
Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

24

1 6

4

7 3

9

2

10

11

58 12

13

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

25

3 11

5

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

26

3

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

27

7 11

58 12

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

28

5

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

29

7 11

8

13 2

10

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

30

2

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

31

7

9

10

11

8

13

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

32

7

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

33

1 6 9

11

8

13

10

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

34

1

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

35

6

4

9

11

8

13

10

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

36

4

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

37

9

11

10

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

38

9

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

39

Prim’s algorithm demo

Initialize S = any node, T = ∅.

Repeat n – 1 times:

・Add to T a min-weight edge with one endpoint in S.

・Add new node to S.

40

1

4

3

9

2

5

7

4. GREEDY ALGORITHMS II

‣ red-rule blue-rule demo

‣ Prim’s algorithm demo

‣ Kruskal’s algorithm demo

‣ reverse-delete algorithm demo

‣ Boruvka’s algorithm demo

SECTION 4.5

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

42

1 5

3

9 2

47 6

8

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

43

1

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

44

2

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

45

3

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

46

4

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

47

5

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

48

6

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

49

7

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

50

8

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

51

9

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

52

Kruskal’s algorithm demo

Consider edges in ascending order of weight:

・Add to T unless it would create a cycle.

53

1

3

2

47

4. GREEDY ALGORITHMS II

‣ red-rule blue-rule demo

‣ Prim’s algorithm demo

‣ Kruskal’s algorithm demo

‣ reverse-delete algorithm demo

‣ Boruvka’s algorithm demo

SECTION 4.5

Reverse-delete algorithm demo

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

55

1 5

3

9 2

47 6

8

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

56

9

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

57

8

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

58

7

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

59

6

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

60

5

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

61

4

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

62

3

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

63

2

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

64

1

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

65

Reverse-delete algorithm

Start with all edges in T and consider them in descending order of weight:

・Delete edge from T unless it would disconnect T.

66

1

3

2

47

