Solution of Part 1 of Assignment \#2 (1 problem, 50 points)

(Course: CS 401)

Problem 1 (50 points): A string \mathcal{S} over an alphabet Σ is a concatenation of some symbols from Σ. For example, if $\Sigma=\{a, b, c\}$ then both abacaabca and cbaaab are strings over Σ.

For two strings \mathcal{S} and \mathcal{T}, we say that \mathcal{T} is a substring of \mathcal{S} if \mathcal{T} can be obtained from \mathcal{S} by deleting one or more symbols from \mathcal{S}. For example, if $\mathcal{T}=c a c$ and $\mathcal{S}=$ babcbaabbccca then \mathcal{T} is a substring of \mathcal{S} since

Given two strings $\mathcal{S}=s_{1} s_{2} \ldots s_{n}$ and $\mathcal{T}=t_{1} t_{2} \ldots t_{m}$ over some alphabet Σ, the goal of this problem is to design a greedy algorithm that decides in $O(m+n)$ time if \mathcal{T} is a substring of \mathcal{S}. For this purpose, answer the following questions.
(a) [15 points] Describe a greedy algorithm that, given two strings $\mathcal{S}=s_{1} s_{2} \ldots s_{n}$ and $\mathcal{T}=$ $t_{1} t_{2} \ldots t_{m}$ over some alphabet Σ, does the following:

- decides if \mathcal{T} is a substring of \mathcal{S} and outputs a "yes" or "no" response accordingly, and
- if \mathcal{T} is a substring of \mathcal{S} then shows which symbols of \mathcal{S} are deleted to make it same as \mathcal{T}.

It suffices to describe the algorithm in pseudo-codes as long as sufficient details are provided. Justify why your algorithm runs in $O(m+n)$ time.
(b) [35 points] Prove that your greedy algorithm works correctly. For this, you must show both of the following:
(b-1) [10 points] if your algorithm outputs "yes" then \mathcal{T} is a substring of \mathcal{S}, and
(b-2) [25 points] if \mathcal{T} is a substring of \mathcal{S} then your algorithm outputs "yes".

Solution: We give a greedy algorithm that finds the first character in S that is the same as t_{1}, matches these two characters, then finds the first character after this in S that is the same as t_{2}, and so on. The algorithm looks as follows (comments are enclosed with $(*$ and $*)$):

```
\(\left(* k_{1}, k_{2}, \ldots\right.\) denote the matches found so far \(\left.*\right)\)
\((* i\) denotes the current position in \(S, j\) denotes the current position in \(T *)\)
\(i \leftarrow 1, j \leftarrow 1\)
while \(i \leq n\) and \(j \leq m\) do
    if \(s_{i}=t_{j}\) then \(k_{j} \leftarrow i, i \leftarrow i+1, j \leftarrow j+1\) else \(i \leftarrow i+1\)
endwhile
if \(j=m+1\) then return the subsequence \(k_{1}, \ldots, k_{m}\)
    else return " \(T\) is not a substring of \(S\) "
```

The running time is $O(n)$: one iteration through the while look takes $O(1)$ time, and each iteration increments i, so there can be at most n iterations.

It is also clear that the algorithm finds a correct substring if it finds any solution. It is harder to show that if the algorithm fails to find a substring, then no substring exists. Assume that T is the same as the substring $s_{\ell_{1}}, \ldots, s_{\ell_{m}}$ of S. We prove by induction on j that the algorithm will succeed in finding a substring and will have $k_{j} \leq \ell_{j}$ for all $j=1, \ldots, m$. First consider $j=1$. The algorithm lets k_{1} be the first character in S that is the same as t_{1}, so we must have that $k_{1} \leq \ell_{1}$. Now consider the case when $j>1$. Assume that $j-1<m$ and assume by the induction hypothesis that the algorithm has $k_{j-1} \leq \ell_{j-1}$. The algorithm lets k_{j} be the first character in S after k_{j-1} that is the same as t_{j} if such a match exists. We know that ℓ_{j} is such a match and $\ell_{j}>\ell_{j-1} \geq k_{j-1}$. Thus $s_{\ell_{j}}=t_{j}$, and $\ell_{j}>k_{j-1}$. The algorithm finds the first such index, thus we get that $k_{j} \leq \ell_{j}$.

