. A machine does not have these limita-
tions and is bound to outperform human beings on well-defined and narrow tasks in restricted
environments. However, this does not necessarily make the machine intelligent, at least not in
the sense of the general human intelligence. Traditionally, we often equate intelligence to some
special mental capabilities or talents because we compare humans with humans. However, in-
telligence is more about humans’ baseline perceptual and cognitive capabilities, which enable
them to continuously learn new knowledge about almost anything and to apply the knowledge
seamlessly to solve all kinds of problems. This forms a type of virtuous circle.

154 10. CONCLUSION AND FUTURE DIRECTIONS

We believe that now it is time to put a significant amount of effort in the research of LL
for many reasons. First, there is a huge amount of data available now which enables a system to
learn a large quantity of diverse knowledge. Without a large volume of existing knowledge, it
is very difficult to learn more knowledge by leveraging the past knowledge. This is analogous to
human learning. The more we know, the more and better we are able to learn. Second, statistical
ML is becoming mature. Further improvements are becoming more and more difficult, while
using the past learned knowledge to help learning is a natural way going forward, which aims
to imitate the human learning process. Existing research has shown that LL is highly effective.
Third, with the increased use of intelligent personal assistants, chatbots, and physical robots
that interact with humans and other systems in real-life and open environments, continuous
LL capabilities are becoming increasingly necessary. We expect a large amount of research will
appear in the near future, which may result in major breakthroughs.

Below, we would like to highlight some challenging problems and future directions to
encourage more research in LL. Their solutions can have fundamental impact on LL specifically

and on ML and Al in general.

1. Correctness of knowledge: How to know whether a piece of past knowledge is correct is
crucial for LL. Because LL leverages the past knowledge to help future learning, incor-
rect past knowledge can be very harmful. In a nutshell, LL is a continuous bootstrapping
learning process. Errors can propagate from previous tasks to subsequent tasks and result
in more and more errors. This problem must be solved or mitigated to a great extent to
ensure that LL is effective. Human beings solve this problem quite effectively. Even if
mistakes are made initially, they can correct them later if new evidences appear. They can
also backtrack and fix the errors along with the wrong inferences made based on the er-
rors. An LL system should be able to do the same. Some existing LL systems have already
tried to address this problem. For example, Chen and Liu [2014a] used frequent pattern
mining to find those must-links (past knowledge) that appear in multiple domains and as-
sumed those frequent must-links are more likely to be correct. They also explicitly checked
the validity of the past knowledge in the modeling process. The NELL system [Mitchell
etal., 2015] deals with the problem by ensuring that the same item is extracted from mul-
tiple sources, using multiple strategies or meeting some type constraints. However, the
existing methods are still quite rudimentary. Their recalls are low and can still get wrong
knowledge.

2. Applicability of knowledge: How to know whether a piece of knowledge is applicable to a
new learning task is also critical for LL. Although a piece of knowledge may be correct and
applicable in the context of some previous tasks, it may not be applicable to the current task
due to the wrong context. Without solving this problem, LL will not be effective either.
Again, the systems in Chen and Liu [2014a,b], Chen et al. [2015], and Shu et al. [2016]
have proposed some preliminary mechanisms to deal with the problem in the contexts of
topic modeling, supervised classification, and belief propagation. However, the problem is

10. CONCLUSION AND FUTURE DIRECTIONS 155

far from being solved as these solutions are still specific to specific problems. No general
methods have yet been proposed. Much further research is needed. Clearly, this and the
above problem are closely related.

. Knowledge representation and reasoning: In the early days of Al a significant amount
of research was done on logic-based knowledge representation and reasoning. But in the
past 20 years, Al research has shifted focus to statistical ML based on optimization. Since
LL has a knowledge base (KB), knowledge representation and reasoning are naturally rel-
evant and important. Reasoning allows the system to infer new knowledge from existing
knowledge, which can be used in the new task learning. Important questions to be an-
swered include what forms of knowledge are important, how to represent them, and what
kinds of reasoning capabilities are useful to LL. So far, little research has been done to
address these questions in the context of LL. Knowledge in existing LL systems is mainly
represented based on the direct needs of the specific learning algorithms or applications.
They still do not have the reasoning ability, except NELL [Mitchell et al., 2015], which

has some limited reasoning capability.

. Learning with tasks of multiple types and/or from different domains: Much of the cur-
rent research of LL focuses on multiple tasks of the same type. In this case, it is easier to
make use of the past knowledge. If different types of tasks are involved (e.g., entity recog-
nition and attribute extraction), in order to transfer past knowledge from one type of task
to another type, we need to make connections between these types of tasks. Otherwise,
knowledge is hard to use across tasks. Again, the NELL system [Mitchell et al., 2015]
made some attempts to do this. Ideally, this can be done automatically, but it is hard be-
cause the connection needs to be made via some higher-level knowledge, which has to be
learned separately.

When the tasks are from different domains, LL is also more challenging as it is likely to
need higher-level knowledge too to bridge the gap and to find the relatedness or similarity
among the tasks [Bou Ammar et al., 2015a] in order to ensure knowledge applicability.
In some cases, one may even need to learn from a large number of domains because each
domain only contributes a tiny amount of knowledge (some domains may contribute none)
that is useful to the new task [Chen and Liu, 2014a,b, Wang et al., 2016]. When multiple
types of tasks from very different domains are all involved, the challenge will be even
greater.

. Self-motivated learning: Current ML techniques typically require human users to give
learning tasks and to provide a large volume of training data (except in a few cases where
the agent can learn by interacting with a simulator). If a robot is to interact with its real-
world environment and learn continuously, it needs to identify and formulate its own
learning tasks and collect its own training data in its exploration of the world. For ex-
ample, if a robot sees a person that it has never seen before, it should take a video or

156 10. CONCLUSION AND FUTURE DIRECTIONS

many pictures of the person to collect positive training data. Actually, in this case, rec-
ognizing a stranger itself is already a challenge. It needs open-world learning (Chapter
5) [Feietal., 2016], which most current supervised learning algorithms cannot do because
they make the closed-world assumption that only those classes that appeared in training
can appear in testing. In practice, this assumption is often violated. Another example is
human-machine conversation. Future chatbots must be able to learn during conversation,
extracting knowledge from user utterances and asking the human user when it does not
understand something or encounters some new concepts (Chapter 8). We human beings
do these all the time, which make us learn more and more in a self-motivated manner
and become more and more knowledgeable. In more general terms, self-motivated learn-
ing means that the robot or the intelligent agent has a sense of curiosity and is interested
in exploring the unknown and learning new things by itself in the exploration process.
Clearly, this is closely related to unsupervised learning and reinforcement learning. These
forms of learning and, for that matter, integrated learning of all learning forms should be
made self-motivated. Note that self~-motivated learning described here is different from
self-taught learning or unsupervised feature learning reported in Raina et al. [2007]. In
self-taught learning, a large amount of unlabeled data is used to learn a good feature rep-
resentation of the input. The learned feature representation and a small amount of labeled
data are then employed to build a classifier by applying a supervised learning method.

6. Self-supervised learning: In the traditional ML paradigm, a large volume of manually
labeled training data is needed for accurate learning. However, it is impossible for humans
to label everything in the world, which is way too complex, too many, and ever-changing.
So for effective LL, in most situations the agent has to learn continuously by itself in a
self-supervised manner by picking up implicit or explicit feedback or clues from humans
or the environment to serve as the supervised information for it to learn without asking
the humans to explicitly label the data. For example, in self-driving, if our autonomous
car sees the car in front of it drive over a small pothole in the middle of the road, it can
assume that the pothole is not dangerous. More generally, the car can learn from humans’
driving behaviors through imitation learning, by listening to the user’s verbal feedback or
instructions, and even by asking the user questions to gain supervised information in a nat-
ural way. Additionally, knowledge learned previously from books and other authoritative
sources and agent’s own experiences can serve as supervised information too.

7. Lifelong natural language learning: Here we reiterate that NLP is perhaps one of the
most suitable application areas for LL. First of all, most concepts are applicable across do-
mains and tasks because the same words or phrases are used in different domains with the
same or very similar meanings. Taking information extraction as an example, it is unclear
whether the human brain has a complex algorithm like HMM or CRF for extraction, but
human beings clearly can do so well in entity recognition. We believe that one of the key
reasons is that when we are given a particular extraction or recognition task, we already

10. CONCLUSION AND FUTURE DIRECTIONS 157

know most of the answers as we have learned and accumulated a great deal of entities in
the past and know how to spot entities in the text from our past experiences. Second, all
NLP tasks are closely related to each other as we discussed in Chapter 1, which is obvious
because they together make the meaning of a sentence. Thus, the knowledge learned from
one task can help learning of other tasks.

8. Compositional learning: Learning compositionally is likely to be very important for LL.
Classic ML is not compositional. For example, as humans, we learn a language by learn-
ing individual words and phrases first, and then sentences, paragraphs, and full documents.
'The knowledge gained from this kind of learning is highly reusable. The current machine
learning by labeling each entire sentence or even entire document with a single label is quite
unnatural. The learned knowledge from such labeling is also hard to be reused. There are
simply too many, almost an infinite number of possible sentences, which makes it very
difficult to learn things that do not occur frequently. For statistical ML to work, the data
must occur sufficiently frequently in order to compute reliable statistics. However, if it
is possible to learn in a bottom-up fashion, from words, phrases, to sentences and whole
documents, it is possible to understand those infrequent sentences because each of their
component words or phrases may have appeared frequently. The syntactic structures of
the sentences may have appeared frequently too. We believe that people learn compo-
sitionally. Compositional learning is especially useful for image recognition and natural
language processing. For example, we not only can recognize a person as a whole, but also
his/her face, head, arms, legs, torso, etc. For the head, you can recognize, eyes, mouth,
nose, eyebrows, etc. Current learning algorithms do not learn compositionally. Composi-
tional learning is likely to be very important for LL simply because it allows the system to
share knowledge and to compose at any level of granularity.

'This list of directions or challenging problems is by no means exhaustive. There are many other
challenges too. As an emerging field, current LI methods and systems are still rudimentary.
But the journey of 1,000 miles begins with the first step. The research area is a wide open field.
A significant amount of research is still needed in order to make breakthroughs. Yet practical
applications and intelligent systems call for this type of advanced ML in order to fundamentally
advance the artificial intelligence research and applications. In the near future, we envisage that a
number of large and complex learning systems will be built with the LL capability. Such systems
with large KBs will enable major progress to be made. Without a great deal of prior knowledge
already, it is difficult to learn more.

Bibliography

Wickliffe C. Abraham and Anthony Robins, (2005). Memory retention—the synap-
tic stability vs. plasticity dilemma. Trends in Neurosciences, 28(2):73-78. DOI:
10.1016/j.tins.2004.12.003. 55

Gediminas Adomavicius and Alexander Tuzhilin, (2005). Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions

on Knowledge and Data Engineering, 17(6), pages 734-749. DOI: 10.1109/tkde.2005.99. 118

Rakesh Agrawal and Ramakrishnan Srikant, (1994). Fast algorithms for mining association
rules. In VLDB, pages 487-499. 97, 121

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars, (2016). Expert gate: Lifelong
learning with a network of experts. CoRR, abs/1611.06194, 2. DOI: 10.1109/cvpr.2017.753.
57,67, 68, 69, 74

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars, (2017). Memory aware synapses: Learning what (not) to forget. ArXiv Preprint
ArXiv:1711.09601. 58, 74

Naomi S. Altman, (1992). An introduction to kernel and nearest-neighbor nonparametric re-

gression. The American Statistician, 46(3), pages 175-185. DOI: 10.2307/2685209. 37

David Ameixa, Luisa Coheur, Pedro Fialho, and Paulo Quaresma, (2014). Luke, I am your
father: Dealing with out-of-domain requests by using movies subtitles. In International Con-

ference on Intelligent Virtual Agents. DOI: 10.1007/978-3-319-09767-1_2. 131

Rie Kubota Ando and Tong Zhang, (2005). A high-performance semi-supervised learning
method for text chunking. In ACL, pages 1-9. DOI: 10.3115/1219840.1219841. 21

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent
by gradient descent. In NIPS, pages 3981-3989, 2016. 33

David Andrzejewski, Xiaojin Zhu, and Mark Craven, (2009). Incorporating domain knowl-
edge into topic modeling via Dirichlet forest priors. In ICML, pages 25-32. DOI:
10.1145/1553374.1553378. 92

http://dx.doi.org/10.1016/j.tins.2004.12.003
http://dx.doi.org/10.1016/j.tins.2004.12.003
http://dx.doi.org/10.1109/tkde.2005.99
http://dx.doi.org/10.1109/cvpr.2017.753
http://dx.doi.org/10.2307/2685209
http://dx.doi.org/10.1007/978-3-319-09767-1_2
http://dx.doi.org/10.3115/1219840.1219841
http://dx.doi.org/10.1145/1553374.1553378
http://dx.doi.org/10.1145/1553374.1553378

160 BIBLIOGRAPHY
David Andrzejewski, Xiaojin Zhu, Mark Craven, and Benjamin Recht, (2011). A framework

for incorporating general domain knowledge into latent Dirichlet allocation using first-order

logic. In IJCAI, pages 1171-1177. DOI: 10.5591/978-1-57735-516-8/1JCAI11-200. 92

Gabor Angeli, Melvin J. Premkumar, and Christopher D. Manning, (2015). Leveraging linguis-
tic structure for open domain information extraction. In ACL. DOI: 10.3115/v1/p15-1034.
138

Bernard Ans, Stéphane Rousset, Robert M. French, and Serban Musca, (2004). Self-refreshing
memory in artificial neural networks: Learning temporal sequences without catastrophic for-

getting. Connection Science, 16(2):71-99. DOI: 10.1080/09540090412331271199. 58

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil, (2008). Convex multi-task
teature learning. Machine Learning, 73(3), pages 243-272. DOI: 10.1007/s10994-007-5040-
8. 27

Rafael E. Banchs and Haizhou Li, (2012). Iris: A chat-oriented dialogue system based on the
vector space model. In Proc. of the ACL System Demonstrations, pages 37-42. 131

Bikramjit Banerjee and Peter Stone, (2007). General game learning using knowledge transfer.
In IJCAI, pages 672—-677. 32

Michele Banko and Oren Etzioni, (2007). Strategies for lifelong knowledge extraction from
the Web. In K-CAP, pages 95-102. DOI: 10.1145/1298406.1298425. 111

Jonathan Baxter, (2000). A model of inductive bias learning. Journal of Artificial Intelligence
Research, 12, pages 149-198. 26

Shai Ben-David and Reba Schuller, (2003). Exploiting task relatedness for multiple task learn-
ing. In COLT. DOI: 10.1007/978-3-540-45167-9_41. 26

Abhijit Bendale and Terrance E Boult, (2015). Towards open world recognition. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1893-1902. DOI:
10.1109/cvpr.2015.7298799. 7,77, 78, 79

Abhijit Bendale and Terrance E. Boult, (2016). Towards open set deep networks. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1563-1572. DOI:
10.1109/cvpr.2016.173. 79, 85, 86, 88

Yoshua Bengio, (2009). Learning deep architectures for Al. Foundations and Trends {®} in
Machine Learning, 2(1), pages 1-127. DOI: 10.1561/2200000006. 24

Yoshua Bengio, (2012). Deep learning of representations for unsupervised and transfer learning.

Unsupervised and Transfer Learning Challenges in Machine Learning, 7. 25

http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-200
http://dx.doi.org/10.3115/v1/p15-1034
http://dx.doi.org/10.1080/09540090412331271199
http://dx.doi.org/10.1007/s10994-007-5040-8
http://dx.doi.org/10.1007/s10994-007-5040-8
http://dx.doi.org/10.1145/1298406.1298425
http://dx.doi.org/10.1007/978-3-540-45167-9_41
http://dx.doi.org/10.1109/cvpr.2015.7298799
http://dx.doi.org/10.1109/cvpr.2015.7298799
http://dx.doi.org/10.1109/cvpr.2016.173
http://dx.doi.org/10.1109/cvpr.2016.173
http://dx.doi.org/10.1561/2200000006

BIBLIOGRAPHY 161

James Bergstra and Yoshua Bengio, (2012). Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13(Feb):281-305. 72

Steffen Bickel, Michael Briickner, and Tobias Scheffer, (2007). Discriminative learn-
ing for differing training and test distributions. = In ICML, pages 81-88. DOI:
10.1145/1273496.1273507. 21

David M. Blei, Andrew Y. Ng, and Michael I. Jordan, (2003). Latent Dirichlet allocation. 7Zhe
Journal of Machine Learning Research, 3, pages 993-1022. 91, 93

John Blitzer, Ryan McDonald, and Fernando Pereira, (2006). Domain adapta-
tion with structural correspondence learning. In EMNLP, pages 120-128. DOI:
10.3115/1610075.1610094. 22

John Blitzer, Mark Dredze, and Fernando Pereira, (2007). Biographies, bollywood, boom-boxes

and blenders: Domain adaptation for sentiment classification. In ACL, pages 440—-447. 22,
72

Avrim Blum and Tom Mitchell, (1998). Combining labeled and unlabeled data with co-
training. In COLT, pages 92-100. DOI: 10.1145/279943.279962. 24

Botond Bocsi, Lehel Csaté, and Jan Peters, (2013). Alignment-based transfer learning for robot
models. In [JCNN, pages 1-7. DOI: 10.1109/ijcnn.2013.6706721. 152

Danushka Bollegala, Takanori Maehara, and Ken-ichi Kawarabayashi, (2015). Unsupervised
cross-domain word representation learning. In ACL. http://www.aclweb.org/anthology

/P15-1071 DOI: 10.3115/v1/p15-1071. 52

Danushka Bollegala, Kohei Hayashi, and Ken-ichi Kawarabayashi, (2017). Think globally, em-
bed locally—locally linear meta-embedding of words. ArXiv. 52

Edwin V. Bonilla, Kian M. Chai, and Christopher Williams, (2008). Multi-task Gaussian
process prediction. In NIPS, pages 153-160. 22

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou, (2005). Fast Kernel classifiers

with online and active learning. The Journal of Machine Learning Research, 6, pages 1579-1619.
31

Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio, (2011). Learning struc-
tured embeddings of knowledge bases. In 44A4I. 132

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko, (2013). Translating embeddings for modeling multi-relational data. In NIPS.
132

http://dx.doi.org/10.1145/1273496.1273507
http://dx.doi.org/10.1145/1273496.1273507
http://dx.doi.org/10.3115/1610075.1610094
http://dx.doi.org/10.3115/1610075.1610094
http://dx.doi.org/10.1145/279943.279962
http://dx.doi.org/10.1109/ijcnn.2013.6706721
http://www.aclweb.org/anthology/P15-1071
http://www.aclweb.org/anthology/P15-1071
http://dx.doi.org/10.3115/v1/p15-1071

162 BIBLIOGRAPHY

Haitham Bou Ammar, Eric Eaton, Jose Marcio Luna, and Paul Ruvolo, (2015a). Autonomous

cross-domain knowledge transfer in lifelong policy gradient reinforcement learning. In 4441
8, 140, 151, 152, 155

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew E. Taylor, (2014). Online multi-
task learning for policy gradient methods. In ICML, pages 1206-1214. 8, 15, 140, 146, 147,
149, 150, 151, 152

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew E. Taylor, (2015b). Unsupervised
cross-domain transfer in policy gradient reinforcement learning via manifold alignment. In

AAAIL 151,152

Haitham Bou Ammar, Rasul Tutunov, and Eric Eaton, (2015c¢). Safe policy search for lifelong
reinforcement learning with sublinear regret. In ICML. 8, 140, 150, 151, 152

Samir Bouabdallah, (2007). Design and Control of Quadrotors with Application to Autonomous
Flying. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne. DOI: 10.5075/epfl-thesis-
3727. 152

Hervé Bourlard and Yves Kamp, (1988). Auto-association by multilayer perceptrons and singu-
lar value decomposition. Biological Cybernetics, 59(4-5):291-294. DOI: 10.1007/bf00332918.
68

Jordan L. Boyd-Graber, David M. Blei, and Xiaojin Zhu, (2007). A topic model for word sense
disambiguation. In EMNLP-CoNLL, pages 1024-1033. 91

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba, (2016). Openai gym. ArXiv Preprint ArXiv:1606.01540. 75

Emma Brunskill and Lihong Li, (2014). PAC-inspired option discovery in lifelong reinforce-
ment learning. In ICML, pages 316-324. 140

Chris Buckley, Gerard Salton, and James Allan, (1994). 'The effect of adding relevance infor-
mation in a relevance feedback environment. In SIGIR, pages 292-300. DOI: 10.1007/978-
1-4471-2099-5_30. 84

Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst, (2010). Reinforcement

Learning and Dynamic Programming Using Function Approximators, vol. 39. CRC press. DOI:
10.1201/9781439821091. 32

Raffaello Camoriano, Giulia Pasquale, Carlo Ciliberto, Lorenzo Natale, Lorenzo Rosasco, and
Giorgio Metta, (2017). Incremental robot learning of new objects with fixed update time. In
IEEE International Conference on Robotics and Automation (ICRA), pages 3207-3214. 58
DOI: 10.1109/icra.2017.7989364.

http://dx.doi.org/10.5075/epfl-thesis-3727
http://dx.doi.org/10.5075/epfl-thesis-3727
http://dx.doi.org/10.1007/bf00332918
http://dx.doi.org/10.1007/978-1-4471-2099-5_30
http://dx.doi.org/10.1007/978-1-4471-2099-5_30
http://dx.doi.org/10.1201/9781439821091
http://dx.doi.org/10.1201/9781439821091
http://dx.doi.org/10.1109/icra.2017.7989364

BIBLIOGRAPHY 163

Andrew Carlson, Justin Betteridge, and Bryan Kisiel, (2010a). Toward an architecture for never-
ending language learning. In A4AI, pages 1306-1313. 8, 111, 114, 115

Andrew Carlson, Justin Betteridge, Richard C. Wang, Estevam R. Hruschka Jr., and Tom M.
Mitchell, (2010b). Coupled semi-supervised learning for information extraction. In WSDM,
pages 101-110. DOI: 10.1145/1718487.1718501. 115, 116

Rich Caruana, (1997). Multitask learning. Machine Learning, 28(1), pages 41-75. DOI:
10.1007/978-1-4615-5529-2_5. 10, 26, 38, 39, 53, 56

Chih-Chung Chang and Chih-Jen Lin, (2011). LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), page 27. DOI:
10.1145/1961189.1961199. 82

Jonathan Chang, Jordan Boyd-Graber, Wang Chong, Sean Gerrish, and David M. Blei, (2009).
Reading tea leaves: How humans interpret topic models. In NIPS, pages 288-296. 92

Zhiyuan Chen and Bing Liu, (2014a). Topic modeling using topics from many domains, lifelong
learning and big data. In ICML, pages 703-711. 7, 13, 14, 15, 16, 91, 92, 94, 98, 109, 154,
155

Zhiyuan Chen and Bing Liu, (2014b). Mining topics in documents: Standing on the shoulders
of big data. In KDD, pages 1116-1125. DOI: 10.1145/2623330.2623622. 7,13, 15, 16, 53,
89, 91, 92, 94, 100, 101, 102, 103, 104, 105, 106, 109, 154, 155

Zhiyuan Chen, Bing Liu, and M. Hsu, (2013a). Identifying intention posts in discussion fo-
rums. In NAACL-HLT, pages 1041-1050. 23, 24

Jianhui Chen, Lei Tang, Jun Liu, and Jieping Ye, (2009). A convex formulation for
learning shared structures from multiple tasks. In ICML, pages 137-144. DOI:
10.1145/1553374.1553392. 10, 26

Jianhui Chen, Jiayu Zhou, and Jieping Ye, (2011). Integrating low-rank and group-sparse struc-
tures for robust multi-task learning. In KDD, pages 42-50. DOI: 10.1145/2020408.2020423.
27

Zhiyuan Chen, Arjun Mukherjee, and Bing Liu, (2014). Aspect extraction with automated
prior knowledge learning. In ACL, pages 347-358. DOI: 10.3115/v1/p14-1033. 91, 94

Zhiyuan Chen, Nianzu Ma, and Bing Liu, (2015). Lifelong learning for sentiment classification.
In ACL (short paper), vol. 2, pages 750-756. DOI: 10.3115/v1/p15-2123. 7, 14, 15, 16, 36,
46, 47,49, 53, 154

Zhiyuan Chen, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos, and Riddhiman
Ghosh, (2013b). Discovering coherent topics using general knowledge. In CIKM, pages 209—-
218. DOI: 10.1145/2505515.2505519. 92

http://dx.doi.org/10.1145/1718487.1718501
http://dx.doi.org/10.1007/978-1-4615-5529-2_5
http://dx.doi.org/10.1007/978-1-4615-5529-2_5
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/2623330.2623622
http://dx.doi.org/10.1145/1553374.1553392
http://dx.doi.org/10.1145/1553374.1553392
http://dx.doi.org/10.1145/2020408.2020423
http://dx.doi.org/10.3115/v1/p14-1033
http://dx.doi.org/10.3115/v1/p15-2123
http://dx.doi.org/10.1145/2505515.2505519

164 BIBLIOGRAPHY

Zhiyuan Chen, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos, and Riddhiman
Ghosh, (2013c¢). Exploiting domain knowledge in aspect extraction. In EMNLP, pages 1655
1667. 92, 105

Hao Cheng, Hao Fang, and Mari Ostendorf, (2015). Open-domain name error detection using
a multi-task RNN. In EMNLP, pages 737-746. DOI: 10.18653/v1/d15-1085. 30

Kenneth Ward Church and Patrick Hanks, (1990). Word association norms, mutual
information, and lexicography. Computational Linguistics, 16(1), pages 22-29. DOI:
10.3115/981623.981633. 98

Christopher Clingerman and Eric Eaton, (2017). Lifelong learning with Gaussian processes.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 690-704, Springer. DOI: 10.1007/978-3-319-71246-8_42. 36

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik, (2017). Emnist:
An extension of mnist to handwritten letters. ArXiv Preprint ArXiv:1702.05373. DOI:
10.1109/ijcnn.2017.7966217. 88

Ronan Collobert and Jason Weston, (2008). A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning. In ICML, pages 160-167. DOI:
10.1145/1390156.1390177. 30, 121

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa, (2011). Natural language processing (almost) from scratch. Journal of Machine Learn-
ing Research, 12, pages 2493-2537. 30, 85

Robert Coop, Aaron Mishtal, and Itamar Arel, (2013). Ensemble learning in fixed expansion
layer networks for mitigating catastrophic forgetting. IEEE Transactions on Neural Networks

and Learning Systems, 24(10):1623-1634. DOI: 10.1109/tnnls.2013.2264952. 73

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom Mitchell, Kamal
Nigam, and Sedn Slattery, (1998). Learning to extract symbolic knowledge from the world
wide web. In 4441, pages 509-516. 111

Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu, (2007a). Co-clustering
based classification for out-of-domain documents. In KDD, pages 210-219. DOI:
10.1145/1281192.1281218. 22

Wenyuan Dai, Gui-rong Xue, Qiang Yang, and Yong Yu, (2007b). Transferring naive Bayes
classifiers for text classification. In A4AI 21, 23, 24

Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu, (2007c¢). Boosting for transfer learn-
ing. In ICML, pages 193-200. DOI: 10.1145/1273496.1273521. 21

http://dx.doi.org/10.18653/v1/d15-1085
http://dx.doi.org/10.3115/981623.981633
http://dx.doi.org/10.3115/981623.981633
http://dx.doi.org/10.1007/978-3-319-71246-8_42
http://dx.doi.org/10.1109/ijcnn.2017.7966217
http://dx.doi.org/10.1109/ijcnn.2017.7966217
http://dx.doi.org/10.1145/1390156.1390177
http://dx.doi.org/10.1145/1390156.1390177
http://dx.doi.org/10.1109/tnnls.2013.2264952
http://dx.doi.org/10.1145/1281192.1281218
http://dx.doi.org/10.1145/1281192.1281218
http://dx.doi.org/10.1145/1273496.1273521

BIBLIOGRAPHY 165

Cristian Danescu-Niculescu-Mizil and Lillian Lee, (2011). Chameleons in imagined conver-
sations: A new approach to understanding coordination of linguistic style in dialogs. In Proc.
of the Workshop on Cognitive Modeling and Computational Linguistics, (ACL). 138

Cristian Danescu-Niculescu-Mizil, Lillian Lee, Bo Pang, and Jon Kleinberg, (2012). Echoes of
power: Language effects and power differences in social interaction. In Proc. of WWIW. DOI:
10.1145/2187836.2187931. 138

Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum, (2016). Chains
of reasoning over entities, relations, and text using recurrent neural networks. ArXiv Preprint

ArXiv:1607.01426. DOI: 10.18653/v1/e17-1013. 134
Hal Daume III, (2007). Frustratingly easy domain adaptation. In ACL, pages 256-263. 22

Hal Daumé II1, (2009). Bayesian multitask learning with latent hierarchies. In UAI, pages 135—
142. 26

Grégoire Mesnil Yann Dauphin, Xavier Glorot, Salah Rifai, Yoshua Bengio, Ian Goodfellow,
Erick Lavoie, Xavier Muller, Guillaume Desjardins, David Warde-Farley, and Pascal Vincent,
(2012). Unsupervised and transfer learning challenge: a deep learning approach. In Proc. of
ICML Workshop on Unsupervised and Transfer Learning, pages 97-110. 56

Marc Peter Deisenroth, Peter Englert, Jochen Peters, and Dieter Fox, (2014). Multi-task policy
search for robotics. In ICRA, pages 3876-3881. DOI: 10.1109/icra.2014.6907421. 8, 140

Teo de Campos, Bodla Rakesh Babu, and Manik Varma, (2009). Character recognition in
natural images. 75

DOI: 10.5220/0001770102730280.

Rocco De Rosa, Thomas Mensink, and Barbara Caputo, (2016). Online open world recognition.
ArXiv:1604.02275 [cs.CV]. 77

Chuong Do and Andrew Y. Ng, (2005). Transfer learning for text classification. In NIPS,
pages 299-306. DOI: 10.1007/978-3-642-05224-8_3. 23

Jeff Donahue, Yangging Jia, Oriol Vinyals, Judy Hoftman, Ning Zhang, Eric Tzeng, and Trevor
Darrell, (2014). Decaf: A deep convolutional activation feature for generic visual recognition.

In ICML, pages 647-655. 56

Mark Dredze and Koby Crammer, (2008). Online methods for multi-domain learning and
adaptation. In EMNLP, pages 689-697. DOI: 10.3115/1613715.1613801. 31

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In NIPS, pages 1087—
1098, 2017. 34

http://dx.doi.org/10.1145/2187836.2187931
http://dx.doi.org/10.1145/2187836.2187931
http://dx.doi.org/10.18653/v1/e17-1013
http://dx.doi.org/10.1109/icra.2014.6907421
http://dx.doi.org/10.5220/0001770102730280
http://dx.doi.org/10.1007/978-3-642-05224-8_3
http://dx.doi.org/10.3115/1613715.1613801

166 BIBLIOGRAPHY

Vladimir Eidelman, Jordan Boyd-Graber, and Philip Resnik, (2012). Topic models for dynamic
translation model adaptation. In ACL, pages 115-119. 91

Mathias Eitz, James Hays, and Marc Alexa, (2012). How do humans sketch objects? DOI:
10.1145/2185520.2335395. 75

Salam El Bsat and Matthew E. Taylor, (2017). Scalable multitask policy gradient reinforcement
learning. In AA4AI. 140

Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu, Tal
Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates, (2004). Web-scale in-
formation extraction in knowitall: (preliminary results). In WIWW, pages 100-110. DOI:
10.1145/988672.988687. 111

Theodoros Evgeniou and Massimiliano Pontil, (2004). Regularized multi-task learning. In
KDD, pages 109-117. DOI: 10.1145/1014052.1014067. 26, 37

Geli Fei and Bing Liu, (2015). Social media text classification under negative covariate shift.

In EMNLP, pages 2347-2356. DOI: 10.18653/v1/d15-1282. 84

Geli Fei and Bing Liu, (2016). Breaking the closed world assumption in text classification. In
Proc. of NAACL-HLT, pages 506-514. DOI: 10.18653/v1/n16-1061. 7, 77

Geli Fei, Zhiyuan Chen, and Bing Liu, (2014). Review topic discovery with phrases using the
Pélya urn model. In COLING, pages 667-676. 91

Geli Fei, Shuai Wang, and Bing Liu, (2016). Learning cumulatively to become more knowl-
edgeable. In KDD. DOI: 10.1145/2939672.2939835. 7, 11, 15, 25, 64, 77, 78, 79, 80, 81,
82, 83, 89, 156

Fernando Ferndndez and Manuela Veloso, (2013). Learning domain structure through proba-
bilistic policy reuse in reinforcement learning. Progress in Artificial Intelligence, 2(1), pages 13—

27. DOI: 10.1007/s13748-012-0026-6. 8, 140

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu,
Alexander Pritzel, and Daan Wierstra, (2017). Pathnet: Evolution channels gradient descent
in super neural networks. ArXiv Peprint ArXiv:1701.08734. 58,72, 74

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In ICML, 2017. 33

Tommaso Furlanello, Jiaping Zhao, Andrew M. Saxe, Laurent Itti, and Bosco S. Tjan, (2016).
Active long term memory networks. ArXiv Preprint ArXiv:1606.02355. 58

http://dx.doi.org/10.1145/2185520.2335395
http://dx.doi.org/10.1145/2185520.2335395
http://dx.doi.org/10.1145/988672.988687
http://dx.doi.org/10.1145/988672.988687
http://dx.doi.org/10.1145/1014052.1014067
http://dx.doi.org/10.18653/v1/d15-1282
http://dx.doi.org/10.18653/v1/n16-1061
http://dx.doi.org/10.1145/2939672.2939835
http://dx.doi.org/10.1007/s13748-012-0026-6

BIBLIOGRAPHY 167

Eli M. Gafni and Dimitri P. Bertsekas, (1984). Two-metric projection methods for con-
strained optimization. SIAM Journal on Control and Optimization, 22(6), pages 936-964.
DOI: 10.1137/0322061. 28

Jing Gao, Wei Fan, Jing Jiang, and Jiawei Han, (2008). Knowledge transfer via multiple model
local structure mapping. In KDD, pages 283-291. DOI: 10.1145/1401890.1401928. 22

Matt Gardner and Tom M. Mitchell, (2015). Efficient and expressive knowledge base comple-
tion using subgraph feature extraction. In EMNLP. DOI: 10.18653/v1/d15-1173. 133

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R. Channing Moore, Manoj Plakal, and Marvin Ritter, (2017). Audio set: An ontology
and human-labeled dataset for audio events. In ICASSP, pages 776780, IEEE. DOI:
10.1109/icassp.2017.7952261. 73, 75

Alexander Gepperth and Cem Karaoguz, (2016). A bio-inspired incremental learning ar-
chitecture for applied perceptual problems. Cognitive Computation, 8(5):924-934. DOI:
10.1007/s12559-016-9389-5. 58, 73

Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng Gao, Wen-tau
Yih, and Michel Galley, (2017). A knowledge-grounded neural conversation model. ArXiv
Preprint ArXiv:1702.01932. 131

Xavier Glorot, Antoine Bordes, and Yoshua Bengio, (2011). Domain adaptation for large-scale
sentiment classification: A deep learning approach. In ICML, pages 513-520. 24

Pinghua Gong, Jieping Ye, and Changshui Zhang, (2012). Robust multi-task feature learning.
In KDD, pages 895-903. DOI: 10.1145/2339530.2339672. 27

Ian Goodfellow, (2016). NIPS 2016 tutorial: Generative adversarial networks. A47Xiv Preprint
ArXiv:1701.00160. 57, 58, 70, 71

Tan Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio, (2013a). An
empirical investigation of catastrophic forgetting in gradient-based neural networks. ArXiv
Preprint ArXiv:1312.6211. 59,72, 74

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio, (2014). Generative adversarial nets. In NIPS,
pages 2672-2680. 70, 72

Ian Goodfellow, Yoshua Bengio, and Aaron Courville, (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org DOI: 10.1038/nature14539. 85

Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio,
(2013b). Maxout networks. ArXiv Preprint ArXiv:1302.4389. 72

http://dx.doi.org/10.1137/0322061
http://dx.doi.org/10.1145/1401890.1401928
http://dx.doi.org/10.18653/v1/d15-1173
http://dx.doi.org/10.1109/icassp.2017.7952261
http://dx.doi.org/10.1109/icassp.2017.7952261
http://dx.doi.org/10.1007/s12559-016-9389-5
http://dx.doi.org/10.1007/s12559-016-9389-5
http://dx.doi.org/10.1145/2339530.2339672
http://www.deeplearningbook.org
http://dx.doi.org/10.1038/nature14539

168 BIBLIOGRAPHY

Ben Goodrich and Itamar Arel, (2014). Unsupervised neuron selection for mitigating catas-
trophic forgetting in neural networks. In Circuits and Systems (MWSCAS), IEEE 57th In-
ternational Midwest Symposium on, pages 997-1000. DOI: 10.1109/mwscas.2014.6908585.
58

Gregory Griffin, Alex Holub, and Pietro Perona, (2007). Caltech-256 object category dataset.
75

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting
gradient based meta-learning as hierarchical Bayes. In arXiv preprint arXiv:1801.08930,
2018. 34

Thomas L. Griffiths and Mark Steyvers, (2004). Finding scientific topics. PNAS, 101 Suppl.,
pages 5228-5235. DOI: 10.1073/pnas.0307752101. 95

R. He and J. McAuley, (2016). Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In WIWW. DOI: 10.1145/2872427.2883037. 54

Xu He and Herbert Jaeger, (2018). Overcoming Catastrophic Interference using Conceptor-
Aided Backpropagation. In International Conference on Learning Representations. DOI:
10.1371/journal.pone.0105619. 58

James J. Heckman, (1979). Sample selection bias as a specification error. Econometrica: Journal

of the Econometric Society, pages 153-161. DOI: 10.2307/1912352. 47

Gregor Heinrich, (2009). A generic approach to topic models. In ECML PKDD, pages 517-
532. DOI: 10.1007/978-3-642-04180-8_51. 98

Mark Herbster, Massimiliano Pontil, and Lisa Wainer, (2005). Online learning over graphs. In
ICML, pages 305-312. DOI: 10.1145/1102351.1102390. 31

Geoftrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov, (2012). Improving neural networks by preventing co-adaptation of feature
detectors. ArXiv Preprint ArXiv:1207.0580. 59, 72

Geoftrey Hinton, Oriol Vinyals, and Jeff Dean, (2015). Distilling the knowledge in a neural
network. ArXiv Preprint ArXiv:1503.02531. 60, 65

Sepp Hochreiter and Jurgen Schmidhuber, (1997). Long short-term memory. In Neural com-
putation, 9(8):1735-1780, 1997. 33

Matthew Hoffman, Francis R. Bach, and David M. Blei, (2010). Online learning for latent
Dirichlet allocation. In NIPS, pages 856—864. 31

Thomas Hofmann, (1999). Probabilistic latent semantic analysis. In UAI, pages 289-296. DOI:
10.1145/312624.312649. 91

http://dx.doi.org/10.1109/mwscas.2014.6908585
http://dx.doi.org/10.1073/pnas.0307752101
http://dx.doi.org/10.1145/2872427.2883037
http://dx.doi.org/10.1371/journal.pone.0105619
http://dx.doi.org/10.1371/journal.pone.0105619
http://dx.doi.org/10.2307/1912352
http://dx.doi.org/10.1007/978-3-642-04180-8_51
http://dx.doi.org/10.1145/1102351.1102390
http://dx.doi.org/10.1145/312624.312649
http://dx.doi.org/10.1145/312624.312649

BIBLIOGRAPHY 169

Yuening Hu, Jordan Boyd-Graber, and Brianna Satinoff, (2011). Interactive topic modeling.
In ACL, pages 248-257. DOI: 10.1007/s10994-013-5413-0. 92

Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong, (2013a). Cross-language
knowledge transfer using multilingual deep neural network with shared hidden layers. In
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 7304—7308.
DOI: 10.1109/icassp.2013.6639081. 30

Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew Y. Ng, (2012). Improv-
ing word representations via global context and multiple word prototypes. In ACL, pages 873~
882. 121

Yan Huang, Wei Wang, Liang Wang, and Tieniu Tan, (2013b). Multi-task deep neural network
tor multi-label learning. In IEEE International Conference on Image Processing, pages 2897—
2900. DOI: 10.1109/icip.2013.6738596. 30

Robert A. Hummel and Steven W. Zucker, (1983). On the foundations of relaxation labeling
processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, (3), pages 267-287.
DOI: 10.1016/b978-0-08-051581-6.50058-1. 127

David Isele, Mohammad Rostami, and Eric Eaton, (2016). Using task features for zero-shot
knowledge transfer in lifelong learning. In IJCAI 151

Laurent Jacob, Jean-philippe Vert, and Francis R. Bach, (2009). Clustered multi-task learning:
A convex formulation. In NIPS, pages 745-752. 27, 28

Jagadeesh Jagarlamudi, Hal Daumé III, and Raghavendra Udupa, (2012). Incorporating lexical
priors into topic models. In EACL, pages 204-213. 92

Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al., (2009). What is the best multi-stage
architecture for object recognition? In Computer Vision, IEEE 12th International Conference
on, pages 2146-2153. DOI: 10.1109/iccv.2009.5459469. 72

Jing Jiang and ChengXiang Zhai, (2007). Instance weighting for domain adaptation in NLP.
In ACL, pages 264-271.

Jing Jiang, (2008). A literature survey on domain adaptation of statistical classifiers. Technical
Report. 21

Yaochu Jin and Bernhard Sendhoft, (2006). Alleviating catastrophic forgetting via multi-
objective learning. In IJCNN, pages 3335-3342. DOI: 10.1109/ijcnn.2006.247332. 10, 21

Nitin Jindal and Bing Liu, (2008). Opinion spam and analysis. In WSDM, pages 219-230.
DOI: 10.1145/1341531.1341560. 58

http://dx.doi.org/10.1007/s10994-013-5413-0
http://dx.doi.org/10.1109/icassp.2013.6639081
http://dx.doi.org/10.1109/icip.2013.6738596
http://dx.doi.org/10.1016/b978-0-08-051581-6.50058-1
http://dx.doi.org/10.1109/iccv.2009.5459469
http://dx.doi.org/10.1109/ijcnn.2006.247332
http://dx.doi.org/10.1145/1341531.1341560

170 BIBLIOGRAPHY

Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim, (2016). Less-forgetting learning in
deep neural networks. ArXiv Preprint ArXiv:1607.00122. 121

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore, (1996). Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, pages 237-285. 57, 74

Nitin Kamra, Umang Gupta, and Yan Liu, (2017). Deep generative dual memory network for
continual learning. ArXiv Preprint ArXiv:1710.10368. 32, 139

Zhuoliang Kang, Kristen Grauman, and Fei Sha, (2011). Learning with whom to share in
multi-task feature learning. In ICML, pages 521-528. 58

Christos Kaplanis, Murray Shanahan, and Claudia Clopath, (2018). Continual reinforcement
learning with complex synapses. ArXiv Preprint ArXiv:1802.07239. 27

Ashish Kapoor and Eric Horvitz, (2009). Principles of lifelong learning for predictive user
modeling. In User Modeling, pages 37—46. DOI: 10.1007/978-3-540-73078-1_7. 59

Ronald Kemker and Christopher Kanan, (2018). FearNet: Brain-inspired model for incremental
learning. In ICLR.

Ronald Kemker, Angelina Abitino, Marc McClure, and Christopher Kanan, (2018). Measuring
catastrophic forgetting in neural networks. In 4441 58

Yoon Kim, (2014). Convolutional neural networks for sentence classification. A4rXiv Preprint

ArXiv:1408.5882. DOIL: 10.3115/v1/d14-1181. 59, 72, 73, 74, 75

Hajime Kimura, (1995). Reinforcement learning by stochastic hill climbing on discounted re-

ward. In ICML, pages 295-303. DOI: 10.1016/b978-1-55860-377-6.50044-x. 85

Diederik P. Kingma and Max Welling, (2013). Auto-encoding variational bayes. ArXiv Preprint
ArXiv:1312.6114. 141

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et
al., (2017). Overcoming catastrophic forgetting in neural networks. Proc. of the National
Academy of Sciences, 114(13):3521-3526. DOI: 10.1073/pnas.1611835114. 72

Jyrki Kivinen, Alexander J. Smola, and Robert C. Williamson, (2004). Online learning
with kernels. IEEE Transactions on Signal Processing, 52(8), pages 2165-2176. DOI:
10.1109/tsp.2004.830991. 57, 58, 59, 62, 64, 72, 73, 74, 75

Jens Kober and Jan Peters, (2011). Policy search for motor primitives in robotics. Machine

Learning, 84(1), pages 171-203. DOI: 10.1007/s10994-010-5223-6. 31

http://dx.doi.org/10.1007/978-3-540-73078-1_7
http://dx.doi.org/10.3115/v1/d14-1181
http://dx.doi.org/10.1016/b978-1-55860-377-6.50044-x
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1109/tsp.2004.830991
http://dx.doi.org/10.1109/tsp.2004.830991
http://dx.doi.org/10.1007/s10994-010-5223-6

BIBLIOGRAPHY 171

George Konidaris and Andrew Barto, (2006). Autonomous shaping: Knowledge transfer in
reinforcement learning. In ICML, pages 489-496. DOI: 10.1145/1143844.1143906. 148

Alex Krizhevsky and Geoftrey Hinton, (2009). Learning multiple layers of features from tiny
images. 140
74

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, (2012). Imagenet classification with
deep convolutional neural networks. In NIPS, pages 1097-1105. DOI: 10.1145/3065386. 56

Abhishek Kumar, Hal Daum, and Hal Daume Iii, (2012). Learning task grouping and overlap
in multi-task learning. In ICML, pages 1383-1390. 7, 27, 28, 36, 41

Dharshan Kumaran, Demis Hassabis, and James L. McClelland, (2016). What learning sys-
tems do intelligent agents need? Complementary learning systems theory updated. 7rends in

Cognitive Sciences, 20(7):512-534. DOI: 10.1016/j.tics.2016.05.004. 58

John Lafterty, Andrew McCallum, and Fernando C. N. Pereira, (2001). Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282—
289. 123

Ni Lao, Tom Mitchell, and William W. Cohen, (2011). Random walk inference and learning
in a large scale knowledge base. In EMNLP. 132, 133

Ni Lao, Einat Minkov, and William W. Cohen, (2015). Learning relational features with
backward random walks. In ACL. DOI: 10.3115/v1/p15-1065. 132

Neil D. Lawrence and John C. Platt, (2004). Learning to learn with the informative vector
machine. In ICML. DOI: 10.1145/1015330.1015382. 22

Alessandro Lazaric and Mohammad Ghavamzadeh, (2010). Bayesian multi-task reinforcement

learning. In ICML, pages 599-606. 10, 32

Phong Le, Marc Dymetman, and Jean-Michel Renders, (2016). LSTM-based mixture-
of-experts for knowledge-aware dialogues. ArXiv Preprint ArXiv:1605.01652. DOI:
10.18653/v1/w16-1611. 131

Yann LeCun, John S. Denker, and Sara A. Solla, (1990). Optimal brain damage. In NIPS,
pages 598-605. 61

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haftner, (1998). Gradient-based
learning applied to document recognition. Proc. of the IEEE, 86(11):2278-2324. DOI:
10.1109/5.726791. 64, 65,72, 73, 74

Jeongtae Lee, Jachong Yun, Sungju Hwang, and Eunho Yang, (2017a). Lifelong learning with
dynamically expandable networks. ArXiv Preprint ArXiv:1708.01547. 58

http://dx.doi.org/10.1145/1143844.1143906
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.tics.2016.05.004
http://dx.doi.org/10.3115/v1/p15-1065
http://dx.doi.org/10.1145/1015330.1015382
http://dx.doi.org/10.18653/v1/w16-1611
http://dx.doi.org/10.18653/v1/w16-1611
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791

172 BIBLIOGRAPHY

Su-In Lee, Vassil Chatalbashev, David Vickrey, and Daphne Koller, (2007). Learning a meta-
level prior for feature relevance from multiple related tasks. In ICML, pages 489-496. DOI:
10.1145/1273496.1273558. 26

Sang-Woo Lee, Jin-Hwa Kim, Jaechyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang, (2017b).

Overcoming catastrophic forgetting by incremental moment matching. In Advances in Neural

Information Processing Systems, pages 4655—4665. 58

Zhizhong Li and Derek Hoiem, (2016). Learning without forgetting. In European Conference
on Computer Vision, pages 614—629, Springer. DOI: 10.1007/978-3-319-46493-0_37. 56,
57, 58,59, 60, 74, 75

Hui Li, Xuejun Liao, and Lawrence Carin, (2009). Multi-task reinforcement learning in
partially observable stochastic environments. 7he Journal of Machine Learning Research, 10,

pages 1131-1186. 26, 32

Jiwei Li, Will Monroe, and Dan Jurafsky, (2017a). Data distillation for controlling specificity
in dialogue generation. ArXiv Preprint ArXiv:1702.06703. 131

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter, and Dan Jurafsky, (2017b). Adversarial learning
for neural dialogue generation. ArXiv Preprint ArXiv:1701.06547. DOI: 10.18653/v1/d17-
1230. 131

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for
tew shot learning. In arXiv preprint arXiv:1707.09835, 2017¢. 34

Xuejun Liao, Ya Xue, and Lawrence Carin, (2005). Logistic regression with an auxiliary data

source. In ICML, pages 505-512. DOI: 10.1145/1102351.1102415. 21
Zachary C. Lipton, Jianfeng Gao, Lihong Li, Jianshu Chen, and Li Deng, (2016). Com-

bating reinforcement learning’s sisyphean curse with intrinsic fear. ArXiv Preprint
ArXiv:1611.01211. 59,75

Bing Liu, (2007). Web Data Mining: exploring hyperlinks, contents, and usage data. Springer.
DOI: 10.1007/978-3-642-19460-3. 102, 119

Bing Liu, (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Lan-
guage Technologies, Morgan & Claypool Publishers. xvii, 3, 35, 91, 92, 117

Bing Liu, (2015). Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge
University Press. xvii, 3, 92

Qian Liu, Zhiqiang Gao, Bing Liu, and Yuanlin Zhang, (2015a). Automated rule selection for
aspect extraction in opinion mining. In IJCAI, pages 1291-1297. 129

http://dx.doi.org/10.1145/1273496.1273558
http://dx.doi.org/10.1145/1273496.1273558
http://dx.doi.org/10.1007/978-3-319-46493-0_37
http://dx.doi.org/10.18653/v1/d17-1230
http://dx.doi.org/10.18653/v1/d17-1230
http://dx.doi.org/10.1145/1102351.1102415
http://dx.doi.org/10.1007/978-3-642-19460-3

BIBLIOGRAPHY 173

Bing Liu, Wynne Hsu, and Yiming Ma, (1999). Mining association rules with multiple mini-
mum supports. In KDD, pages 337-341, ACM. DOI: 10.1145/312129.312274. 102

Bing Liu, Wee Sun Lee, Philip S. Yu, and Xiaoli Li, (2002). Partially supervised classification
of text documents. In ICML, pages 387-394. 116

Qian Liu, Bing Liu, Yuanlin Zhang, Doo Soon Kim, and Zhiqiang Gao, (2016). Improving
opinion aspect extraction using semantic similarity and aspect associations. In A4A4I. 7, 14,

15,16, 111, 117, 118, 119, 120, 121, 129

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang, (2015b).
Representation learning using multi-task deep neural networks for semantic classification and
information retrieval. In NAACL. DOI: 10.3115/¥1/n15-1092. 4, 29, 30

Vincenzo Lomonaco and Davide Maltoni, (2017). CORe50: A new dataset and benchmark for
continuous object recognition. ArXiv Preprint ArXiv:1705.03550. 75

David Lopez-Paz et al., (2017). Gradient episodic memory for continual learning. In Advances
in Neural Information Processing Systems, pages 6470—-6479. 58, 74

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau, (2015). The ubuntu dialogue corpus:
A large dataset for research in unstructured multi-turn dialogue systems. ArXiv Preprint
ArXiv:1506.08909. DOI: 10.18653/v1/w15-4640. 131, 138

Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker, (2009). Identifying
suspicious URLs: An application of large-scale online learning. In ICML, pages 681-688.
DOI: 10.1145/1553374.1553462. 31

Hosam Mahmoud, (2008). Polya Urn Models. Chapman & Hall/CRC Texts in Statistical
Science. DOI: 10.1201/9781420059847. 97, 98

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro, (2009). Online dictionary learn-
ing for sparse coding. In ICML, pages 689—-696. DOI: 10.1145/1553374.1553463. 31

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro, (2010). Online learning for
matrix factorization and sparse coding. The Journal of Machine Learning Research, 11, pages 19—

60. 31

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi, (2013). Fine-grained visual clas-
sification of aircraft. Technical Report. 75

Arun Mallya and Svetlana Lazebnik, (2017). PackNet: Adding multiple tasks to a single net-
work by iterative pruning. ArXiv Preprint ArXiv:1711.05769. 58

http://dx.doi.org/10.1145/312129.312274
http://dx.doi.org/10.3115/v1/n15-1092
http://dx.doi.org/10.18653/v1/w15-4640
http://dx.doi.org/10.1145/1553374.1553462
http://dx.doi.org/10.1201/9781420059847
http://dx.doi.org/10.1145/1553374.1553463

174 BIBLIOGRAPHY

Daniel]. Mankowitz, Augustin Zidek, André Barreto, Dan Horgan, Matteo Hessel, John
Quan, Junhyuk Oh, Hado van Hasselt, David Silver, and Tom Schaul, (2018). Unicorn:
Continual learning with a universal, oft-policy agent. ArXiv Preprint ArXiv:1802.08294. 59,
75

Christopher D. Manning, Prabhakar Raghavan, Hinrich Schiitze, et al., (2008). Infro-
duction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge. DOI:
10.1017/cbo9780511809071. 84

Nicolas Y. Masse, Gregory D. Grant, and David J. Freedman, (2018). Alleviating catas-
trophic forgetting using context-dependent gating and synaptic stabilization. ArXiv Preprint
ArXiv:1802.01569. 58

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes, (2013). Sparse coding
for multitask and transfer learning. In ICML, pages 343-351. 27

Sahisnu Mazumder and Bing Liu, (2017). Context-aware path ranking for knowledge base
completion. In IJCAIL DOI: 10.24963/ijcai.2017/166. 132, 134

Sahisnu Mazumder, Nianzu Ma, and Bing Liu, (2018). Towards a continuous knowledge learn-
ing engine for chatbots. In ArXiv:1802.06024 [cs.CL]. 7,131, 132, 133, 134, 135, 137, 138

Andrew McCallum and Kamal Nigam, (1998). A comparison of event models for Naive Bayes
text classification. In AAAI Workshop Learning for Text Categorization. 47

James L. McClelland, Bruce L. McNaughton, and Randall C. O'reilly, (1995). Why there
are complementary learning systems in the hippocampus and neocortex: Insights from the
successes and failures of connectionist models of learning and memory. Psychological Review,

102(3):419. DOI: 10.1037//0033-295x.102.3.419. 58

Michael McCloskey and Neal J. Cohen, (1989). Catastrophic interference in connectionist

networks: The sequential learning problem. In Psychology of Learning and Motivation, vol. 24,
pages 109-165, Elsevier. DOI: 10.1016/s0079-7421(08)60536-8. 7, 55

Neville Mehta, Sriraam Natarajan, Prasad Tadepalli, and Alan Fern, (2008). Transfer in
variable-reward hierarchical reinforcement learning. Machine Learning, 73(3), pages 289—

312. DOI: 10.1007/5s10994-008-5061-y. 32
Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka, (2013). Distance

based image classification: Generalizing to new classes at near-zero cost. IEEE Transactions
Pattern Analysis and Machine Intelligence, 35(11):2624—2637. DOI: 10.1109/tpami.2013.83.
79

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, (2013a). Efficient estimation of

word representations in vector space. ArXiv. 51

http://dx.doi.org/10.1017/cbo9780511809071
http://dx.doi.org/10.1017/cbo9780511809071
http://dx.doi.org/10.24963/ijcai.2017/166
http://dx.doi.org/10.1037//0033-295x.102.3.419
http://dx.doi.org/10.1016/s0079-7421(08)60536-8
http://dx.doi.org/10.1007/s10994-008-5061-y
http://dx.doi.org/10.1109/tpami.2013.83

BIBLIOGRAPHY 175

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean, (2013). Distributed
representations of words and phrases and their compositionality. In VIPS, pages 3111-3119.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean, (2013b). Dis-
tributed representations of words and phrases and their compositionality. In Advances in
Neural Information Processing Systems 26, pages 3111-3119, Curran Associates, Inc. 51, 120

George A. Miller, (1995). WordNet: A lexical database for English. Communications on ACM,
38(11), pages 39-41. DOI: 10.1145/219717.219748. 92

David Mimno, Hanna M. Wallach, Edmund Talley, Miriam Leenders, and Andrew McCallum,
(2011). Optimizing semantic coherence in topic models. In EMNLP, pages 262-272. 98, 99

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. In ICLR, 2018. 34

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi,
M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole,
E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling, (2015). Never-ending learning. In 444I DOI:
10.1145/3191513. 8, 16, 111, 115, 116, 154, 155

Andriy Mnih and Geoffrey Hinton, (2007). Three new graphical models for statistical language
modelling. In ICML. DOI: 10.1145/1273496.1273577. 51

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller, (2013). Playing atari with deep reinforcement learning.
ArXiv Preprint ArXiv:1312.5602. 75

Joseph Modayil, Adam White, and Richard S. Sutton, (2014). Multi-timescale nex-
ting in a reinforcement learning robot. Adaptive Behavior, 22(2), pages 146-160. DOI:
10.1177/1059712313511648. 33

Arjun Mukherjee and Bing Liu, (2012). Aspect extraction through semi-supervised modeling.
In ACL, pages 339-348. 91, 92

Stefan Munder and Dariu M. Gavrila, (2006). An experimental study on pedestrian classifi-
cation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11):1863-1868.
DOI: 10.1109/tpami.2006.217. 75

Tsendsuren Munkhdalai and Hong Yu. Meta networks. arXiv preprint arXiv:1703.00837,
2017. 33

Arvind Neelakantan, Benjamin Roth, and Andrew McCallum, (2015). Compositional vec-
tor space models for knowledge base completion. ArXiv Preprint ArXiv:1504.06662. DOI:
10.3115/v1/p15-1016. 134

http://dx.doi.org/10.1145/219717.219748
http://dx.doi.org/10.1145/3191513
http://dx.doi.org/10.1145/3191513
http://dx.doi.org/10.1145/1273496.1273577
http://dx.doi.org/10.1177/1059712313511648
http://dx.doi.org/10.1177/1059712313511648
http://dx.doi.org/10.1109/tpami.2006.217
http://dx.doi.org/10.3115/v1/p15-1016
http://dx.doi.org/10.3115/v1/p15-1016

176 BIBLIOGRAPHY

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng,
(2011). Reading digits in natural images with unsupervised feature learning. In NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning, page 5. 74

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner, (2017). Variational
continual learning. ArXiv Preprint ArXiv:1710.10628. 58

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich, (2015). A review of
relational machine learning for knowledge graphs. ArXiv Preprint ArXiv:1503.00759. DOI:
10.1109/jproc.2015.2483592. 132

Maria-Elena Nilsback and Andrew Zisserman, (2008). Automated flower classification over
a large number of classes. In 62b Indian Conference on Computer Vision, Graphics and Image

Processing, pages 722-729, IEEE. DOI: 10.1109/icvgip.2008.47. 75

Sinno Jialin Pan and Qiang Yang, (2010). A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10), pages 1345-1359. DOI: 10.1109/tkde.2009.191.
10, 21

Sinno Jialin Pan, Xiaochuan Nj, Jian-Tao Sun, Qiang Yang, and Zheng Chen, (2010). Cross-
domain sentiment classification via spectral feature alignment. In WIWWIW, pages 751-760.
DOI: 10.1145/1772690.1772767. 22

German I. Parisi, Ronald Kembker, Jose L. Part, Christopher Kanan, and Stefan Wermter,

(2018a). Continual lifelong learning with neural networks: A review. ArXiv Preprint
ArXiv:1802.07569. 7,57

German I. Parisi, Jun Tani, Cornelius Weber, and Stefan Wermter, (2017). Lifelong learning

of human actions with deep neural network self-organization. Neural Networks, 96:137-149.
DOI: 10.1016/j.neunet.2017.09.001. 59

German 1. Parisi, Jun Tani, Cornelius Weber, and Stefan Wermter, (2018b). Lifelong learn-
ing of spatiotemporal representations with dual-memory recurrent self-organization. ArXiv
Preprint ArXiv:1805.10966. 58, 75

Jeffrey Pennington, Richard Socher, and Christopher D. Manning, (2014). Glove: Global vec-
tors for word representation. In EMNLP, pages 1532-1543. DOI: 10.3115/v1/d14-1162.
51,121

Anastasia Pentina and Christoph H. Lampert, (2014). A PAC-Bayesian bound for lifelong
learning. In ICML, pages 991-999. 7, 36

Jan Peters and Stefan Schaal, (2006). Policy gradient methods for robotics. In IROS,
pages 2219-2225. DOI: 10.1109/ir0s.2006.282564. 147

http://dx.doi.org/10.1109/jproc.2015.2483592
http://dx.doi.org/10.1109/jproc.2015.2483592
http://dx.doi.org/10.1109/icvgip.2008.47
http://dx.doi.org/10.1109/tkde.2009.191
http://dx.doi.org/10.1145/1772690.1772767
http://dx.doi.org/10.1016/j.neunet.2017.09.001
http://dx.doi.org/10.3115/v1/d14-1162
http://dx.doi.org/10.1109/iros.2006.282564

BIBLIOGRAPHY 177

Jan Peters and J. Andrew Bagnell, (2011). Policy gradient methods. In Encyclopedia of Machine
Learning, pages 774-776, Springer. DOI: 10.1007/978-1-4899-7502-7_646-1. 147

James Petterson, Alex Smola, Tibério Caetano, Wray Buntine, and Shravan Narayanamurthy,
(2010). Word features for latent Dirichlet allocation. In NIPS, pages 1921-1929. 92

John Platt et al., (1999). Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3), pages 61-74.
DOI: 10.1016/j.knosys.2012.04.006. 82

Robi Polikar, Lalita Upda, Satish S. Upda, and Vasant Honavar, (2001). Learn++: An incremen-
tal learning algorithm for supervised neural networks. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 31(4):497-508. DOI: 10.1109/5326.983933.
58

Dean A. Pomerleau, (2012). Neural Network Perception for Mobile Robot Guidance, vol. 239.
Springer Science and Business Media. DOI: 10.1007/978-1-4615-3192-0. 53

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen, (2011). Opinion word expansion and target
extraction through double propagation. Computational Linguistics, 37(1), pages 9-27. DOI:
10.1162/coli_a_00034. 118

Ariadna Quattoni and Antonio Torralba, (2009). Recognizing indoor scenes. In CVPR,
pages 413-420, IEEE. DOI: 10.1109/cvpr.2009.5206537. 75

J. Ross Quinlan and R. Mike Cameron-Jones, (1993). FOIL: A midterm report. In ECML,
pages 3-20. DOI: 10.1007/3-540-56602-3_124. 116, 117

Alec Radford, Luke Metz, and Soumith Chintala, (2015). Unsupervised representation learning
with deep convolutional generative adversarial networks. ArXiv Preprint ArXiv:1511.06434.
70

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng, (2007). Self-
taught learning: Transfer learning from unlabeled data. In ICML, pages 759-766. DOI:
10.1145/1273496.1273592. 156

Steve Ramirez, Xu Liu, Pei-Ann Lin, Junghyup Suh, Michele Pignatelli, Roger L. Redondo,
Tomis J. Ryan, and Susumu Tonegawa, (2013). Creating a false memory in the hippocampus.
Science, 341(6144):387-391. 70
DOI: 10.1126/science.1239073.

Amal Rannen Ep Triki, Rahaf Aljundi, Matthew Blaschko, and Tinne Tuytelaars, (2017). En-
coder based lifelong learning. In ICCV 2017, pages 1320-1328. DOI: 10.1109/iccv.2017.148.
57,70, 74

http://dx.doi.org/10.1007/978-1-4899-7502-7_646-1
http://dx.doi.org/10.1016/j.knosys.2012.04.006
http://dx.doi.org/10.1109/5326.983933
http://dx.doi.org/10.1007/978-1-4615-3192-0
http://dx.doi.org/10.1162/coli_a_00034
http://dx.doi.org/10.1162/coli_a_00034
http://dx.doi.org/10.1109/cvpr.2009.5206537
http://dx.doi.org/10.1007/3-540-56602-3_124
http://dx.doi.org/10.1145/1273496.1273592
http://dx.doi.org/10.1145/1273496.1273592
http://dx.doi.org/10.1126/science.1239073
http://dx.doi.org/10.1109/iccv.2017.148

178 BIBLIOGRAPHY

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR,
2017. 34

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H. Lampert, (2017). iCaRL:
Incremental classifier and representation learning. In CVPR, pages 5533-5542. DOI:
10.1109/cvpr.2017.587. 57, 64, 65, 74, 75

Fiona M. Richardson and Michael S. C. Thomas, (2008). Ceritical periods and catastrophic
interference effects in the development of self-organizing feature maps. Developmental Science,

11(3):371-389. DOI: 10.1111/j.1467-7687.2008.00682.x. 56

Leonardo Rigutini, Marco Maggini, and Bing Liu, (2005). An EM based training algorithm for
cross-language text categorization. In Proc. of the IEEE/WIC/ACM International Conference
on Web Intelligence, pages 529-535. DOI: 10.1109/wi.2005.29. 23, 24

Mark Bishop Ring, (1994). Continual learning in reinforcement environments. Ph.D. thesis,
University of Texas at Austin Austin, TX. 59

Mark B. Ring, (1998). CHILD: A first step towards continual learning. In Learning to Learn,
pages 261-292. DOI: 10.1007/978-1-4615-5529-2_11. 8, 140

Anthony Robins, (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Science, 7(2):123-146. DOI: 10.1080/09540099550039318. 58, 71

Amir Rosenfeld and John K. Tsotsos, (2017). Incremental Learning Through Deep Adaptation.
ArXiv Preprint ArXiv:1705.04228. 57, 74

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, (1985). Learning in-
ternal representations by error propagation. Technical Report, DTIC Document. DOI:
10.21236/ada164453. 39

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al., (2015). Imagenet large
scale visual recognition challenge. International Journal of Computer Vision, 115(3):211-252.
DOI: 10.1007/s11263-015-0816-y. 56, 75

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell,
(2015). Policy distillation. ArXiv Preprint ArXiv:1511.06295. 61

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell, (2016). Progressive neural networks.
ArXiv Preprint ArXiv:1606.04671. 57,59, 61, 75

http://dx.doi.org/10.1109/cvpr.2017.587
http://dx.doi.org/10.1109/cvpr.2017.587
http://dx.doi.org/10.1111/j.1467-7687.2008.00682.x
http://dx.doi.org/10.1109/wi.2005.29
http://dx.doi.org/10.1007/978-1-4615-5529-2_11
http://dx.doi.org/10.1080/09540099550039318
http://dx.doi.org/10.21236/ada164453
http://dx.doi.org/10.21236/ada164453
http://dx.doi.org/10.1007/s11263-015-0816-y

BIBLIOGRAPHY 179

Paul Ruvolo and Eric Eaton, (2013a). Active task selection for lifelong machine learning. In
AAAI pages 862-868. 7, 40, 45, 46

Paul Ruvolo and Eric Eaton, (2013b). ELLA: An efficient lifelong learning algorithm. In
ICML, pages 507-515. 7, 8, 14, 15, 16, 27, 36, 37, 40, 41, 42, 44, 53, 140, 146, 150

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In ICML, pages 1842-1850, 2016.
33

Walter J. Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E. Boult,
(2013). Toward open set recognition. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 35(7), pages 1757-1772. DOI: 10.1109/tpami.2012.256. 82, 83

Juergen Schmidhuber, (2018). One big net for everything. 4rXiv:1802.08864 [cs.AI], pages 1—
17. 58

Mark Schmidt, Glenn Fung, and Rémer Rosales, (2007). Fast optimization methods for L1
regularization: A comparative study and two new approaches. In ECML, pages 286-297.
DOI: 10.1007/978-3-540-74958-5_28. 28

Anton Schwaighofer, Volker Tresp, and Kai Yu, (2004). Learning Gaussian process kernels via
hierarchical Bayes. In NIPS, pages 1209-1216. 22

Ari Seft, Alex Beatson, Daniel Suo, and Han Liu, (2017). Continual learning in generative
adversarial nets. ArXiv Preprint ArXiv:1705.08395. 58, 74

Michael L. Seltzer and Jasha Droppo, (2013). Multi-task learning in deep neural networks
for improved phoneme recognition. In IEEE International Conference on Acoustics, Speech and

Signal Processing, pages 6965-6969. DOI: 10.1109/icassp.2013.6639012. 30

Tulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, and Joelle Pineau, (2015).
A survey of available corpora for building data-driven dialogue systems. ArXiv Preprint
ArXiv:1512.05742. 131

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou, (2018). Overcoming
catastrophic forgetting with hard attention to the task. ArXiv Preprint ArXiv:1801.01423.
58

Nicholas Shackel, (2007). Bertrand’s paradox and the principle of indifference. Philosophy of
Science, 74(2), pages 150-175. DOI: 10.1086/519028. 82

Donald Shepard, (1968). A two-dimensional interpolation function for irregularly-spaced data.
In Proc. of the 23rd ACM National Conference, pages 517-524. DOI: 10.1145/800186.810616.
37

http://dx.doi.org/10.1109/tpami.2012.256
http://dx.doi.org/10.1007/978-3-540-74958-5_28
http://dx.doi.org/10.1109/icassp.2013.6639012
http://dx.doi.org/10.1086/519028
http://dx.doi.org/10.1145/800186.810616

180 BIBLIOGRAPHY

Hidetoshi Shimodaira, (2000). Improving predictive inference under covariate shift by weight-
ing the log-likelihood function. Journal of Statistical Planning and Inference, 90(2), pages 227—
244. DOI: 10.1016/s0378-3758(00)00115-4. 47

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim, (2017). Continual learning with
deep generative replay. In NIPS, pages 2994-3003. 57, 58, 70, 71, 74

Lei Shu, Hu Xu, and Bing Liu, (2017a). Doc: Deep open classification of text documents. In
EMNLP. DOI: 10.18653/v1/d17-1314. 7, 79, 85, 86

Lei Shu, Bing Liu, Hu Xu, and Annice Kim, (2016). Lifelong-RL: Lifelong relaxation labeling
for separating entities and aspects in opinion targets using lifelong graph labeling. In EMNLP.
7,14, 15, 16, 127, 129, 154

Lei Shu, Hu Xu, and Bing Liu, (2018). Unseen class discovery in open-world classification. In
ArXiv:1801.05609 [cs.LG]. 88, 89

Lei Shu, Hu Xu, and Bing Liu, (2017b). Lifelong learning CRF for supervised aspect extraction.
In Proc. of Annual Meeting of the Association for Computational Linguistics (ACL, Short Paper).
DOI: 10.18653/v1/p17-2023. 7, 14, 25, 111, 123, 129

Daniel L. Silver and Robert E. Mercer, (1996). The parallel transfer of task knowledge using
dynamic learning rates based on a measure of relatedness. Connection Science, 8(2), pages 277

294. DOI: 10.1007/978-1-4615-5529-2_9. 7, 36

Daniel L. Silver and Robert E. Mercer, (2002). The task rehearsal method of life-long learning:
Overcoming impoverished data. In Proc. of the 15th Conference of the Canadian Society for
Computational Studies of Intelligence on Advances in Artificial Intelligence, pages 90-101. DOI:
10.1007/3-540-47922-8_8. 7, 15, 36, 39

Daniel L. Silver and Ryan Poirier, (2004). Sequential consolidation of learned task knowledge.
In Conference of the Canadian Society for Computational Studies of Intelligence, pages 217-232.
DOI: 10.1007/978-3-540-24840-8_16. 39

Daniel L. Silver and Ryan Poirier, (2007). Context-sensitive MTL networks for machine life-
long learning. In FLAIRS Conference, pages 628-633. 39

Daniel L. Silver, Qiang Yang, and Lianghao Li, (2013). Lifelong machine learning systems:
Beyond learning algorithms. In A4AI Spring Symposium: Lifelong Machine Learning, pages 49—
55. 8

Daniel L. Silver, Geoffrey Mason, and Lubna Eljabu, (2015). Consolidation using sweep task
rehearsal: Overcoming the stability-plasticity problem. In Advances in Artificial Intelligence,
vol. 9091, pages 307-322. DOI: 10.1007/978-3-319-18356-5_27. 7, 15, 36

http://dx.doi.org/10.1016/s0378-3758(00)00115-4
http://dx.doi.org/10.18653/v1/d17-1314
http://dx.doi.org/10.18653/v1/p17-2023
http://dx.doi.org/10.1007/978-1-4615-5529-2_9
http://dx.doi.org/10.1007/3-540-47922-8_8
http://dx.doi.org/10.1007/3-540-47922-8_8
http://dx.doi.org/10.1007/978-3-540-24840-8_16
http://dx.doi.org/10.1007/978-3-319-18356-5_27

BIBLIOGRAPHY 181
David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis, (2016).
Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587),
pages 484-489. DOI: 10.1038/nature16961. 139, 152

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al., (2017). Master-
ing the game of Go without human knowledge. Nature, 550(7676):354. DOI: 10.1038/na-
ture24270. 139, 152

Patrice Simard, Bernard Victorri, Yann LeCun, and John Denker, (1992). Tangent prop-a

formalism for specifying selected invariances in an adaptive network. In NIPS, pages 895—
903. 40

Rupesh K. Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, and Jirgen

Schmidhuber, (2013). Compete to compute. In NIPS, pages 2310-2318. 72

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel, (2012). Man vs. com-
puter: Benchmarking machine learning algorithms for traffic sign recognition. Neura/ Net-
works, 32:323-332. DOI: 10.1016/j.neunet.2012.02.016. 75

Robert Stickgold and Matthew P. Walker, (2007). Sleep-dependent memory consolidation and
reconsolidation. Sleep Medicine, 8(4):331-343. DOI: 10.1016/j.sleep.2007.03.011. 70

Malcolm Strens, (2000). A Bayesian framework for reinforcement learning. In ICML,
pages 943-950.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum, (2007). Yago: A core of semantic
knowledge. In WIWW, pages 697-706. DOI: 10.1145/1242572.1242667. 144

Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V. Buenau, and Motoaki
Kawanabe, (2008). Direct importance estimation with model selection and its application
to covariate shift adaptation. In NIPS, pages 1433-1440. 111

Richard S. Sutton and Andrew G. Barto, (1998). Reinforcement Learning: An Introduction. MIT
press. DOI: 10.1109/tnn.1998.712192. 21

Richard S. Sutton, David A. McAllester, Satinder P. Singh, Yishay Mansour, et al., (2000).
Policy gradient methods for reinforcement learning with function approximation. In NIPS,

pages 1057-1063. 32, 139, 144

http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1016/j.neunet.2012.02.016
http://dx.doi.org/10.1016/j.sleep.2007.03.011
http://dx.doi.org/10.1145/1242572.1242667
http://dx.doi.org/10.1109/tnn.1998.712192

182 BIBLIOGRAPHY

Richard S. Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M. Pilarski, Adam
White, and Doina Precup, (2011). Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction. In 7he 10th International Conference
on Autonomous Agents and Multiagent Systems, vol. 2, pages 761-768. 146, 147

Csaba Szepesviri, (2010). Algorithms for reinforcement learning. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning, 4(1), pages 1-103. DOI:
10.2200/500268ed1v01y201005aim009. 32

Fumihide Tanaka and Masayuki Yamamura, (1997). An approach to lifelong reinforcement
learning through multiple environments. In 6¢b European Workshop on Learning Robots,
pages 93-99. 32

Matthew E. Taylor and Peter Stone, (2007). Cross-domain transfer for reinforcement learning.
In ICML, pages 879-886. DOI: 10.1145/1273496.1273607. 8, 15, 139, 140, 141, 152

Matthew E. Taylor and Peter Stone, (2009). Transfer learning for reinforcement learning
domains: A survey. The Journal of Machine Learning Research, 10, pages 1633-1685. DOI:
10.1007/978-3-642-01882-4. 32

Matthew E. Taylor, Peter Stone, and Yaxin Liu, (2007). Transfer learning via inter-task

mappings for temporal difference learning. 7he Journal of Machine Learning Research, 8,
pages 2125-2167.

Matthew E. Taylor, Nicholas K. Jong, and Peter Stone, (2008). Transferring instances for
model-based reinforcement learning. In ECML PKDD, pages 488-505. DOI: 10.1007/978-
3-540-87481-2_32. 10, 21, 32

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie Mannor, (2017). A
deep hierarchical approach to lifelong learning in minecraft. In 4441, vol. 3, page 6. 151

William R. Thompson, (1933). On the likelihood that one unknown probability exceeds an-
other in view of the evidence of two samples. Biometrika, 25(3/4), pages 285-294. DOI:
10.2307/2332286. 32

Sebastian Thrun, (1996a). Explanation-based Neural Network Learning: A Lifelong Learning Ap-
proach. Kluwer Academic Publishers. DOI: 10.1017/50269888999211034. 140, 152

Sebastian Thrun, (1996b). Is learning the n-th thing any easier than learning the first? In NIPS,
pages 640-646. 144

Sebastian Thrun and Tom M. Mitchell, (1995). Lifelong Robot Learning. In: L. Steels, ed-
itors, The Biology and Technology of Intelligent Autonomous Agents, vol 144. Springer. DOI:
10.1007/978-3-642-79629-6_7. 39

http://dx.doi.org/10.2200/s00268ed1v01y201005aim009
http://dx.doi.org/10.2200/s00268ed1v01y201005aim009
http://dx.doi.org/10.1145/1273496.1273607
http://dx.doi.org/10.1007/978-3-642-01882-4
http://dx.doi.org/10.1007/978-3-642-01882-4
http://dx.doi.org/10.1007/978-3-540-87481-2_32
http://dx.doi.org/10.1007/978-3-540-87481-2_32
http://dx.doi.org/10.2307/2332286
http://dx.doi.org/10.2307/2332286
http://dx.doi.org/10.1017/s0269888999211034
http://dx.doi.org/10.1007/978-3-642-79629-6_7
http://dx.doi.org/10.1007/978-3-642-79629-6_7

BIBLIOGRAPHY 183

Sebastian Thrun. Lifelong learning algorithms. In S. Thrun and L. Pratt, editors, Learning To
Learn, pages 181-209. Kluwer Academic Publishers, 1998. 6, 9, 15, 36, 37, 38, 40, 53

Geoftrey G. Towell and Jude W. Shavlik, (1994). Knowledge-based artificial neural networks.
Artificial Intelligence, 70(1-2), pages 119-165. DOI: 10.1016/0004-3702(94)90105-8. 6, 8,
140

oseph Turian, Lev Ratinov, and Yoshua Bengio, (2010). Word representations: A simple and
p g P p
general method for semi-supervised learning. In ACL, pages 384-394. 33

Rasul Tutunov, Julia El-Zini, Haitham Bou-Ammar, and Ali Jadbabaie, (2017). Distributed
lifelong reinforcement learning with sub-linear regret. In Decision and Control (CDC), IEEE
56th Annual Conference on, pages 2254-2259. DOI: 10.1109/c¢dc.2017.8263978.

Michel F. Valstar, Bihan Jiang, Marc Mehu, Maja Pantic, and Klaus Scherer, (2011). The first
facial expression recognition and analysis challenge. In IEEFE International Conference on Au-
tomatic Face and Gesture Recognition, pages 921-926. DOI: 10.1109/fg.2011.5771374. 51,
120

Roby Velez and Jeff Clune, (2017). Diffusion-based neuromodulation can eliminate catastrophic
forgetting in simple neural networks. PlS One, 12(11):0187736. DOI: 10.1371/jour-
nal.pone.0187736. 140

Ragav Venkatesan, Hemanth Venkateswara, Sethuraman Panchanathan, and Baoxin Li, (2017).

A strategy for an uncompromising incremental learner. ArXiv Preprint ArXiv:1705.00744.
53

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. In Artificial
Intelligence Review, 18(2):77-95, 2002. 58

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol, (2008). Ex-
tracting and composing robust features with denoising autoencoders. In ICML, pages 1096—
1103. DOI: 10.1145/1390156.1390294. 58, 74

Oriol Vinyals and Quoc Le, (2015). A neural conversational model. ~ ArXiv Preprint
ArXiv:1506.05869. 33

Alexander Waibel, Toshiyuki Hanazawa, Geofrey Hinton, Kiyohiro Shikano, and Kevin J.
Lang, (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions
on Acoustics, Speech, and Signal Processing, pages 328-339. DOI: 10.1016/b978-0-08-051584-
7.50037-1. 24

Sida I Wang, Percy Liang, and Christopher D Manning. Learning language games through
interaction. In arXiv preprint arXiv:1606.02447, 2016. 131

http://dx.doi.org/10.1016/0004-3702(94)90105-8
http://dx.doi.org/10.1109/cdc.2017.8263978
http://dx.doi.org/10.1109/fg.2011.5771374
http://dx.doi.org/10.1371/journal.pone.0187736
http://dx.doi.org/10.1371/journal.pone.0187736
http://dx.doi.org/10.1145/1390156.1390294
http://dx.doi.org/10.1016/b978-0-08-051584-7.50037-1
http://dx.doi.org/10.1016/b978-0-08-051584-7.50037-1

184 BIBLIOGRAPHY

Chang Wang and Sridhar Mahadevan, (2008). Manifold alignment using procrustes analysis.
In ICML, pages 1120-1127. DOI: 10.1145/1390156.1390297. 30

Chang Wang and Sridhar Mahadevan, (2009). Manifold alignment without correspondence.
In IJCAI, pages 1273-1278. 34

Richard C. Wang and William W. Cohen, (2009). Character-level analysis of semi-
structured documents for set expansion. In EMNLP, pages 1503-1512. DOI:
10.3115/1699648.1699697. 22

Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans, (2005). Bayesian
sparse sampling for on-line reward optimization. In ICML, pages 956-963. DOI:
10.1145/1102351.1102472. 151

Shuai Wang, Zhiyuan Chen, and Bing Liu, (2016). Mining aspect-specific opinion using a
holistic lifelong topic model. In WIWW. DOI: 10.1145/2872427.2883086. 116

Christopher J. C. H. Watkins and Peter Dayan, (1992). Q-learning. In Machine Learning.
DOI: 10.1007/b£f00992698. 144

Xing Wei and W. Bruce Croft, (2006). LDA-based document models for ad hoc retrieval. In
SIGIR, pages 178-185. DOI: 10.1145/1148170.1148204. 7, 91, 94, 109, 155

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie,
and Pietro Perona, (2010). Caltech-UCSD birds 200. 135
91

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and Dekang
Lin, (2014). Knowledge base completion via search-based question answering. In WIWW.
DOI: 10.1145/2566486.2568032. 73, 74

Marco Wiering and Martijn Van Otterlo. (2012). Reinforcement learning. Adaptation, Learn-
ing, and Optimization, 12. DOI: 10.1007/978-3-642-27645-3. 131

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli, (2007). Multi-task rein-
forcement learning: A hierarchical Bayesian approach. In ICML, pages 1015-1022. DOI:
10.1145/1273496.1273624. 32

Rui Xia, Jie Jiang, and Huihui He, (2017). Distantly supervised lifelong learning for large-scale
social media sentiment analysis. IEEE Transactions on Affective Computing, 8(4):480-491.
DOI: 10.1109/taffc.2017.2771234. 8, 14, 15, 16, 140, 142, 143, 146, 152

Pengtao Xie, Diyi Yang, and Eric P. Xing, (2015). Incorporating word correlation knowledge
into topic modeling. In NAACL-HLT, pages 725-734. DOI: 10.3115/v1/n15-1074. 51

http://dx.doi.org/10.1145/1390156.1390297
http://dx.doi.org/10.3115/1699648.1699697
http://dx.doi.org/10.3115/1699648.1699697
http://dx.doi.org/10.1145/1102351.1102472
http://dx.doi.org/10.1145/1102351.1102472
http://dx.doi.org/10.1145/2872427.2883086
http://dx.doi.org/10.1007/bf00992698
http://dx.doi.org/10.1145/1148170.1148204
http://dx.doi.org/10.1145/2566486.2568032
http://dx.doi.org/10.1007/978-3-642-27645-3
http://dx.doi.org/10.1145/1273496.1273624
http://dx.doi.org/10.1145/1273496.1273624
http://dx.doi.org/10.1109/taffc.2017.2771234
http://dx.doi.org/10.3115/v1/n15-1074

BIBLIOGRAPHY 185
Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang, Ming Zhou, and Wei-Ying Ma, (2017).

Topic aware neural response generation. In A44I. 92

Hu Xu, Bing Liu, Lei Shu, and Philip Yu, (2018). Lifelong domain word embedding via meta-
learning. In Proc. of 27th International Joint Conference on Artificial Intelligence (IJCAI). 131

Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram, (2007). Multi-task learning
for classification with Dirichlet process priors. The Journal of Machine Learning Research, 8,

pages 35-63. 14, 16, 36, 51, 52, 53

Wei Yang, Wei Lu, and Vincent Zheng, (2017). A simple regularization-based algorithm for

learning cross-domain word embeddings. In EMNLP. https://www.aclweb.org/antho
logy/D17-1311 DOI: 10.18653/v1/d17-1312. 27, 28, 53

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson, (2014). How transferable are
teatures in deep neural networks? In NIPS, pages 3320-3328. 52

Kai Yu, Volker Tresp, and Anton Schwaighofer, (2005). Learning Gaussian processes from
multiple tasks. In ICML, pages 1012-1019. DOI: 10.1145/1102351.1102479. 24

Shipeng Yu, Volker Tresp, and Kai Yu, (2007). Robust multi-task learning with T-processes.
In ICML, pages 1103-1110. DOI: 10.1145/1273496.1273635. 26

Bianca Zadrozny, (2004). Learning and evaluating classifiers under sample selection bias. In

ICML, page 114, ACM. DOI: 10.1145/1015330.1015425. 27

Matthew D. Zeiler, M. Ranzato, Rajat Monga, Min Mao, Kun Yang, Quoc Viet Le, Patrick
Nguyen, Alan Senior, Vincent Vanhoucke, Jeffrey Dean, et al., (2013). On rectified linear
units for speech processing. In Acoustics, Speech and Signal Processing (ICASSP), IEEE Inter-
national Conference on, pages 3517-3521. DOI: 10.1109/icassp.2013.6638312. 47

Friedemann Zenke, Ben Poole, and Surya Ganguli, (2017). Continual learning through synaptic
intelligence. In International Conference on Machine Learning, pages 3987-3995. 69

Yusen Zhan, Haitham Bou Ammar, and Matthew E. Taylor, (2017). Scalable lifelong rein-
forcement learning. Pattern Recognition, 72:407-418. DOI: 10.1016/j.patcog.2017.07.031.
58, 74

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang, (2014). Facial landmark
detection by deep multi-task learning. In ECCV, pages 94-108. DOI: 10.1007/978-3-319-
10599-4_7. 140

Wayne Xin Zhao, Jing Jiang, Hongfei Yan, and Xiaoming Li, (2010). Jointly modeling aspects
and opinions with a MaxEnt-LDA hybrid. In EMNLP, pages 56—65. 30

https://www.aclweb.org/anthology/D17-1311
https://www.aclweb.org/anthology/D17-1311
http://dx.doi.org/10.18653/v1/d17-1312
http://dx.doi.org/10.1145/1102351.1102479
http://dx.doi.org/10.1145/1273496.1273635
http://dx.doi.org/10.1145/1015330.1015425
http://dx.doi.org/10.1109/icassp.2013.6638312
http://dx.doi.org/10.1016/j.patcog.2017.07.031
http://dx.doi.org/10.1007/978-3-319-10599-4_7
http://dx.doi.org/10.1007/978-3-319-10599-4_7

186 BIBLIOGRAPHY

Fengwei Zhou, Bin Wu, and Zhenguo Li. Deep Meta-Learning: Learning to Learn in the
Concept Space. In arXiv preprint arXiv:1802.03596, 2018. 91

George Kingsley Zipf, (1932). Selected Papers of the Principle of Relative Frequency in Language.
Harvard University Press. DOI: 10.4159/harvard.9780674434929. 34
104

http://dx.doi.org/10.4159/harvard.9780674434929

187

Authors’ Biographies

ZHIYUAN CHEN
Zhiyuan Chen completed his Ph.D., titled “Lifelong Machine Learning for Topic Modeling

and Classification”, at the University of Illinois at Chicago under the direction of Professor
Bing Liu. He joined Google in 2016. His research interests include machine learning, natu-
ral language processing, text mining, data mining, and auction algorithms. He has proposed
several lifelong learning algorithms to automatically mine information from text documents,
and published more than 15 full research papers in premier conferences such as KDD, ICML,
ACL, WWW, IJCAI, and AAAI He has also given three tutorials about lifelong machine
learning at IJCAI-2015, KDD-2016, and EMNLP-2016. He has served as a PC member for
many prestigious natural language processing, data mining, Al, and Web research conferences.
In recognition of his academic contributions, he was awarded Fifty For The Future” Award from

the Illinois Technology Foundation in 2015.

BING LIU

Bing Liu is a Distinguished Professor of Computer Science at the University of Illinois at
Chicago. He received his Ph.D. in Artificial Intelligence from the University of Edinburgh.
His research interests include lifelong machine learning, sentiment analysis and opinion min-
ing, data mining, machine learning, and natural language processing. He has published exten-
sively in top conferences and journals in these areas. Two of his papers have received 10-year
Test-of-Time awards from KDD, the premier conference of data mining and data science. He
has also authored three books: one on Web data mining and two on sentiment analysis. Some
of his work has been widely reported in the popular press, including a front-page article in
the New York Times. On professional services, he served as the Chair of ACM SIGKDD from
2013-2017, as program chair of many leading data mining related conferences, including KDD,
ICDM, CIKM, WSDM, SDM, and PAKDD, as associate editor of many leading journals such
as TKDE, TKDD, TWEB, and DMKD, and as area chair or senior PC member of numerous
natural language processing, Al, Web research, and data mining conferences. He is a Fellow of

the ACM, AAAI, and IEEE.

	Preface
	Acknowledgments
	Introduction
	Classic Machine Learning Paradigm
	Motivating Examples
	A Brief History of Lifelong Learning
	Definition of Lifelong Learning
	Types of Knowledge and Key Challenges
	Evaluation Methodology and Role of Big Data
	Outline of the Book

	Related Learning Paradigms
	Transfer Learning
	Structural Correspondence Learning
	Naïve Bayes Transfer Classifier
	Deep Learning in Transfer Learning
	Difference from Lifelong Learning

	Multi-Task Learning
	Task Relatedness in Multi-Task Learning
	GO-MTL: Multi-Task Learning using Latent Basis
	Deep Learning in Multi-Task Learning
	Difference from Lifelong Learning

	Online Learning
	Difference from Lifelong Learning

	Reinforcement Learning
	Difference from Lifelong Learning

	Meta Learning
	Difference from Lifelong Learning

	Summary

	Lifelong Supervised Learning
	Definition and Overview
	Lifelong Memory-Based Learning
	Two Memory-Based Learning Methods
	Learning a New Representation for Lifelong Learning

	Lifelong Neural Networks
	MTL Net
	Lifelong EBNN

	ELLA: An Efficient Lifelong Learning Algorithm
	Problem Setting
	Objective Function
	Dealing with the First Inefficiency
	Dealing with the Second Inefficiency
	Active Task Selection

	Lifelong Naive Bayesian Classification
	Naïve Bayesian Text Classification
	Basic Ideas of LSC
	LSC Technique
	Discussions

	Domain Word Embedding via Meta-Learning
	Summary and Evaluation Datasets

	Continual Learning and Catastrophic Forgetting
	Catastrophic Forgetting
	Continual Learning in Neural Networks
	Learning without Forgetting
	Progressive Neural Networks
	Elastic Weight Consolidation
	iCaRL: Incremental Classifier and Representation Learning
	Incremental Training
	Updating Representation
	Constructing Exemplar Sets for New Classes
	Performing Classification in iCaRL

	Expert Gate
	Autoencoder Gate
	Measuring Task Relatedness for Training
	Selecting the Most Relevant Expert for Testing
	Encoder-Based Lifelong Learning

	Continual Learning with Generative Replay
	Generative Adversarial Networks
	Generative Replay

	Evaluating Catastrophic Forgetting
	Summary and Evaluation Datasets

	Open-World Learning
	Problem Definition and Applications
	Center-Based Similarity Space Learning
	Incrementally Updating a CBS Learning Model
	Testing a CBS Learning Model
	CBS Learning for Unseen Class Detection

	DOC: Deep Open Classification
	Feed-Forward Layers and the 1-vs.-Rest Layer
	Reducing Open-Space Risk
	DOC for Image Classification
	Unseen Class Discovery

	Summary and Evaluation Datasets

	Lifelong Topic Modeling
	Main Ideas of Lifelong Topic Modeling
	LTM: A Lifelong Topic Model
	LTM Model
	Topic Knowledge Mining
	Incorporating Past Knowledge
	Conditional Distribution of Gibbs Sampler

	AMC: A Lifelong Topic Model for Small Data
	Overall Algorithm of AMC
	Mining Must-link Knowledge
	Mining Cannot-link Knowledge
	Extended Pólya Urn Model
	Sampling Distributions in Gibbs Sampler

	Summary and Evaluation Datasets

	Lifelong Information Extraction
	NELL: A Never-Ending Language Learner
	NELL Architecture
	Extractors and Learning in NELL
	Coupling Constraints in NELL

	Lifelong Opinion Target Extraction
	Lifelong Learning through Recommendation
	AER Algorithm
	Knowledge Learning
	Recommendation using Past Knowledge

	Learning on the Job
	Conditional Random Fields
	General Dependency Feature
	The L-CRF Algorithm

	Lifelong-RL: Lifelong Relaxation Labeling
	Relaxation Labeling
	Lifelong Relaxation Labeling

	Summary and Evaluation Datasets

	Continuous Knowledge Learning in Chatbots
	LiLi: Lifelong Interactive Learning and Inference
	Basic Ideas of LiLi
	Components of LiLi
	A Running Example
	Summary and Evaluation Datasets

	Lifelong Reinforcement Learning
	Lifelong Reinforcement Learning through Multiple Environments
	Acquiring and Incorporating Bias

	Hierarchical Bayesian Lifelong Reinforcement Learning
	Motivation
	Hierarchical Bayesian Approach
	MTRL Algorithm
	Updating Hierarchical Model Parameters
	Sampling an MDP

	PG-ELLA: Lifelong Policy Gradient Reinforcement Learning
	Policy Gradient Reinforcement Learning
	Policy Gradient Lifelong Learning Setting
	Objective Function and Optimization
	Safe Policy Search for Lifelong Learning
	Cross-domain Lifelong Reinforcement Learning

	Summary and Evaluation Datasets

	Conclusion and Future Directions
	Bibliography
	Authors' Biographies
	Blank Page

