DFS / Topological Ordering

Depth First Search

Follow the first path you find as far as you can go; back up to last unexplored edge when you reach a dead end, then go as far you can

Naturally implemented using recursive calls or a stack

DFS(s) - Recursive version

Global Initialization: mark all vertices undiscovered
DFS(v)
Mark v discovered
for each edge $\{v, x\}$
if (x is undiscovered)
Mark x discovered
DFS(x)
Mark v full-discovered

Non-Tree Edges in DFS

All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

BFS tree \neq DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" - only descendant/ancestor

DFS(A)

Color code:
 undiscovered
 discovered fully-explored

Suppose edge
at each vertex
are sorted
alphabetically

DFS(A)

Color code:
undiscovered
discovered fully-explored

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack: (Edge list)

A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{Z}, \mathrm{J}$)
C (B,D,G,H)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathbb{C}, \mathrm{J})$
C ($B, B, G, G, H)$
D (C,E,F)

DFS(A)

Color code:
undiscovered discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~B}, \mathrm{~J})$
B $(\mathcal{A}, \boldsymbol{Q}, \mathrm{J})$
$\mathrm{C}\left(B^{\prime}, \bar{D}, \mathrm{G}, \mathrm{H}\right)$
D ((Z,Z,F)
E (D,F)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}, \mathrm{~J})$
B ($\mathcal{A}, \mathbb{C}, \mathrm{J})$
C ($B, \square, G, G, H)$
D ($(\mathbb{Z}, \mathbb{Z}, \mathrm{F})$
$E(D, Z, F)$
F (D,E,G)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}, \mathrm{~J})$
B ($\mathcal{A}, \mathcal{Z}, \mathrm{J})$
C ($B, \square, G, G, H)$
D ($(\mathbb{Z}, \mathbb{Z}, \mathrm{F})$
$E(D, \nabla, F)$
F (D, 友, (a)
G(C,F)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}, \mathrm{~J})$
B ($\mathcal{A}, \mathcal{Z}, \mathrm{J})$
C ($B, \square, G, G, H)$
D ($(\mathbb{Z}, \mathbb{Z}, \mathrm{F})$
$E(D, \not \subset)$

G ($\%, Z)$

E,5

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}, \mathrm{~J})$
B ($\mathcal{A}, \varnothing, \mathrm{J}$)
C ($B, B, B, G, H)$
D ((Z,Z,F)
$E(D, \nabla)$
F (D, 死, 乘)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~B}, \mathrm{~J})$
B ($\mathcal{A}, \boldsymbol{Q}, \mathrm{J})$
C ($B, B, B, G, H)$
D ($(\mathbb{Z}, \mathbb{Z}, \mathrm{F})$
$E(D, \not \subset)$

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{C}, \mathrm{J})$
$\mathrm{C}\left(B^{\prime}, D^{\prime}, \mathrm{G}, \mathrm{H}\right)$
D ($(\mathbb{Z}, \mathbb{Z}, \mathbb{Z})$

DFS(A)

Color code:
undiscovered
discovered

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{Z}, \mathrm{J})$

H(C,I,J)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~B}, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{C}, \mathrm{J})$

H (\&, $, \mathrm{J}, \mathrm{J})$
I (H)

Call Stack: (Edge list)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~B}, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{C}, \mathrm{J})$

$\mathrm{H}(\mathbb{L}, \bar{Y}, \mathrm{~J})$
I (H)

Call Stack: (Edge list)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~B}, \mathrm{~J}$)
B ($\mathcal{A}, \boldsymbol{C}, \mathrm{J})$

H (\&, $, \mathbf{Z}, \mathrm{J})$

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
$\mathrm{A}(B, \mathrm{~B}, \mathrm{~J})$
$\mathrm{B}(\mathscr{A}, \varnothing, \mathrm{J})$
C ($B, D, D, G, G)$
$\mathrm{H}(\mathbb{Z}, \bar{\gamma}, \boldsymbol{b})$
$J(A, B, H, K, L)$

E,5

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{D}, \mathrm{J}$)
B ($\mathcal{A}, \mathcal{Z}, \mathrm{J})$
C ($B, D, D, G, G C)$
$\mathrm{H}(\ell, \sqrt{\prime}, \dot{,})$
$J(A, B, B, K, K, L)$
K (J, L)

E,5

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{Z}, \mathrm{J})$
C ($B, D, \mathscr{C}, G, G)$
$\mathrm{H}(\ell, \sqrt{\prime}, \dot{,})$
$J(\mathcal{A}, \mathrm{~B}, \mathrm{H}, \mathrm{K}, \mathrm{L})$
K (, , L X
L (J,K,M)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{Z}, \mathrm{J})$
$C(B, D, C A, G C)$
$\mathrm{H}(\ell, \sqrt{\prime}, \dot{,})$
$J(A, B, B, K, K, L)$
K ($Y, 2$)
L ($\mathrm{Y}, \mathrm{K}, \mathrm{M}, \mathrm{M})$
M(L)

Call Stack: (Edge list)
A (B, U)
B ($\mathcal{A}, \mathcal{Z}, \mathrm{J})$
C ($\left.B, D, D, C A, L^{\prime}\right)$
$\mathrm{H}\left(\mathbb{C}, \chi^{\prime}, \chi^{\prime}\right)$
$J(\mathcal{A}, \mathrm{~B}, \mathrm{~K}, \mathrm{~K}, \mathrm{~L}, \mathrm{~L})$
K (, L, χ^{\prime}
L ($\mathrm{y}, \mathrm{K}, \mathrm{M}, \mathrm{M})$
M (L)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}, \mathrm{~J})$
B ($\mathcal{A}, \mathcal{Z}, \mathrm{J})$
C ($B, D, D, G, G C)$
$\mathrm{H}(\ell, \sqrt{\prime}, \dot{,})$
$J(A, B, B, K, K, L)$
K (Y, L X
L ($Y, K, K, M)$

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($(B, \mathrm{~J})$
$\mathrm{B}(\alpha, \mathcal{Q}, \mathrm{J})$
C ($\left.B, D, D_{6}, G, G C\right)$
$\mathrm{H}(\mathbb{Z}, \bar{y}, \boldsymbol{,})$
$J(\mathscr{A}, \mathcal{B}, \cup, K, K, L)$
K (久,

Call Stack: (Edge list)
A ($8, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{C}, \mathrm{J})$
$\mathrm{H}(\mathbb{C}, \bar{\gamma}, \boldsymbol{L})$
$J(\mathcal{A}, \mathrm{~B}, \mathrm{H}, \mathrm{K}, \mathrm{K}, \mathrm{L})$
K (Y, L)

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \mathcal{Z}, \mathrm{J})$
C ($B, D, D, G, G C)$
$\mathrm{H}(\mathbb{Z}, \bar{y}, \boldsymbol{,})$
$J(\mathcal{A}, \mathcal{B}, \mathscr{O}, \mathrm{~K}, \mathrm{~L})$

Call Stack: (Edge list)
A ($B, \mathrm{D}, \mathrm{J})$ B ($\mathcal{A}, \boldsymbol{C}, \mathrm{J}$) C ($B, D, \mathscr{C}, G, G C)$ $\mathrm{H}\left(\mathbb{C}, \gamma,,^{\prime}\right)$ $J(\mathcal{A}, \mathrm{~B}, \mathrm{H}, \mathrm{K}, \mathrm{L})$

DFS(A)

Color code:
undiscovered
discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \varnothing, \mathcal{J})$
C ($B, D, D, G, G C)$
$\mathrm{H}(\mathbb{C}, \bar{y}, \boldsymbol{,})$
$J(\mathcal{A}, \mathcal{B}, \mathscr{Y}, K, K)$

Call Stack: (Edge list)
A ($B, \mathrm{D}, \mathrm{J}$) B ($\mathcal{A}, \boldsymbol{Q}, \mathrm{J})$ $C(B, D, C A, V C)$ $\mathrm{H}(\mathbb{C}, \overline{,}, \mathrm{b})$ $J(A, B, \notin, K, K, K)$

DFS(A)

Color code:
undiscovered discovered fully-explored

Call Stack:
(Edge list)
A ($B, \mathrm{~J}$)
B ($\mathcal{A}, \varnothing, \mathcal{J}$)
C ($B, D, D, G, G)$
$\mathrm{H}(\mathbb{Z}, \sqrt{2}, \boldsymbol{,})$

Call Stack: (Edge list)

DFS(A)

Color code:
undiscovered discovered

DFS(A)

Color code:
undiscovered discovered fully-explored

Call Stack: (Edge list)

TA-DA!!

DFS(A)

Edge code:
Tree edge
Back edge

Properties of (undirected) DFS

Like BFS(s):

- DFS(s) visits x iff there is a path in G from s to x So, we can use DFS to find connected components
- Edges into then-undiscovered vertices define a tree the "depth first spanning tree" of G

Unlike the BFS tree:

- The DF spanning tree isn't minimum depth
- Its levels don't reflect min distance from the root
- Non-tree edges never join vertices on the same or adjacent levels

Non-Tree Edges in DFS

All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

BFS tree \neq DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" - only descendant/ancestor

Non-Tree Edges in DFS

Lemma: During DFS(x) every vertex marked visited is a descendant of x in the DFS tree

Lemma: For every edge $\{x, y\}$, if $\{x, y\}$ is not in DFS tree, then one of x or y is an ancestor of the other in the tree.

Proof:

One of x or y is visited first, suppose WLOG that x is visited first and therefore DFS(x) was called before DFS(y)

Since $\{x, y\}$ is not in DFS tree, y was visited when the edge $\{x, y\}$ was examined during DFS(x)

Therefore y was visited during the call to DFS(x) so y is a descendant of x.

DAGs and Topological Ordering

Precedence Constraints

In a directed graph, an edge (i, j) means task i must occur before task j.

Applications

- Course prerequisite: course i must be taken before j
- Compilation:
must compile module i before.

- Computing overflow:
output of job i is part of input to job j
- Manufacturing or assembly:
sand it before paint it

Directed Acyclic Graphs (DAG)

A DAG is a directed acyclic graph, i.e., one that contains no directed cycles.

Def: A topological order of a directed graph $G=(V, E)$ is an ordering of its nodes as $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ so that for every edge $\left(v_{i}, v_{j}\right)$ we have $\mathrm{i}<\mathrm{j}$.

a DAG

a topological ordering of that DAGall edges left-to-right

DAGs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.
Pf. (by contradiction)
Suppose that G has a topological order $1,2, \ldots, n$ and that G also has a directed cycle C.
Let i be the lowest-indexed node in C , and let j be the node just before i; thus (j, i) is an (directed) edge.
By our choice of i, we have $i<j$.
On the other hand, since (j, i) is an edge and $1, \ldots, n$ is a topological order, we must have $j<i$, a contradiction the directed cycle C
 the supposed topological order: $1,2, \ldots, n$

DAGs: A Sufficient Condition

Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e., a source).

Pf. (by contradiction)
Suppose that G is a DAG and and it has no source
Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk backward to x.
Repeat until we visit a node, say w, twice.

Is this similar to a previous proof?

Let C be the sequence of nodes encountered between successive visits to w. C is a cycle.

DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order
Pf. (by induction on n)
Base case: true if $\mathrm{n}=1$.
IH : Every DAG with $\mathrm{n}-1$ vertices has a topological ordering.
IS: Given DAG with $n>1$ nodes, find a source node v.
$G-\{v\}$ is a DAG, since deleting v cannot create cycles.
Reminder: Always remove vertices/edges to use IH
By IH, $G-\{v\}$ has a topological ordering.
Place v first in topological ordering; then append nodes of $G-\{v\}$ in topological order. This is valid since v has no incoming edges.

A Characterization of DAGs

G has a
topological order

Topological Order Algorithm: Example

Topological Order Algorithm: Example

Topological order: 1, 2, 3, 4, 5, 6, 7

Topological Sorting Algorithm

Maintain the following:

count[w] = (remaining) number of incoming edges to node w
$S=$ set of (remaining) nodes with no incoming edges
Initialization:
count[w$]=0$ for all w
count $[w]++$ for all edges $(v, w) \quad O(m+n)$
$S=S \cup\{w\}$ for all w with count $[w]=0$
Main loop:
while S not empty

- remove some v from S
- make v next in topo order
- for all edges from v to some w

O(1) per node
-decrement count[w]
-add w to S if count[$w]$ hits 0
Correctness: clear, I hope
Time: $\mathrm{O}(\mathrm{m}+\mathrm{n})$ (assuming edge-list representation of graph)

Summary

- Graphs: abstract relationships among pairs of objects
- Terminology: node/vertex/vertices, edges, paths, multi-edges, self-loops, connected
- Representation: Adjacency list, adjacency matrix
- Nodes vs Edges: $m=0\left(n^{2}\right)$, often less
- BFS: Layers, queue, shortest paths, all edges go to same or adjacent layer
- DFS: recursion/stack; all edges ancestor/descendant
- Algorithms: Connected Comp, bipartiteness, topological sort

