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ABSTRACT
RDMA over Converged Ethernet (RoCE) allows RDMA-
enabled NICs to operate in datacenter networks. This study
focuses on identifying how different aspects of datacenter
cluster configuration impact the latency, and throughput, and
CPU utilization of different ways of transferring data in RoCE
(RDMA verbs). We look into the impact of colocated applica-
tions competing for both the CPU and access to the NIC as
well as the impact of the network MTU. We find that RDMA
applications do not fairly share the NIC, large frames should
not be used, and that correct verb choice is dependent on
many variables, including application access patterns, object
size, and the load of both the local and remote CPU.
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1 INTRODUCTION
RDMA-enabled NICs (RNICs) can transfer data across the
network directly to and from application buffers without in-
volving the CPU [9]. This paradigm can offer significant per-
formance benefits over traditional networking stacks, reduc-
ing both latency and CPU overheads [5, 13]. After initial popu-
larity in high performance computing, RNICs are beginning to
be deployed in datacenter networks [5, 6, 18, 19, 26], includ-
ing large online service providers such as Microsoft [8, 26].
This is because RDMA can improve the performance of the
on-line data-intensive (OLDI) applications frequently run in
datacenters [5, 13, 22].

Datacenters host many competing applications, and load
in datacenters is bursty and diurnal [2, 7, 23] . Not only are
there many different ways to design applications that use
RDMA for messaging (RDMA applications), but the cor-
rect configuration for an RDMA application may depend on
both the load placed on a cluster and cluster configuration,
e.g., how jobs are placed and how the network is config-
ured. Prior work has benchmarked the performance of differ-
ent aspects of the RDMA protocol itself as implemented by
RNICs [5, 13, 16, 25] and the performance of RDMA conges-
tion control [19, 20, 26]. However, the impact of differences
in cluster configuration remains unclear, despite different con-
figurations having the potential to significantly affect RDMA
performance.

This paper presents the first measurement study of
RDMA performance that focuses on the impact of cluster
configuration—both the placement of jobs in the cluster and
the configuration of the cluster’s network. In particular, our
goal is to help guide decisions that must be made by oper-
ators as part of deploying an RDMA cluster. For example,
whether or not RDMA applications need to be run on ded-
icated servers is a decision that has significant impact on
capital expenditures and operational complexity. Similarly, an
effective configuration could potentially increase application
performance and reduce overall server CPU utilization.

Specifically, we seek to answer the following questions that
have been previously unanswered by prior work:
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What is the impact of applications competing for CPU
resources on RDMA performance? Unlike HPC clusters,
datacenter clusters often host different competing applications
and/or tenants. While core datacenter services may be run in
isolation [8], it may not be feasible to isolate every application
in a datacenter.

What RDMA verbs should an application use? RDMA
provides a rich set of operations (verbs). Not all verbs have
equal CPU costs, so competing with other applications for
CPU is expected to harm the performance of some verbs more
than others. We investigate the impact of CPU utilization on
RDMA performance in order to determine if RDMA applica-
tions should be designed differently depending on whether or
not they will be run on a dedicated CPU core.

Should RDMA applications use polling or interrupts?
Polling can reduce RDMA latency [5, 13]. Does this still hold
if other applications are competing for the CPU?

What is the impact of RDMA applications competing
for RNIC resources on performance? To improve clus-
ter scalability, it may be desirable to colocate competing
RDMA applications on a server. We investigate how compet-
ing RDMA applications share an RNIC.

How does RDMA performance change if the underly-
ing network allows jumbo frames? All Ethernet devices we
are aware of that support RoCE (DCB) also support frames
larger than 1500 B, i.e., jumbo frames. We investigate the
impact of using different message sizes on the performance
of different RDMA verbs to determine if operators should
allow RDMA applications to generate jumbo frames.

In order to answer these questions, we performed experi-
ments on a dedicated CloudLab [3] cluster of 17 servers that
each use a 10 GbE Mellanox ConnectX-3 NIC [17] to connect
to an HP 45XGc Ethernet switch [10]. From our experiments,
we draw the following conclusions:

Choosing the best performing verb is difficult. Even
when run in isolation, choosing the correct verb depends
on many variables, including object size, memory access pat-
terns, and whether latency or throughput is more important.

Polling is faster only without CPU contention. If an ap-
plication wants low latency and energy efficiency, then it will
need to dynamically switch between polling and interrupts.

CPU contention does not significantly hurt RDMA per-
formance. Competing for the CPU changes whether inter-
rupts or polling should be used. Otherwise, RDMA applica-
tion performance is not significantly impacted by changes in
CPU load.

Competing RDMA applications do not fairly share the
RNIC. It may be desirable to run multiple competing RDMA
applications on a single server. Unfortunately, RDMA appli-
cations do not fairly share the NIC based on either the number

of outstanding verbs or active queue pairs. Instead, RDMA ap-
plications performing longer transfers (4 MB) starve latency
sensitive applications.

Jumbo frames increase tail latency. Surprisingly, our re-
sults show that there is little incentive to having RNICs gen-
erate large frames. Although jumbo frames provide a small
throughput benefit, they significantly increase tail latency.

The rest of this paper is organized as follows. First, Sec-
tion 2 provides background information on RDMA. After
that, Section 3 explains our experimental methodology, and
Section 4 presents our experimental results. Next, Section 5
discusses our results, and Section 6 discusses related work.
Finally, Section 7 concludes.

2 BACKGROUND
RoCE (RDMA over Converged Ethernet) enables RDMA to
operate over datacenter Ethernet/IP networks [11, 12]. This
section introduces RDMA, and then discusses different ways
to configure RDMA messages (verbs).

2.1 RDMA Overview
Remote Direct Memory Access (RDMA) allows a host to di-
rectly access the memory of a remote host without involving
the operating system. This eliminates the overheads associ-
ated with TCP/IP networking, such as context switching and
memory overhead for data copying. Because of this, RDMA
can provide a low-latency messaging with consistent perfor-
mance [5, 13, 18].

In order to accomplish this, userspace applications interface
directly with RDMA NICs by sending RDMA verbs to queues
on the RNIC. The most commonly used verbs are READ,
WRITE, and SEND/RECV. READ is used to fetch data from
the memory of a remote host, and WRITE transfers data into
the memory of a remote host. SEND/RECV are used together.
SEND transfers a datagram to a remote host, and RECV is
a special operator that is used to receive the message from
a SEND. READs and WRITEs are one-sided—they do not
involve the remote host’s CPU. In contrast, SEND/RECV are
two sided—the remote host’s CPU is involved in the transport
because it must post a RECV before a SEND arrives for the
SEND to complete. READs, WRITEs, and SENDs are posted
to send queues, and RECVs are posted to receive queues.
Each queue pair (QP) is associated with a completion queue
(CQ) which is used to signal the completion of events.

2.2 Configuring RDMA Messaging
Not only do RDMA applications have freedom in verb choice,
but individual verbs also have multiple different modes of
operation. We now highlight some important configuration
choices relevant to this study:
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Interrupts vs. Polling: One benefit of RDMA is that it re-
duces the CPU load of networking. However, this does not
prevent applications from polling. RDMA allows an applica-
tion to chose between receiving events (delivered by inter-
rupts) when verbs complete and polling for the completion
of RDMA verbs. Further, despite WRITEs being one-sided
and not involving the remote CPU, the remote host can still
poll memory to identify the arrival of new data [13]. We
study the differences between using interrupts and using
polling because both their end-to-end network performance
and CPU load differ.

Signalling: An application can also choose to eliminate the
signalling of the completion of verbs. If an application does
not need to be signaled when a verb completes, then dis-
abling signalling for the verb can improve performance by
eliminating messages that otherwise would be sent across
the network and/or PCIe bus [13].

One-sided vs. Two-sided READs (GETs): If an RDMA
application wants to read data from a remote host, it has
two choices. One is to perform a READ, and the other is
to send either WRITE or SEND to an application on the
remote host that processes the request and then WRITEs or
SENDs a reply. We call the latter approach a compound read
or a two-sided read. A benefit of using compound reads is
that they can be faster than READs if an application has to
perform multiple dependent memory accesses (e.g., pointer
chasing) [13]. A negative aspect of compound reads is that
their performance depend on the CPU utilization of the re-
mote server, unlike one-sided READs. We investigate the
impact of competing for the CPU on the performance of both
READs and compound reads.

Jumbo Frames: Jumbo frames are Ethernet frames larger
than 1500 B. Although Ethernet jumbo frames are not in-
cluded as part of DCB [4] or any other Ethernet standard, all
of the devices we are aware of that support DCB also support
jumbo frames. Jumbo frames have the potential to increase
throughput, but they can also increase latency when small
messages compete with jumbo frames. Because of this, we
study the impact of message size on RDMA performance.

3 METHODOLOGY
In order to evaluate RoCE performance, we performed exper-
iments on a cluster of 17 CloudLab [3] servers. Each server
has an 8-core ARM Cortex-A57 processor, 64 GB of mem-
ory, and a 10 GbE Mellanox ConnectX-3 NIC [17]. In our
experiments, all of the servers connect to a single HP 45XGc
Ethernet switch [10]. As part of future work, we plan on look-
ing at larger topologies. To minimize the impact of network
congestion in our experiments, we perform experiments that
are not likely to congest the network, and we use windowing

to limit the number of outstanding requests. Unless otherwise
specified, we limit the number of outstanding requests to 16.

Similarly, we always use both unconnected transports and
inlining when possible. Only WRITEs and SENDs may be
unreliable. On the ConnectX-3, the largest message size that
may be inlined is 256 B. The largest RDMA packet that we
can generate is only 4 KB plus the size of the RoCEv2, Eth-
ernet, VLAN, and IP headers, even though the NIC can send
larger Ethernet frames. This is because 4096 is the largest
RDMA IBV_MTU supported by the NIC. To evaluate the im-
pact of colocating RDMA applications with other applications
contending for the CPU, we pin a CPU-bound application
with a small memory footprint to each core of every server
in the cluster. Specifically, we use a program that solves the
N-queens problem. Finally, in all of our experiments, PFC is
enabled and RDMA traffic runs at a higher priority than all
other traffic. Additionally, we run all of our experiments for
at least 10 seconds.

4 EVALUATION
This section presents the results from experiments designed
to understand how configurable parameters impact RDMA
performance. In particular, we look at the impact of CPU
utilization, packet sizes, and the choice between interrupts
and polling on both the latency and throughput of different
RDMA verb choices. Moreover, we focus on the performance
of reading data from a remote machine because there are more
ways to configure reads than writes.

4.1 Performance in Isolation
To provide a baseline, Figure 1 shows the average latency of
different verbs on an otherwise unloaded CPU for different
message sizes, including message sizes that require jumbo
frames. After that, Figure 2 provides a baseline of the maxi-
mum throughput achievable when an application can use the
RNIC in isolation.

Latency. To measure the latency of messaging, we per-
formed one remote memory access at a time between two
servers. Figure 1 shows the average latency of four different
methods of fetching data from a remote machine. READ-Intr
is the latency of READs that are signalled via interrupts. Next,
the WRITE/SEND-Poll line is the latency it takes to complete
a WRITE/SEND compound read that uses polling. Kalia et
al. [13] argue this is the fastest verb for implementing a key-
value store. Compound reads built with SENDs may either
use interrupts or polling. The line SEND/SEND-Intr shows
the performance of a compound SEND with interrupts. Al-
though we looked at SEND/SEND-Poll, we elide these results
because it never achieved a throughput of more than 2 Gbps.
Finally, READ-Poll is the latency of a READ when the ap-
plication chooses to ignore the completion queue and instead
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Figure 1: Latency when verbs are sent one
at a time between two servers on an other-
wise unloaded CPU.
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Figure 2: The throughput and tail latency of many servers reading data
as fast as possible from a remote host, saturating the remote RNIC.

poll memory directly for the arrival of data. Prior work has
not evaluated this configuration, and we find that it performs
surprisingly well for small payload sizes.

First, we find that Figure 1 confirms the results of prior stud-
ies that have used similar configurations [5, 13]. As reported
by Kalia et al. [13], for small payload sizes, WRITE/SEND-
Poll have about the same latency as READ-Intr. This means
that compound reads (WRITE/SEND) can match the latency
of READs, at least for inlinable payloads (≤256B). Also,
SEND is expected to be slow [13], and this is confirmed by
this experiment. Until large payload sizes, a SEND/SEND-
Intr is twice the latency of a WRITE/SEND-Poll.

However, a few aspects of Figure 1 are surprising. First,
READ-Poll has less than half of the latency of both signalled
READs and WRITE/SEND-Poll. This approach is inspired
by Kalia et al. [13], who found that polling memory leads to
lower latency WRITEs than relying on the completion queue.
We find that polling memory significantly reduces the latency
of READs as well. This implies that, if a system needs to
fetch only a single small value from remote memory, then
READ-Poll would provide the best performance. However,
this approach fully utilizes the CPU.

In Figure 1, we also find that large frame sizes increase the
latency of many verbs by significantly more than the increased
time it takes to transfer the message from memory and across
the network. A payload of 4096 B takes 3.3 µs to transfer
across a 10 Gbps link, and transferring the message to and
from memory should take significantly less time than it takes
to cross the network [13]. However, READ-Intr is the only
verb that does not see an unexpected increase in latency as
message size increases.

Throughput. For small payload sizes, throughput may be
limited by the maximum number of operations per second the
RNIC can process. At large payload sizes, network bandwidth
may be the limiting factor on throughput. Independent of
payload size, the extra CPU and RNIC involvement of two-
sided operations can hurt throughput.

To understand these effects, Figure 2a illustrates the im-
pact of message size and the choice of interrupts or polling
on the performance of different RDMA verbs. To stress the
performance of the RNIC while avoiding the problems asso-
ciated with network congestion [26], we use many clients to
read data from a single server. In this experiment, 16 clients
connect to a single server. On the server, RDMA application
processes are pinned to each of the server’s 8 CPUs. The
clients then establish a connection with each server process
and maintain a window of 16 outstanding reads on each con-
nection. With one-sided reads, accessing an object may take
multiple memory accesses. The READ-Intr-{2,3,4} lines plot
the throughput of object access if 2, 3, or 4 total RDMA op-
erations are required to access the data. In these lines, the
clients first issue 1, 2, or 3 READs for 8 B of data before
reading an object of the payload size.

In Figure 2a, we first see that throughput is limited by the
maximum number of operations per second of the RNIC for
payloads of 256 B or smaller. Figure 2a also shows that, as
we would expect, choosing either interrupts or polling has
little impact on throughput when there is no CPU contention.
Finally, this figure shows that one-sided READs always have
higher throughput than two-sided compound reads.

Interestingly, our results sometimes differ from those in
prior work [5, 13]. For example, Kalia et a. [13] found that
the throughput of WRITE/SEND could match the throughput
of READs for 32 B messages (∼6.7 Gbps). We expect that
these differences are due to differences in RNICs, as prior
work [5, 13] has used 40 Gbps and 56 Gbps RNICs, while
our study uses 10 Gbps RNICs. This result further illustrates
the difficultly of writing RDMA applications. In addition to
verb choice, the best performing design depends on RNICs.

A major difference in our results is that we find it is not
always better to use compound reads to access objects on
our RNICs. For objects that are 64 B or smaller, one-sided
READs (READ-Intr-2) are faster than two-sided accesses
(WRITE/SEND-Poll) even if two messages are necessary, al-
though two-sided operations are still faster for larger objects.
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Figure 4: The impact of CPU contention on the throughput and tail la-
tency of servers reading data as fast as possible from a remote host.

Further, we find that READ-Intr-3 can match the performance
of WRITE/SEND-Poll for small objects, although the perfor-
mance advantage of WRITE/SEND-Poll becomes apparent at
larger payloads.

Impact of RNIC load on latency. When the RNIC is heav-
ily loaded, the latency of communication can increase. There
are two different ways an RNIC may be loaded. An applica-
tion may be limited by the number of operations per second
supported by the RNIC, the line-rate of the RNIC, or both. In
contrast with the experiment in Figure 1, where the RNIC is
lightly loaded, Figure 2b shows the 90th percentile latency of
the requests issued in the experiment in Figure 2a, where the
RNIC is fully utilized.

Figure 2b shows that the verb latency of small messages
is stable, even if the messaging rate of the RNIC is limiting
throughput. For READs 64 B and smaller, the latency is al-
ways 34 µs or smaller. Similarly, the 90th percentile latency of
WRITE/SEND-Poll is consistently around ∼45 µs for requests
256 B and smaller. However, at large payload sizes, when the
line-rate of the NIC limits throughput, tail latency latency can
significantly increase. The tail latency of READ-Intr is over
500 µs for 1K payloads, and the tail latency of both reads is
around ∼830 µs for 4K payloads. In Figure 2b, the tail latency
of WRITE/SEND and SEND/SEND are 2.8 ms and 3.8 ms.
This tail latency is close to that reported by DeTail [24] when
TCP is used to transfer 8 KB packets on a network with PFC
enabled. Because the tail latency of READ-Intr-{2,3,4} is
impacted the least, we expect that these overheads are related
to memory management.

4.2 Impact of CPU Contention
As the number of RDMA applications run in a cluster in-
creases, it quickly becomes economically infeasible to isolate
RDMA applications from each other and other applications
running in the datacenter. If an application designer expects
an application will not be run in isolation, they may want to
change how their application is designed because competing

for the CPU is expected to reduce the performance of some
verbs more than others and hurt polling more than interrupts.

Latency. First, Figure 3 shows the latency of issuing one
verb at a time between two servers (as in Figure 1) when
the N-queens program competes for the CPU. Interestingly,
Figure 3 shows that, for small payload sizes, the latency of
different verbs is independent of whether polling or interrupts
are used. At small payload sizes, the lines that involve only
the local CPU (READ-Sig and READ-Poll) have half the
latency of the lines that involve both the local and remote
CPU (WRITE/SEND-Poll and SEND/SEND-Intr).

On the other hand, the latency of compound reads and
polling increases at larger payload sizes. Like Figure 1, Fig-
ure 3 also shows that READ-Intr is the lowest latency verb
at large payload sizes. In contrast, SEND/SEND-Intr takes
roughly four times longer than READ-Intr, although it is
faster than WRITE/SEND-Poll.

Throughput. Figure 4a shows the impact of CPU con-
tention on the throughput of different ways of fetching data.
If other applications are competing for the CPU, we would
expect the throughput of two-sided verbs and polling to drop
more than one-sided verbs and interrupts, and this is the case.
READ-Intr provides the highest throughput for all message
sizes. However, at small message sizes, the throughput of
using interrupts and polling is similar. As before, READs
provide the highest throughput. Although this may seem to
imply that one-sided READs should always be used if the
CPU is heavily utilized, this is still not always the case. If the
CPU is fully utilized, a single compound read is significantly
faster than performing even two dependent READs.

Tail latency with CPU load. Surprisingly, the latency of
transfers in Figure 4b does not differ significantly from Fig-
ure 2b. However, because both of these figure show a signifi-
cant increase in tail latency when large message sizes are used,
we conclude that jumbo frames should not be used because
of their impact on the latency.
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Figure 5: The throughput of small message transfers
when competing with large (4 MB) background flows.

4.3 Impact of RNIC Contention
So far, we have not looked at the impact of multiple ap-
plications competing for access to the RNIC. Microsoft re-
portedly uses RDMA to access both storage and key-values
stores [5, 8, 26]. While Microsoft has said that message trans-
fers in their RDMA deployment are often less than 4 MB
in size [26], most key-value store accesses are much smaller.
Over 90% of all values in a Facebook memcached cluster
were under 256 B [1].

Figure 5 shows how traffic from show message flows
changes when competing with 4 MB background flows. Most
interestingly, this figure shows that competing applications do
not fairly share the RNIC. Although CPU contention does not
significantly impact the performance of some verbs, RNIC
contention significantly hurts the throughput of small mes-
sages for all verbs.

5 DISCUSSION
Prior work claims that WRITE/SEND-Poll is the proper verb
choice for applications that need to perform two or more de-
pendent memory accesses [13]. However, our results show
that verb choice is more complicated. These differences from
prior work are likely due hardware differences (10 Gbps vs
40 Gbps). Our hope is that these findings spark more investi-
gation into the performance differences between RNICs and
help lead to future RDMA applications that are designed to
be RNIC platform independent.

Further, our results in Section 4 show that correct verb
choice is dependent on other variables, including the load of
both the local and remote hosts and whether or not polling or
interrupts are used. This implies that a system should be built
differently depending on whether it is optimized for latency,
throughput, and whether hosts are expected to be heavily
utilized. However, designing a system around these trade-offs
can lead to significant application complexity.

Instead, we believe that this problem should be addressed
by creating a higher-level RDMA abstraction that hides these
many complexities from applications. Although modern OSes

dynamically schedule packet I/O and switch between in-
terrupts and polling in response to changes in CPU load,
this complexity is hidden from applications [21]. Similarly,
RDMA applications could interface with a common library
that dynamically adjusts RDMA configuration in response to
changes in system load.

However, there are a few difficulties in implementing such
a library. Dynamically switching between polling and inter-
rupts for two-sided operations requires coordination between
communicating applications to ensure messages are not lost.
Further, because different RDMA applications do not fairly
share RNIC resources, it is not entirely clear how to design
such a system while still maintaining the benefits of OS-
bypass provided by RNICs.

6 RELATED WORK
RDMA performance has been a subject of much recent re-
search [5, 13, 14, 16, 19, 20, 25, 26]. However, despite this,
the questions answered in this proposal have largely remained
unanswered. For example, Le et al. [16] measure the impact
of verb size on CPU utilization but do not compare the uti-
lization of different verbs. Zhang et al. [25] measure RDMA
performance in the context of performance isolation between
competing RoCE applicationsv. While they similarly find
that latency-sensitive flows do not compete fairly with large
flows, they do not evaluate the impact of CPU contention
on RDMA performance. Dragojević et al. [5] and Kalia et
al. [13] both measure RoCE performance. However, they
focus on measuring the performance of different verbs and
memory regions. Additionally, Mittal et al. [20] performed an
analysis of RDMA congestion control and the need for loss-
less networking with RDMA NICs, which is complementary
to the analysis performed in this paper. FlexNIC [15] is able
to provide many of the benefits of RDMA without requiring
connections, including OS bypass and zero-copy;however, it
requires hardware that is not yet commodities, unlike RNICs.

7 CONCLUSIONS
This paper studies the impact of colocated applications in
a datacenter contenteding for both the RNIC and CPU on
the performance of different ways application developers can
design RDMA applications. We find that large frame sizes
hurt tail latency and do not significantly improve throughput.
We also find that larger transfers can unfairly starve short
message transfers when multiple RDMA applications are al-
lowed to share RNIC access. Finally, we find that correct verb
choice is dependent on many variables, including object size,
CPU load, and the number of dependent memory accesses
that are required to find the object. We believe the results in
this study motivate creating a higher-level library that hides
these complexities from applications.
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