
Solutions of Assignment #1 part 2

(Course: CS 401)

Problem 1 (35 points): Let G = (V,E) be a directed graph and let s and t be two nodes of G. Let

n and m be the number of nodes and edges of G, respectively. In the class we say how to decide if

there is a path from s to t, namely, we start a (directed) BFS starting from s and check if t appears

among the list of nodes that are visited during BFS. The purpose of the assignment is to decide if

such a path exists under some additional constraints. Let u and v be two other nodes of G that

are not s or t.

(i) [15 points] Decide if G has a path from s and t that avoids using both the nodes u and v.

(ii) [20 points] Decide if G has a path from s and t that uses both the nodes u and v.

Note that your algorithm need only to “decide” about the path, i. e., say “yes” if that kind of

path existed and “no” otherwise; it is not necessary for your algorithm to actually provide the

path. Both of your algorithms should run in O(m + n) time. You may assume that the graph is

given in its adjacency list representation. If you are using BFS, there is no need to give codes for

it; simply saying “do a BFS starting at such-and-such node” will suffice.

Solution:

(i) We delete all the edges in-coming to nodes u and v, i. e., we delete all the edges of the form

(x, u) or (x, v) where x ∈ V − {u, v}. Then we simply run a BFS starting at s and check if t can

be reached.

To delete all the edges as mentioned above, we go through the adjacency list of every node

except u and v. For each such list, we traverse the list keeping two pointers, pointer p1 one at the

current entry and pointer p2 at the entry before the current entry. If the current entry is u or v,

we change the link of entry to p2 to skip u or v. Pictorially, it looks like as shown below for the

adjacency list of node a:

p2 p1
↓ ↓

a · · · · · · → b → c → u → d · · · · · ·
⇓
p2 p1
↓ ↓

a · · · · · · → b → c → u → d · · · · · ·
⇓
|——————↓

a · · · · · · → b → c u d · · · · · ·

(ii) We will use the notation x y to indicated a directed path from node x to node y. A path from

s to t that uses both nodes u and v must be one of the following two types depending on whether

node u is before or after node v:

(A) s u v  t

1



(B) s v  u t

For (A), we can use a BFS starting at s to find a path s  u, a BFS starting at u to find a path

u v, and a BFS starting at v to find a path v  t. (B) can be handled in a similar manner.

Problem 2 (15 points): Give an algorithm to detect whether a given undirected graph is a tree

or not. The graph is given to you in its adjacency list representation. The running time of your

algorithm should be O(m+ n) for a graph with n nodes and m edges.

Solution: Let G be the given graph. We run BFS starting from an arbitrary node s. If BFS cannot

reach all nodes then the graph is not connected and hence not a tree. Otherwise, consider the

obtained BFS tree T . If every edge of G appears in the BFS tree then G = T , hence G contains

no cycle and therefore G is a tree. Otherwise, G is a non a tree by the following argument. There

is some edge e = {v, w} that belongs to G but not to T and thus G has strictly more than n − 1
edges.

2


