Solutions of Assignment #1 part 1, Total points: 50 (Course: CS 401)

These are the first two problems for Assignment 1. The remaining problems of Assignment 1 will be given out later.

Problem 1 (20 points): Consider the stable matching problem as taught in class. Suppose that we have only three men, say m_1 , m_2 and m_3 , and only three women, say w_1 , w_2 and w_3 , with their corresponding preference lists. Suppose also that the matching m_1-w_1 , m_2-w_2 , m_3-w_3 is a stable matching. We make the following claim:

in this case the matching m_1-w_1 , m_2-w_3 , m_3-w_2 can never be a stable matching.

Your task is to decide if our claim is true or false. For this purpose, do the following.

- Either prove the claim is indeed correct. Such a proof should work **no matter** what the preferences of the men and women are, as long as m_1-w_1 , m_2-w_2 , m_3-w_3 is a stable matching.
- Or, prove the claim made is wrong by giving a counter-example. The counter-example should provide the preferences lists of every man and woman, and show that for these preference lists **both** m_1-w_1 , m_2-w_2 , m_3-w_3 and m_1-w_1 , m_2-w_3 , m_3-w_2 are indeed stable matchings.

Solution: The following preference lists constitute a counter-example since both both m_1-w_1 , m_2-w_2 , m_3-w_3 and m_1-w_1 , m_2-w_3 , m_3-w_2 are stable matchings.

		second				second	
m_1	w_1	$egin{array}{c} w_2 \ w_3 \ w_2 \end{array}$	w_3	w_1	m_1	$egin{array}{c} m_2\ m_2\ m_3 \end{array}$	m_3
m_2	w_2	w_3	w_1	w_2	m_3	m_2	m_1
m_3	$\ w_3$	w_2	w_1	w_3	m_2	m_3	m_1

Problem 2 (30 points): Assume that you have two functions f(n) and g(n) such that f(n) = O(g(n)). Also, assume that $f(n) \ge 1$ and $\log_2 g(n) \ge 1$ for all n. For each of the following statements, decide whether you think it is true or false and accordingly give a proof (if true) or a counter-example (if false).

- (*i*) (10 points) $\log_2 f(n)$ is $O(\log_2 g(n))$
- (*ii*) (10 points) $2^{f(n)}$ is $O(2^{g(n)})$.
- (*iii*) (10 points) $f(n)^3$ is $O(g(n)^3)$.

Solution:

(i) True.

$$f(n) = O(g(n)) \Rightarrow f(n) \le c_1 g(n) \Rightarrow \log_2 f(n) \le \log_2 c_1 g(n) = \log_2 c_1 + \log_2 g(n)$$
$$= \left(\frac{\log_2 c_1}{\log_2 g(n)} + 1\right) \log_2 g(n) \le (\log_2 c_1 + 1) \log_2 g(n) \le c_2 \log_2 g(n)$$

Here we can choose any constant c_2 as long as $c_2 \ge \log_2 c_1 + 1$.

(ii) False. e.g. f(n) = 2n and g(n) = n. 2n = O(n), but $2^{2n} = 2^n \times 2^n$. We cannot find a constant c, such that $2^n \times 2^n \le c2^n$ holds for any $n \ge n_0$

(iii) True.

$$f(n) = O(g(n)) \Rightarrow f(n) \le cg(n) \Rightarrow f(n)^3 \le (cg(n))^3 = c^3g(n)^3$$