## Solutions of Assignment \#1 part 2

(Course: CS 401)

Problem 1 (35 points): Let $G=(V, E)$ be a directed graph and let $s$ and $t$ be two nodes of $G$. Let $n$ and $m$ be the number of nodes and edges of $G$, respectively. In the class we say how to decide if there is a path from $s$ to $t$, namely, we start a (directed) BFS starting from $s$ and check if $t$ appears among the list of nodes that are visited during BFS. The purpose of the assignment is to decide if such a path exists under some additional constraints. Let $u$ and $v$ be two other nodes of $G$ that are not $s$ or $t$.
(i) [15 points] Decide if $G$ has a path from $s$ and $t$ that avoids using both the nodes $u$ and $v$.
(ii) [20 points] Decide if $G$ has a path from $s$ and $t$ that uses both the nodes $u$ and $v$.

Note that your algorithm need only to "decide" about the path, i. e., say "yes" if that kind of path existed and "no" otherwise; it is not necessary for your algorithm to actually provide the path. Both of your algorithms should run in $O(m+n)$ time. You may assume that the graph is given in its adjacency list representation. If you are using BFS, there is no need to give codes for it; simply saying "do a BFS starting at such-and-such node" will suffice.

## Solution:

(i) We delete all the edges in-coming to nodes $u$ and $v, i$. e., we delete all the edges of the form $(x, u)$ or $(x, v)$ where $x \in V-\{u, v\}$. Then we simply run a BFS starting at $s$ and check if $t$ can be reached.

To delete all the edges as mentioned above, we go through the adjacency list of every node except $u$ and $v$. For each such list, we traverse the list keeping two pointers, pointer $p_{1}$ one at the current entry and pointer $p_{2}$ at the entry before the current entry. If the current entry is $u$ or $v$, we change the link of entry to $p_{2}$ to skip $u$ or $v$. Pictorially, it looks like as shown below for the adjacency list of node $a$ :

(ii) We will use the notation $x \rightsquigarrow y$ to indicated a directed path from node $x$ to node $y$. A path from $s$ to $t$ that uses both nodes $u$ and $v$ must be one of the following two types depending on whether node $u$ is before or after node $v$ :
(A) $s \rightsquigarrow u \rightsquigarrow v \rightsquigarrow t$
(B) $s \rightsquigarrow v \rightsquigarrow u \rightsquigarrow t$

For (A), we can use a BFS starting at $s$ to find a path $s \rightsquigarrow u$, a BFS starting at $u$ to find a path $u \rightsquigarrow v$, and a BFS starting at $v$ to find a path $v \rightsquigarrow t$. (B) can be handled in a similar manner.

Problem 2 (15 points): Give an algorithm to detect whether a given undirected graph is a tree or not. The graph is given to you in its adjacency list representation. The running time of your algorithm should be $O(m+n)$ for a graph with $n$ nodes and $m$ edges.
Solution: Let $G$ be the given graph. We run BFS starting from an arbitrary node $s$. If BFS cannot reach all nodes then the graph is not connected and hence not a tree. Otherwise, consider the obtained BFS tree $T$. If every edge of $G$ appears in the BFS tree then $G=T$, hence $G$ contains no cycle and therefore $G$ is a tree. Otherwise, $G$ is a non a tree by the following argument. There is some edge $e=\{v, w\}$ that belongs to $G$ but not to $T$ and thus $G$ has strictly more than $n-1$ edges.

