Solution of Part 1 of Assignment #2 (1 problem, 50 points) (Course: CS 401)

Problem 1 (50 points): A string S over an alphabet Σ is a concatenation of some symbols from Σ . For example, if $\Sigma = \{a, b, c\}$ then both *abacaabca* and *cbaaab* are strings over Σ .

For two strings S and T, we say that T is a *substring* of S if T can be obtained from S by *deleting* one or more symbols from S. For example, if T = cac and S = babcbaabbccca then T is a *substring* of S since

Given two strings $S = s_1 s_2 \dots s_n$ and $T = t_1 t_2 \dots t_m$ over some alphabet Σ , the goal of this problem is to design a greedy algorithm that decides in O(m+n) time if T is a substring of S. For this purpose, answer the following questions.

(a) [15 points] Describe a greedy algorithm that, given two strings $S = s_1 s_2 \dots s_n$ and $T = t_1 t_2 \dots t_m$ over some alphabet Σ , does the following:

- decides if \mathcal{T} is a substring of \mathcal{S} and outputs a "yes" or "no" response accordingly, and
- if \mathcal{T} is a substring of \mathcal{S} then shows which symbols of \mathcal{S} are deleted to make it same as \mathcal{T} .

It suffices to describe the algorithm in pseudo-codes as long as sufficient details are provided. Justify why your algorithm runs in O(m + n) time.

(*b*) [35 points] Prove that your greedy algorithm works correctly. For this, you must show both of the following:

(b-1) [10 points] if your algorithm outputs "yes" then \mathcal{T} is a substring of \mathcal{S} , and

(b-2) [25 points] if \mathcal{T} is a substring of \mathcal{S} then your algorithm outputs "yes".

Solution: We give a greedy algorithm that finds the first character in S that is the same as t_1 , matches these two characters, then finds the first character *after this* in S that is the same as t_2 , and so on. The algorithm looks as follows (comments are enclosed with (* and *)):

 $(* k_1, k_2, ... denote the matches found so far *)$ (* i denotes the current position in S, j denotes the current position in T *) $i \leftarrow 1, j \leftarrow 1$ while $i \leq n$ and $j \leq m$ do if $s_i = t_j$ then $k_j \leftarrow i, i \leftarrow i + 1, j \leftarrow j + 1$ else $i \leftarrow i + 1$ endwhile if j = m + 1 then return the subsequence $k_1, ..., k_m$ else return "T is not a substring of S" The running time is O(n): one iteration through the while look takes O(1) time, and each iteration increments *i*, so there can be at most *n* iterations.

It is also clear that the algorithm finds a *correct* substring if it finds any solution. It is harder to show that if the algorithm fails to find a substring, then no substring exists. Assume that T is the same as the substring $s_{\ell_1}, \ldots, s_{\ell_m}$ of S. We prove by induction on j that the algorithm will succeed in finding a substring and will have $k_j \leq \ell_j$ for all $j = 1, \ldots, m$. First consider j = 1. The algorithm lets k_1 be the first character in S that is the same as t_1 , so we must have that $k_1 \leq \ell_1$. Now consider the case when j > 1. Assume that j-1 < m and assume by the induction hypothesis that the algorithm has $k_{j-1} \leq \ell_{j-1}$. The algorithm lets k_j be the first character in S after k_{j-1} that is the same as t_j if such a match exists. We know that ℓ_j is such a match and $\ell_j > \ell_{j-1} \geq k_{j-1}$. Thus $s_{\ell_j} = t_j$, and $\ell_j > k_{j-1}$. The algorithm finds the first such index, thus we get that $k_j \leq \ell_j$.