
Solution of Part 1 of Assignment #2 (1 problem, 50 points)
(Course: CS 401)

Problem 1 (50 points): A string S over an alphabet Σ is a concatenation of some symbols from
Σ. For example, if Σ = {a, b, c} then both abacaabca and cbaaab are strings over Σ.

For two strings S and T , we say that T is a substring of S if T can be obtained from S by
deleting one or more symbols from S . For example, if T = cac and S = babcbaabbccca then T is
a substring of S since

S︷ ︸︸ ︷
��AAb �Za ��AAb ccc ��AAb �Za aaa ��AAb ��AAb �Ac ccc �Ac �Za is same as

T︷︸︸︷
cac

Given two strings S = s1s2 . . . sn and T = t1t2 . . . tm over some alphabet Σ, the goal of this
problem is to design a greedy algorithm that decides inO(m+n) time if T is a substring of S . For
this purpose, answer the following questions.

(a) [15 points] Describe a greedy algorithm that, given two strings S = s1s2 . . . sn and T =

t1t2 . . . tm over some alphabet Σ, does the following:

• decides if T is a substring of S and outputs a “yes” or “no” response accordingly, and

• if T is a substring of S then shows which symbols of S are deleted to make it same as T .

It suffices to describe the algorithm in pseudo-codes as long as sufficient details are provided.
Justify why your algorithm runs in O(m+ n) time.

(b) [35 points] Prove that your greedy algorithm works correctly. For this, you must show both of
the following:

(b-1) [10 points] if your algorithm outputs “yes” then T is a substring of S , and
(b-2) [25 points] if T is a substring of S then your algorithm outputs “yes”.

Solution: We give a greedy algorithm that finds the first character in S that is the same as t1,
matches these two characters, then finds the first character after this in S that is the same as t2, and
so on. The algorithm looks as follows (comments are enclosed with (∗ and ∗)):

(∗ k1, k2, . . . denote the matches found so far ∗)
(∗ i denotes the current position in S, j denotes the current position in T ∗)
i← 1, j ← 1

while i ≤ n and j ≤ m do
if si = tj then kj ← i, i← i+ 1, j ← j + 1 else i← i+ 1

endwhile
if j = m+ 1 then return the subsequence k1, . . . , km

else return “T is not a substring of S”

1



The running time is O(n): one iteration through the while look takes O(1) time, and each iteration
increments i, so there can be at most n iterations.

It is also clear that the algorithm finds a correct substring if it finds any solution. It is harder
to show that if the algorithm fails to find a substring, then no substring exists. Assume that T is
the same as the substring sℓ1 , . . . , sℓm of S. We prove by induction on j that the algorithm will
succeed in finding a substring and will have kj ≤ ℓj for all j = 1, . . . ,m. First consider j = 1.
The algorithm lets k1 be the first character in S that is the same as t1, so we must have that k1 ≤ ℓ1.
Now consider the case when j > 1. Assume that j−1 < m and assume by the induction hypothesis
that the algorithm has kj−1 ≤ ℓj−1. The algorithm lets kj be the first character in S after kj−1 that
is the same as tj if such a match exists. We know that ℓj is such a match and ℓj > ℓj−1 ≥ kj−1.
Thus sℓj = tj , and ℓj > kj−1. The algorithm finds the first such index, thus we get that kj ≤ ℓj .

2


