
Prim’s algorithm demo

Initialize S = any node, T = ∅. 

Repeat n – 1 times: 

・Add to T a min-weight edge with one endpoint in S. 

・Add new node to S.
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4.  GREEDY ALGORITHMS II

‣ red-rule blue-rule demo 

‣ Prim’s algorithm demo 

‣ Kruskal’s algorithm demo 

‣ reverse-delete algorithm demo 

‣ Boruvka’s algorithm demo

SECTION 4.5



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

42

1 5

3

9 2

47 6

8



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

43

1



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

44

2



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

45

3



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

46

4



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

47

5



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

48

6



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

49

7



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

50

8



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

51

9



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

52



Kruskal’s algorithm demo

Consider edges in ascending order of weight: 

・Add to T unless it would create a cycle.

53

1

3

2

47
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‣ red-rule blue-rule demo 

‣ Prim’s algorithm demo 
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SECTION 4.5



Reverse-delete algorithm demo

Start with all edges in T and consider them in descending order of weight: 

・Delete edge from T unless it would disconnect T.
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