Solution of Part 1 of Assignment #2 (1 problem, 50 points)
(Course: CS 401)

Problem 1 (50 points): A string S over an alphabet ¥ is a concatenation of some symbols from
Y. For example, if ¥ = {a, b, ¢} then both abacaabca and cbaaab are strings over 3.

For two strings S and 7, we say that T is a substring of S if 7 can be obtained from S by
deleting one or more symbols from S. For example, if 7 = cac and S = babcbaabbecca then T is
a substring of S since

N T

K}(?ﬁc?ﬁ){gﬁ)ﬁ)géc }xﬁ:e(issameas@

Given two strings S = s189...5, and T = tity...t,, over some alphabet X, the goal of this
problem is to design a greedy algorithm that decides in O(m + n) time if 7 is a substring of S. For
this purpose, answer the following questions.

(a) [15 points] Describe a greedy algorithm that, given two strings S = s155...5, and T =
tity .. . 1, over some alphabet >, does the following:

* decides if 7 is a substring of S and outputs a “yes” or “no” response accordingly, and
* if 7 is a substring of S then shows which symbols of S are deleted to make it same as 7.

It suffices to describe the algorithm in pseudo-codes as long as sufficient details are provided.
Justify why your algorithm runs in O(m + n) time.

(b) |35 points] Prove that your greedy algorithm works correctly. For this, you must show both of
the following:

(b-1) [10 points] if your algorithm outputs “yes” then 7 is a substring of S, and
(b-2) [25 points] if T is a substring of S then your algorithm outputs “yes”.

Solution: We give a greedy algorithm that finds the first character in S that is the same as ¢4,
matches these two characters, then finds the first character affer this in S that is the same as ¢, and
so on. The algorithm looks as follows (comments are enclosed with (x and x)):

(% k1, ks, ... denote the matches found so far %)
(* 7 denotes the current position in .S, 7 denotes the current position in 7" x)
141,51
while : < nand j < m do

ifs;=t;thenk; < i, i< i1+1, 7« j+1lelset<i+1
endwhile
if 7 = m + 1 then return the subsequence k1, ..., k,,

else return “7’ is not a substring of S”

1



The running time is O(n): one iteration through the while look takes O(1) time, and each iteration
increments 7, so there can be at most n iterations.

It is also clear that the algorithm finds a correct substring if it finds any solution. It is harder
to show that if the algorithm fails to find a substring, then no substring exists. Assume that 7" is
the same as the substring sy, , ..., s, of S. We prove by induction on j that the algorithm will
succeed in finding a substring and will have k; < ¢; forall j = 1,..., m. First consider j = 1.
The algorithm lets k; be the first character in S that is the same as ¢1, so we must have that k; < /.
Now consider the case when j > 1. Assume that j —1 < m and assume by the induction hypothesis
that the algorithm has £;_; < ¢;_;. The algorithm lets k; be the first character in S after k;_; that
is the same as ¢; if such a match exists. We know that ¢; is such a match and ¢; > ¢;_1 > k;_;.

Thus sy, = t;, and £; > k;_;. The algorithm finds the first such index, thus we get that k; < /;.



