Solutions of Assignment \#1 part 1, Total points: 50

(Course: CS 401)

These are the first two problems for Assignment 1. The remaining problems of Assignment 1 will be given out later.

Problem 1 (20 points): Consider the stable matching problem as taught in class. Suppose that we have only three men, say m_{1}, m_{2} and m_{3}, and only three women, say w_{1}, w_{2} and w_{3}, with their corresponding preference lists. Suppose also that the matching $m_{1}-w_{1}, m_{2}-w_{2}, m_{3}-w_{3}$ is a stable matching. We make the following claim:
in this case the matching $m_{1}-w_{1}, m_{2}-w_{3}, m_{3}-w_{2}$ can never be a stable matching.
Your task is to decide if our claim is true or false. For this purpose, do the following.

- Either prove the claim is indeed correct. Such a proof should work no matter what the preferences of the men and women are, as long as $m_{1}-w_{1}, m_{2}-w_{2}, m_{3}-w_{3}$ is a stable matching.
- Or, prove the claim made is wrong by giving a counter-example. The counter-example should provide the preferences lists of every man and woman, and show that for these preference lists both $m_{1}-w_{1}, m_{2}-w_{2}, m_{3}-w_{3}$ and $m_{1}-w_{1}, m_{2}-w_{3}, m_{3}-w_{2}$ are indeed stable matchings.

Solution: The following preference lists constitute a counter-example since both both $m_{1}-w_{1}$, $m_{2}-w_{2}, m_{3}-w_{3}$ and $m_{1}-w_{1}, m_{2}-w_{3}, m_{3}-w_{2}$ are stable matchings.

	first	second	third
m_{1}	w_{1}	w_{2}	w_{3}
m_{2}	w_{2}	w_{3}	w_{1}
m_{3}	w_{3}	w_{2}	w_{1}

	first	second	third
w_{1}	m_{1}	m_{2}	m_{3}
w_{2}	m_{3}	m_{2}	m_{1}
w_{3}	m_{2}	m_{3}	m_{1}

Problem 2 (30 points): Assume that you have two functions $f(n)$ and $g(n)$ such that $f(n)=$ $O(g(n))$. Also, assume that $f(n) \geq 1$ and $\log _{2} g(n) \geq 1$ for all n. For each of the following statements, decide whether you think it is true or false and accordingly give a proof (if true) or a counter-example (if false).
(i) ($\mathbf{1 0}$ points) $\log _{2} f(n)$ is $O\left(\log _{2} g(n)\right)$
(ii) (10 points) $2^{f(n)}$ is $O\left(2^{g(n)}\right)$.
(iii) (10 points) $f(n)^{3}$ is $O\left(g(n)^{3}\right)$.

Solution:

(i) True.

$$
\begin{aligned}
f(n)= & O(g(n)) \Rightarrow f(n) \leq c_{1} g(n) \Rightarrow \log _{2} f(n) \leq \log _{2} c_{1} g(n)=\log _{2} c_{1}+\log _{2} g(n) \\
& =\left(\frac{\log _{2} c_{1}}{\log _{2} g(n)}+1\right) \log _{2} g(n) \leq\left(\log _{2} c_{1}+1\right) \log _{2} g(n) \leq c_{2} \log _{2} g(n)
\end{aligned}
$$

Here we can choose any constant c_{2} as long as $c_{2} \geq \log _{2} c_{1}+1$.
(ii) False. e.g. $f(n)=2 n$ and $g(n)=n$.
$2 n=O(n)$, but $2^{2 n}=2^{n} \times 2^{n}$. We cannot find a constant c, such that $2^{n} \times 2^{n} \leq c 2^{n}$ holds for any $n \geq n_{0}$
(iii) True.

$$
f(n)=O(g(n)) \Rightarrow f(n) \leq c g(n) \Rightarrow f(n)^{3} \leq(c g(n))^{3}=c^{3} g(n)^{3}
$$

