Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Total:

1

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- . Combine two sorted halves into sorted whole.

