Solutions of Assignment #1 part 2
(Course: CS 401)

Problem 1 (35 points): Let G = (V| F) be a directed graph and let s and ¢ be two nodes of G. Let
n and m be the number of nodes and edges of G, respectively. In the class we say how to decide if
there is a path from s to ¢, namely, we start a (directed) BFS starting from s and check if ¢ appears
among the list of nodes that are visited during BFS. The purpose of the assignment is to decide if
such a path exists under some additional constraints. Let u and v be two other nodes of GG that
are not s or ¢.

(@) [15 points] Decide if G has a path from s and ¢ that avoids using both the nodes u and v.
(#7) [20 points] Decide if G has a path from s and ¢ that uses both the nodes u and v.

Note that your algorithm need only to “decide” about the path, i. e., say ‘““yes” if that kind of
path existed and “no” otherwise; it is not necessary for your algorithm to actually provide the
path. Both of your algorithms should run in O(m + n) time. You may assume that the graph is
given in its adjacency list representation. If you are using BFS, there is no need to give codes for
it; simply saying “do a BFS starting at such-and-such node” will suffice.

Solution:

(i) We delete all the edges in-coming to nodes u and v, i. e., we delete all the edges of the form
(z,u) or (z,v) where z € V — {u,v}. Then we simply run a BFS starting at s and check if ¢ can
be reached.

To delete all the edges as mentioned above, we go through the adjacency list of every node
except u and v. For each such list, we traverse the list keeping two pointers, pointer p; one at the
current entry and pointer p, at the entry before the current entry. If the current entry is u or v,
we change the link of entry to ps to skip u or v. Pictorially, it looks like as shown below for the
adjacency list of node a:

P2 D1
UG
R Sbhbscec—=su—>>d------
U
P2 D1
UG
EREEEE Sbhboscec—=su—>>d------
U
—
Qe _>b_>c u d

(if) We will use the notation x ~~ y to indicated a directed path from node x to node y. A path from
s to t that uses both nodes u and v must be one of the following two types depending on whether
node u is before or after node v:

(A) s~~u~v~t

B) s~v~>u~t

For (A), we can use a BFS starting at s to find a path s ~ u, a BFS starting at » to find a path
u ~> v, and a BFS starting at v to find a path v ~~ . (B) can be handled in a similar manner.

Problem 2 (15 points): Give an algorithm to detect whether a given undirected graph is a tree
or not. The graph is given to you in its adjacency list representation. The running time of your
algorithm should be O(m + n) for a graph with n nodes and m edges.

Solution: Let G be the given graph. We run BFS starting from an arbitrary node s. If BFS cannot
reach all nodes then the graph is not connected and hence not a tree. Otherwise, consider the
obtained BFS tree T'. If every edge of G appears in the BFS tree then G = T, hence G contains
no cycle and therefore G is a tree. Otherwise, GG is a non a tree by the following argument. There
is some edge ¢ = {v,w} that belongs to GG but not to 7" and thus G has strictly more than n — 1
edges.

