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Abstract

Large commercial latency-sensitive services, such as
web search, run on dedicated clusters provisioned for
peak load to ensure responsiveness and tolerate data cen-
ter outages. As a result, the average load is far lower
than the peak load used for provisioning, leading to re-
source under-utilization. The idle resources can be used
to run batch jobs, completing useful work and reducing
overall data center provisioning costs. However, this is
challenging in practice due to the complexity and strin-
gent tail-latency requirements of latency-sensitive ser-
vices. Left unmanaged, the competition for machine re-
sources can lead to severe response-time degradation and
unmet service-level objectives (SLOs).

This work describes PerfIso, a performance isolation
framework which has been used for nearly three years in
Microsoft Bing, a major search engine, to colocate batch
jobs with production latency-sensitive services on over
90,000 servers. We discuss the design and implemen-
tation of PerfIso, and conduct an experimental evalua-
tion in a production environment. We show that colo-
cating CPU-intensive jobs with latency-sensitive services
increases average CPU utilization from 21% to 66% for
off-peak load without impacting tail latency.

1 Introduction

New server acquisition contributes to over half of the
total cost of ownership (TCO) of modern data centers [8].
However, server utilization is low in data centers host-
ing large latency-sensitive services for two main reasons:
First, latency-sensitive services are typically provisioned
for the peak load, which occurs only for a fraction of
the total running time [18]. Second, business-continuity
plans dictate tolerating multiple major data center out-
ages, such as tolerating the failure of two data centers

* Work done while authors were at Microsoft Research.
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Figure 1: Architecture of index serving system of Web
search engine with two aggregation levels (MLA and
TLA). The user query is processed on index servers,
which send responses to MLAs, which send aggregated
responses to TLA.

out of three data centers within a continent while remain-
ing capable of processing peak load. The high degree of
over-provisioning is imperative: a livesite incident caus-
ing brief downtime results in lost revenue and frustrated
users, while an extended downtime comes with negative
headline news and irreparable business damage. Even
slightly higher response times decrease user satisfaction
and impact revenues [29, 10, 17].

Over-provisioning means that resource utilization is
low, offering the opportunity to colocate batch jobs
alongside latency-sensitive services [32, 18]. Colocation
must be managed carefully lest it degrades performance
due to competition on machine resources. Our main goal
is to ensure that the end-to-end service-level objectives
(SLOs) are met while increasing the work done by batch
jobs. The main technical challenges arise from main-
taining short tail latency (e.g., the 99th latency percentile
also called P99 latency) for the latency-sensitive services
coupled with the complexity of commercial software and
large deployments.

Oftentimes the service-level-objectives are not known
explicitly for each individual component. For example,
large commercial search engines contain tens of plat-
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forms: to serve the web index, to build and update the
web index, to manage user data and transaction history,
to serve the most relevant advertisements, and to bill
advertisers among many others. Modeling these com-
ponents or assuming all their target latency values are
known is not realistic.

Production environments are complex. A large data
center comprising over 100,000 machines spans several
generations of hardware. The generation gap can be up
to 6 years, effectively constraining which hardware fea-
tures can be used for performance isolation. Changes to
the software stack running in a production environment
are often infeasible. To be deployed on a large scale, the
performance isolation framework must be robust, mod-
ular, and easy to debug. A good solution must provide
the same performance guarantees seamlessly across all
hardware and software configurations.

We describe our experiences in developing and de-
ploying PerfIso, the performance isolation framework
used in Microsoft’s Bing clusters for over three years.
We show how to colocate batch jobs with online ser-
vices even when the tail response-latency requirements
are within the order of milliseconds. We describe CPU
blind isolation which dynamically restricts the cores that
batch jobs use to protect the bursty interactive services
even under high load. Depending on the load, batch jobs
are given more or fewer resources to make progress.

Existing colocation approaches [20, 16, 34, 38] mea-
sure server-level performance metrics (e.g., query re-
sponse times), and adjust resource allocation when the
target is not met. This is not a good fit because if a query
misses its target, it is already too late [17], and only end-
to-end response time constraints are specified; per-layer
service time limits are not.

We take a different approach: we ensure that
there is always some slack in available resources such
that abrupt changes in load do not impact response
times. In contrast, traditional resource management po-
lices focus on high resource-utilization while enforc-
ing fair-sharing (most operating systems employ work-
conserving scheduling algorithms). This works well for
batch jobs, but does not account for factors such as the
response-time latency of an interactive service. By using
non-work-conserving resource management, we are able
to adapt to changes in load and resource demands while
treating the latency-sensitive service as a “black-box”.

We focus on a concrete example: IndexServe — the
Web index serving platform — because it is one of the
largest in terms of machine count and has some of the
strictest latency requirements. The web index is parti-
tioned across hundreds or thousands of servers, and a
user search query is processed in parallel on all servers.
Responses are aggregated from the IndexServe machines
on multiple levels (see Fig. 1). In such multi-layered sys-

tems, the slowest server dictates the response time [15].
To handle high load while meeting the strict la-

tency requirements, many services are implemented as
highly-optimized multi-threaded servers. The low query
servicing-times make them highly bursty in nature: in
several Bing services we find that, under high load, up to
15 threads become ready to run in just 5µs. Due to the
stringent tail-latency constraints, it is imperative to avoid
scheduling delays, making the CPU the main bottleneck
in our approach. We show that statically restricting CPU
cores or CPU cycles does not fully solve the problem and
fails to take advantage of idle cores during off-peak.

Our key goal is to ensure that interactive services per-
form equally well with batch jobs colocated as when they
run alone. We show that CPU blind isolation success-
fully protects IndexServe while increasing average CPU
utilization from 21% to 66% by colocating it with CPU-
intensive jobs.

The main contributions of this work are as follows:

i. Identifying the key challenges of colocating batch
jobs with large production latency-sensitive ser-
vices and analyzing the effectiveness of operat-
ing system mechanisms to monitor and control re-
sources.

ii. Introducing CPU Blind Isolation — a technique to
mitigate harmful CPU-level interference between
tenants.

iii. Designing and implementing the PerfIso perfor-
mance isolation framework which allows batch jobs
to be run alongside latency-sensitive services with-
out any tail latency degradation.

iv. Evaluating PerfIso on a single machine to compare
it to other alternatives, and on a 75-node produc-
tion cluster, both running a real-world commercial
online interactive service.

2 Background
We refer to the latency-sensitive user-facing services

as primary tenants. All resources of a machine need
to be available for them, since they generate the rev-
enue that pays for the actual machines. The main goal
of our system is to colocate batch jobs with a latency-
sensitive user-facing service without impacting its re-
sponse times. Thus, the primary always runs unrestricted
and unmodified.

Batch jobs that run on these machines are secondary
tenants and are treated in a best-effort manner — any
resources they use are released to the system whenever
the primary needs them. If the primary does not utilize
all available resources, the secondary will be allowed to
use some of them.
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2.1 Applications and Services
Primary tenants comprise the latency-sensitive ser-

vices which are governed by strict response-time SLOs.
They are characterized by the following:

1. a complex layered architecture – hard to model
or predict, since responses are computed in parallel
and then aggregated.

2. short tail latency – any layer can severely impact
query response times.

3. highly bursty nature – the service frequently
spawns a large number of workers in a short period
of time (order of microseconds).

Example primary tenant. We take the IndexServe com-
ponent of Bing search as an example. IndexServe re-
ceives user queries and fetches potential matches from
a search index. It can perform a variety of lookup and
ranking operations. Its response times are within the or-
der of milliseconds, and SLOs dictate that the 99th per-
centile must stay within a 1-millisecond limit of its ex-
pected value (i.e., without colocation). Fig. 1 shows a
simplified description of the layered architecture of In-
dexServe. Our measurements indicated that during a
time frame of 5µs, up to 15 threads became ready for
execution.

Example secondary tenants. Non-latency-sensitive,
big-data applications run alongside the primary. Popular
big-data frameworks such as Hadoop [1], YARN [31],
Apache Spark [35, 7], or Apache Flink [9] allow running
a wide-range of compute-intensive (e.g., machine learn-
ing), and disk-bound (e.g., search index preparation and
aggregation) jobs. Additionally, each server needs to run
an HDFS DataNode process (for data replication), and a
YARN NodeManager process (to handle individual task
creation/destruction).

Both classes of tenants require access to several re-
sources: CPU, disk, memory, network, etc. Accounting
for potential resource bottlenecks is paramount in main-
taining the performance of the primary. However, that
alone is not sufficient, as our system needs to ensure that
the secondary can make adequate progress, increasing
the amount of work done when the primary is under-
utilized.

2.2 Driving Forces and Constraints
We focus on the performance requirements of the pri-

mary, without making any assumptions about its imple-
mentation. This enables wide-spread deployment, but
makes it difficult to identify when the secondary inter-
feres with the primary. Although we consider the CPU
the main bottleneck, other resources also need to be mon-
itored for contention.

Another key aspect is controlling resource access.
Most operating systems already offer static mechanisms
to restrict or prioritize access to a certain resource. While
comprehensive, these are insufficient when dealing with
bursty latency-sensitive workloads.

Given the complexity of production systems, it is hard
to change the primary or the operating system (especially
the kernel) due to the high costs of development, testing
and deployment. Rather, our solution relies on features
readily-available, and makes very few assumptions about
the primary workload. In a nutshell, we treat the primary
and the OS as a “black-box”.

3 System Design
3.1 CPU Blind Isolation

CPU is a prevalent bottleneck resource for most low-
latency services and big-data frameworks [27]. Mod-
ern OSes implement effective means to statically man-
age CPU time across tenants [3, 4], such as throttling
CPU cycles or restricting CPU cores. However, in Sec-
tion 6.1.4 we show that they are ineffective because they
cannot automatically adapt to the bursty workloads.

We propose a new technique called CPU Blind Isola-
tion, which restricts which cores secondary tenants use
based on core utilization information read from the OS.
The key idea is to ensure that the primary always has
some headroom (i.e., buffer idle cores), to absorb any
primary worker-threads that wake up. The number of
buffer cores is computed after offline-profiling of the pri-
mary using a sufficiently-heavy workload.

As the primary must always run unrestricted, we re-
strict the secondary to run only on a subset of cores.
The secondary is allocated the cores remaining after sub-
tracting the cores used by the primary and the number of
buffer idle cores.

For example, consider a machine with 48 (physical)
cores running a primary that needs 4 buffer cores to ab-
sorb bursts. If the primary uses 20 cores, the secondary
would be restricted to 24 cores. If the primary goes up to
24 cores, the secondary is immediately restricted to 20.

Why not change the OS scheduler? We recognize that
this solution can be implemented at the scheduler level.
We argue that this is impractical and imposes significant
overhead in large-scale deployment. Bugs introduced to
the scheduler by seemingly-trivial changes are laborious
to track down and can cause unexpected performance
degradation. For example, the well-established Linux
Completely-Fair-Scheduler has been found to have had
bugs which caused threads to wait even when idle cores
were available [21]. These bugs persisted in the code-
base for several years. Our approach achieves perfor-
mance isolation without interfering with the scheduler or
the scheduling policy.
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Figure 2: Conceptual representation of CPU blind iso-
lation. The primary is unrestricted, and can run on any
core, while the secondary is restricted to a subset of cores
such that the primary always has a buffer of idle cores.

Non-work conserving scheduling In contrast to most
OS schedulers, blind isolation is non-work conserving
by nature. It deliberately chooses to leave several cores
idle in order to properly measure and react to changes
in the amount of work done by the primary. It is known
that non-work conserving schedulers can improve per-
formance in multi-processor scenarios [13]. We find that,
similarly, blind isolation helps improve CPU utilization
in the case of colocation.

3.1.1 Counting Idle Cores

An important requirement of our solution is a low-
latency, low-overhead means of obtaining CPU utiliza-
tion information. More specifically, we need to know
how many cores are idle. We consider a core to be idle if
the idle thread is running there.

The Windows scheduler keeps track of idle cores and
provides this information through a system call. This
system call returns a bit mask with the bits correspond-
ing to the idle CPUs’ ids set. We tested several other ap-
proaches relying on different metrics (e.g., recorded idle
times, counting active threads), but found this solution to
be best in terms of latency, overhead, and accuracy.

3.1.2 Allocating Cores to the Secondary

Once we know how many cores are idle we can de-
tect whether the secondary needs to give up cores to the
primary, or if the primary is not using all available cores.
We assume that the secondary is CPU-intensive, and thus
will fully occupy all cores allocated to it. If I is the num-
ber of idle cores in the system, B is the number of buffer
cores, and S is the number of cores allocated to the sec-
ondary, then: if I < B, S is decreased, and if I > B, S is
increased.

3.2 Managing Other Resources

Disk. We choose which disks are best suited for the pri-
mary and secondary. We find that it is necessary to sepa-
rate the disks which are on the critical path of the primary
from those used by the secondary. This is motivated by

the nature of the tenants: the primary is highly-tuned to-
wards read-only random accesses, so it is assigned to a
striped set of solid-state disks (SSDs). In contrast, batch
jobs often perform both reads and writes and mostly se-
quential in nature, so they are assigned to a striped set of
hard-disks (HDDs).

Memory. Most low-latency services will manage their
caches explicitly, loading data from disk as necessary
depending on incoming queries. Furthermore, primary
services are engineered to have a fixed working set and a
stable memory footprint. We cannot compromise on this,
and must guarantee the primary’s ability to make full use
of the memory. This is achieved by limiting the memory
footprint of the secondary. When memory runs very low,
secondary processes are killed.

Egress network packets. We throttle the outbound traf-
fic of the secondary, marking it as low-priority and allow-
ing the primary to maintain its throughput and response
latency. This prevents the secondary from affecting the
responsiveness of the primary.

4 Implementation and Deployment
We implemented PerfIso as a user-mode service based

on the techniques and OS mechanisms described. Most
of the static limits that PerfIso enforces are read from
cluster-wide configuration files distributed through the
Autopilot [14] environment. The resource limits can be
altered independently at runtime by issuing a command
to PerfIso. A client-application can also be used locally
for debugging.

Although it is possible to obtain the unique process
identifiers (PIDs) of the secondary tenants, Autopilot
eases this task by keeping a list of running services and
their respective information. Each secondary tenant pro-
cess is placed in a unified Job Object configured dynam-
ically by PerfIso.

4.1 Isolation Algorithm
The dynamic limits set by PerfIso need to be adjusted

often. The state of the system needs to be read and the
control knobs updated accordingly. Polling is important
because the state of the primary can change quickly. Un-
fortunately, constantly updating certain settings can be-
come harmful to the performance of all services. Thus,
polling and updating are separated in PerfIso. We poll
utilization data (e.g., CPU) continuously in a tight loop
and we update the dynamic limits of the system on-
demand based on the measured change in resource re-
quirements.

Choosing the number of buffer cores. CPU blind iso-
lation uses buffer cores to ensure that tail latency is pro-
tected while the system adjusts to changes in load. This
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requires that sufficient buffer cores are allocated to ab-
sorb bursty workloads. A one-off measurement of the
primary under its provisioned peak load is needed to find
how many threads can become ready for execution.

We evaluate different buffer core values in Sec-
tion 6.1.3, and find that 8 cores are enough for In-
dexServe to maintain its 99th percentile SLO on our
servers.

I/O throttling. The monitoring mechanisms provide
only per-device I/O statistics, without discerning which
processes originated the operations. In order to provide
per-process throttling of I/O, we use Deficit-Weighted-
Round-Robin [19]. Each process is assigned an I/O prior-
ity and one or more limits that need to be enforced (e.g.,
bandwidth, IOPS). Based on its priority, each process is
assigned a weight – the higher the priority, the larger the
weight. We then measure the number of completed I/O
requests per second (or IOPS) per drive, and use a mov-
ing average.

We compute the portion of the requests a given process
is responsible for based on its weight. Considering wt

i the
weight of process i at time t, and currt the IOPS value
measured at time t, then the demand of process i is:

Dt
i =

t

∑
t ′=t−∆

wt ′
i × currt ′

∑∀ j wt ′
j

We mark the lower limit of process i with limi, which
represents the minimum amount of IOPS that process i is
guaranteed. The deficit of this process with regard to the
limit is:

Deft
i =

currt −min(limi,Dt
i)

min(limi,Dt
i)

The I/O priorities of processes are adjusted based on
the computed deficit values.

4.2 Deployment in Production Clusters
All machines run under a management framework

such as Autopilot [14]. This provides machine wiping,
imaging, backup, and monitoring functionality. Autopi-
lot provides a stable service management interface to
start, stop, and configure software. PerfIso is run as an
additional service in Autopilot, making it easy to deploy,
and to configure across various different environments.

PerfIso is designed to have a “kill-switch”, so that it
can be quickly deactivated. This is useful when debug-
ging production issues, and it allows quickly excluding
PerfIso as a potential cause.

PerfIso is fully recoverable, since all parameters are
stored in the cluster-wide configuration files. In the event
of a crash, Autopilot will bring it up again, and PerfIso
will resume its function by loading its state from disk.

PerfIso ensures that its settings do not affect those em-
ployed by the primary. For example, if the primary uses

core affinitization for performance reasons, then PerfIso
would not override these settings when attempting to ac-
commodate the secondary.

5 Experimental Evaluation
5.1 Objectives

1. How is tail latency impacted by colocating batch
jobs with the primary without PerfIso?

2. How effective is PerfIso in maintaining tail latency
when a batch job is colocated with the primary?

3. How does CPU blind isolation compare to static
isolation mechanisms provided by modern OSes?

5.2 Machine Configuration
We evaluate our solution on typical production hard-

ware. Each server has two Intel Xeon E5-2673 v3 pro-
cessors with 12 physical cores per die (a total of 48 cores
with hyper-threading), 128 GB of RAM, and a 10 GbE
Ethernet card. Storage is provided by 2 striped volumes:
4× 500 GB SSD drives, and 4× 2 TB HDD drives. The
servers run Microsoft Windows Server 2016.

5.3 Experiment Setup
We use Bing IndexServe as the primary tenant in our

experiments. IndexServe processes a search query to find
a match using a large index partitioned across machines
and replicated for performance.

IndexServe is setup with an index slice of 569 GB, and
uses approximatively 110 GB of memory to cache re-
cently accessed web index data. The index slice is stored
on the striped SSD volume which IndexServe uses exclu-
sively. IndexServe relies on the SSDs’ low I/O latency
to maintain its tail latency requirements. The HDD vol-
ume is only used by IndexServe for logging, being shared
with the secondary. The service is configured to return
the most relevant matches.

Primary workload. We use a trace of 500k real-world
queries from early 2017 to put load on the primary. A
separate client machine is used to submit queries from
the trace. We first replay a warm-up trace of 100k queries
at a rate of 300 queries / second (QPS) so that IndexServe
ramps up and reaches a steady-state. The warm-up is not
reported as part of our measurements.

We vary the load by changing the query arrival rate,
i.e., we replay our trace at different query rates. The
following represent a reasonable approximation of query
arrival rates that an IndexServe machine might receive at
the time that this paper was written:

• 2,000 QPS - approximating average load

• 4,000 QPS - approximating peak load
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Figure 3: Request processing on the 75 machine In-
dexServe cluster described in Section 5.3. All gray ma-
chines run IndexServe and hold a slice of the index.

The client application replays the query trace in an
open loop and sends queries according to a Poisson pro-
cess distribution.

Secondary workload. We use a synthetic micro-
benchmark as the secondary to stress the CPU by ac-
tively utilizing as many CPU cycles as the system per-
mits, pushing blind isolation to its limits. This CPU
bully is a multi-threaded program with each worker
thread computing the sum of several integer values. The
number of worker threads is configurable and we vary
it up to the total number of logical cores present on the
system. The bully maximizes CPU utilization since there
are very few memory or external storage accesses.

Single-machine experiments. We run IndexServe on a
single machine configured as described above. We mea-
sure the impact of CPU contention on tail query response
time, the most important metric being the 99th percentile.

Cluster experiments. We setup IndexServe across 75
machines, in the following manner: the index is split into
22 partitions (or columns), and each column is replicated
by a factor of 2 (total of 2 rows). Each IndexServe server
holds a partition of the index similarly to the single-box
runs. The top-level aggregator (TLA) runs on 31 separate
machines than the ones that hold the index. The mid-
level aggregator (MLA) runs on IndexServe machines,
and each request may get forwarded to a different MLA
based on the TLA load-balancing. Fig. 3 shows an ex-
ample of the system processing 2 incoming requests.

Each IndexServe machine also runs an HDFS client
because many batch jobs that are used in production
run on top of frameworks such as Hadoop and, thus,
rely on HDFS for storage access. In addition to other
experiment-specific PerfIso settings, we also set the fol-
lowing static disk bandwidth limits: data replication is
limited to 20MB/s, and HDFS clients are limited to 60
MB/s. All I/O operations done by HDFS are unbuffered.

A client is setup on a separate machine and configured
to submit queries to the TLA machines. We then run a
trace of 200k queries at a total rate of 8,000 QPS. The
TLAs will load-balance these queries across the 2 rows,

resulting in an average workload of 4,000 QPS for each
IndexServe machine.

Additionally, we use a Disk bully to ensure that I/O
generated by HDFS does not cause any server to strag-
gle. We setup DiskSPD [5] to create an I/O bound work-
load on the HDD strip of each machine. We perform
a mixed read-write workload, with 33% reads and 67%
writes, with sequential accesses and synchronous I/O op-
erations.

6 Experimental Results
We first evaluate PerfIso on a single machine and mea-

sure the effectiveness of CPU blind isolation. We then
move on to a 75-machine cluster and analyze CPU iso-
lation mechanisms, measuring latency end-to-end and at
each component level. The main metric used is the 99th

percentile of query response latency.

6.1 Single-machine Experiments

Going further, we analyze the baseline (or standalone)
behaviour of IndexServe and three colocation scenarios:

• No isolation – The primary and secondary are colo-
cated without any isolation.

• Blind isolation – The secondary is dynamically re-
stricted in terms of CPU cores using our technique.

• Alternative isolation – The secondary is suc-
cessively restricted in terms of CPU cores, and
CPU cycles using OS-specific mechanisms.

Our goal is to also maximize the amount of work done
by the secondary, so we first configure each isolation
technique with “relaxed” settings. We then successively
restrict the secondary until either the SLO is met, or until
the secondary no longer gets any work done.

6.1.1 Baseline

First, we measure how IndexServe performs when it
runs standalone (i.e., no colocation). The 1st bar groups
of Figs. 4a and 4b report the query latency and CPU uti-
lization, respectively. The median query time is 4ms,
and the 99th percentile is 12ms, both for 2,000 and 4,000
QPS. The average CPU utilization is low, with the CPU
remaining idle for 80% and 60% of time, respectively.

6.1.2 No Isolation

We colocate the primary and secondary, configuring
the bully to use either mid (24 threads) or high (48
threads). The 2nd and 3rd columns of Figs. 4a and 4b
report query latency and CPU utilization for the mid and
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Figure 4: Single machine run of IndexServe standalone (no colocation) vs. colocated with an unrestricted secondary.
A mid secondary increases the 99th percentile query latency by up to 42%, while a high increases same by up to 29×.
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Figure 5: Single machine run of IndexServe colocated with a secondary restricted using blind isolation. Using a buffer
of 8 CPU cores, the 99th percentile query latency is less than 1 ms off from the standalone case.
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Figure 6: Single machine run of IndexServe colocated with a secondary with CPU cores statically restricted.
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Figure 7: Single machine run of IndexServe colocated with a secondary with CPU cycles statically restricted.
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Figure 8: Comparison of isolation approaches on a single machine run of IndexServe at 2,000 QPS colocated with a
secondary running in high-mode. CPU blind isolation uses 8 buffer cores, CPU cores allows the secondary to use 8
cores, and CPU cycles restricts the secondary to 5% of CPU time.

high configurations, respectively. The impact of coloca-
tion is substantial. The mid case reaches 15ms and 18ms
in the 99th percentile for 2,000 and 4,000 QPS (higher
than the baseline by 3-5ms). For high, these values reach
349ms and 354ms (a 29× degradation). Between 11%
and 32% of queries timeout.

Fig. 4b shows the CPU utilization for the primary and
secondary, and idle CPU. Interestingly, when colocated
with the mid secondary, the CPU utilization of the pri-
mary increases up to 40% — IndexServe tries to com-
pensate for the increase in pending queries by starting
more workers. While this successfully prevents dropped
queries, it ultimately aggravates CPU contention, and the
latency SLO is not met. Another consequence is that the
secondary gets less CPU time overall, since the primary
will push it out from the only cores where it can run.

In the case of the high secondary, more than 32% of
queries submitted at peak primary load are dropped due
to the longer processing times, causing a decrease in pri-
mary CPU utilization.

6.1.3 Blind Isolation

We further use the 48 worker variant (high) secondary
to evaluate the efficiency of isolation mechanisms.

We evaluate the blind isolation mechanism by reserv-
ing 4 and 8 buffer logical-cores, respectively. The insight
here is to allow the primary to have a buffer of cores to
start new worker threads when load increases.

Fig. 5a and Fig. 5b report our findings in terms of la-
tency degradation and CPU utilization. We find that pro-
visioning 8 idle logical cores is enough to ensure less
than 1ms of degradation for the 99th latency percentile of
the high workload.

6.1.4 Comparison to Alternative Isolation Methods

We next analyze the effectiveness of two common
methods of static CPU resource management which

are available in most modern OSes: restricting CPU
cores and restricting CPU cycles. Windows provides
these mechanisms through the Job Object abstraction [3],
while Linux does so through the cgroups framework [4].

Restricting CPU cores. We successively restrict the sec-
ondary to use only 24, 16, and 8 cores of all 48 available
logical cores. The primary is guaranteed exclusive and
unimpeded access to the remainder, but can also compete
for the secondary’s cores. Fig. 6a shows the degradation
of query response latency for each case.

Fig. 6b shows the overall CPU utilization breakdown
when the bully is restricted to a subset of cores. When In-
dexServe is under average load, the secondary can claim
up to 33% of the CPU time. While this is an important
gain, the servers need to be provisioned for peak load,
thereby reducing the subset of cores allocated to the sec-
ondary to 8 cores. With IndexServe under peak load, the
secondary can only use up to 17% of the CPU time.

Restricting CPU cycles. We successively restrict the
secondary to 45%, 25% and 5% of the overall CPU time.

Fig. 7a reports the measured degradation of latency,
and Fig. 7c shows the percentage of queries that were
dropped (because of increased processing times). Giving
the bully even as little as 5% of CPU time still produces
degradation. Furthermore, as opposed to restricting CPU
cores, there is always some percentage of queries that get
dropped, ranging from 50% to around 1% (in the best
case). Fig. 7b shows that using this method less CPU
time goes to the secondary.

The main reason this technique yields results worse
than restricting CPU cores is that multi-threaded services
such as IndexServe launch short-lived worker threads to
process incoming requests. If these threads end up be-
ing queued for execution instead of being launched right
away, it creates a cascading effect which impacts all in-
coming queries. Despite the secondary not utilizing more
than its share of CPU time, IndexServe worker threads
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get delayed, leading to considerable degradation.

Progress of the secondary. Finally, we analyze the
amount of work that the secondary gets done under iso-
lation, as a percentage of the total work done when
unrestricted. We report for each IndexServe workload
the point where latency degradation was lowest for that
experiment. Blind Isolation allows the secondary to
achieve 62% and 25% of the work it did unrestricted,
for 2,000 and 4,000 QPS, respectively. Restricting CPU
cores yields a more modest 45% and a similar 30%, re-
spectively. Restricting CPU cycles fares worst, yielding
only 9% in both cases.

6.2 Cluster Experiments
We next look at how PerfIso performs in a production

cluster. We evaluate at an approximation of peak load to
stress the system, attempting to impact tail latency. This
makes PerfIso throttle the secondary more aggressively
to accommodate the primary.

As described in Fig. 3, requests arrive at one of many
top-level aggregator (TLA) machines, which forwards
the request in a round-robin fashion to one of the two
rows of IndexServe machines (each row holds a parti-
tioned copy of the search index). The TLA chooses an
IndexServe machine from the row to act as the mid-level
aggregator (MLA) for a particular request. The MLA
queries all the other IndexServe instances in its row (in-
cluding the local one), aggregates all results, and formu-
lates the final query response.

We run each experiment 8 times, and measure query
latency at a) each server, b) at each layer, and c) end-to-
end. Fig. 9a reports the baseline query response latency,
averaged across IndexServe machines, across MLAs,
and across TLAs. The HDFS client takes up to 5% of
total CPU time.

We start our CPU bully and configure PerfIso on each
IndexServe machine for blind isolation in the same man-
ner as the singlebox runs. Fig. 9b shows the query re-
sponse latency for this CPU-bound workload. Com-
pared to the baseline, the 99th percentile reported by In-
dexServe, MLA, and TLA instances increases by at most
0.8, 0.4, and 1.1 milliseconds, respectively.

We configure PerfIso to throttle disk I/O to either
100MB/s, or 20 IOPS/s, for a given operation data chunk
size of 8KB. Fig. 9c shows the query response latency
for this Disk-bound workload. Compared to the base-
line, the 99th percentile reported by IndexServe, MLA,
and TLA instances increases by at most 0.8, 1.2, and 1.1
milliseconds, respectively.

Progress results with larger cluster. Finally, we show
production results for a cluster of 650 IndexServe ma-
chines processing live user queries while colocated with
a large batch job executing the training phase of a

machine-learning computation. Fig. 10 shows key per-
formance metrics: load in QPS, 99th percentile latency
of query response times measured at the TLA, and server
CPU utilization averaged across all machines. Impor-
tantly, CPU utilization averages 70% over 1 hour.

6.3 Takeaways
We now present a sum-up of our evaluation, referring

to the objectives established in Section 5.1:

1. Fig. 8a shows that a CPU-bound batch job can
importantly affect the 99th percentile query la-
tency of the primary, reaching up to 29× degrada-
tion. Fig. 4a shows that even a mildly CPU-intensive
job can cause interference and can increase tail la-
tency by up to 42%.

2. Fig. 8a shows that blind isolation successfully pro-
tects tail latency under medium load (2,000 QPS),
and Fig. 4a shows that this holds for peak loads
(4,000 QPS) as well. In the latter case, the 99th

percentile is within 1 ms of the standalone case.
Fig. 9 reports the results for 8 runs of an approxi-
mated peak load (4,000 QPS) on a production clus-
ter, showing that PerfIso successfully protects tail
latency. The query response latency tail for CPU
and Disk-bound jobs (Figs. 9b and 9c) is within
1.2 milliseconds of the standalone case (Fig. 9a).
Fig. 10 shows that blind isolation raises CPU uti-
lization to 70% through colocation over the course
of 1 hour on a 650-machine IndexServe cluster.

3. Fig. 8 reports a full comparison of all our evalu-
ated techniques, showing that blind isolation and
cpu cores both protect tail latency. However blind
isolation manages to reduce idle cpu time by a fur-
ther 13% compared to cpu cores, and allows the
secondary to perform 17% more work. CPU cycles
fails to protect tail latency.

We conclude that PerfIso successfully protects tail la-
tency across all IndexServe machines, ultimately pre-
serving the end-to-end SLOs.

7 Related Work
Many existing solutions propose colocation to in-

crease data center utilization, but rely on information
about the primary tenant’s SLO and workload, or on spe-
cific hardware support. The complexity and performance
characteristics (e.g., tail latency requirements and bursty
nature) of primary tenants pushed our design into a dif-
ferent direction, adopting a black-box model with few
assumptions on hardware for large-scale deployment.

MS Manners [12] provides CPU-level performance
isolation on single-core machines by restricting the CPU
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Figure 9: Latency values for IndexServe running on a production cluster: Fig. 9a shows the baseline, Figs. 9b and 9c
show the result of colocation with CPU-bound and Disk-bound secondary tenants, respectively.

Figure 10: Production results for a cluster of 650 In-
dexServe machines colocated with a secondary running
a machine learning training computation over 1 hour.

cycles available to the secondary, based on job progress
information. Our experimental evaluation shows that
managing CPU cycles per tenant severely impacts tail
latency, and we manage the number of CPU cores of the
secondary tenants dynamically instead.

TEMM [38] proposes a throttling-based management
technique to configure CPU duty cycles and DVFS set-
tings to meet SLOs. TEMM requires the latency SLOs
of the primary, and assumes that the bottleneck is either
the last-layer caches or off-chip bandwidth, whereas any
of several other resources can be the bottleneck.

MIMP [36] considers tenants in a virtualized environ-
ment. It defines a new priority in the hypervisor sched-
uler to meet the performance requirements of the primary
tenant, focusing on CPU-level interference.

Quasar [11] is a cluster manager that reduces resource
over-provisioning and increases utilization while meet-
ing quality of service constraints. It uses profiling in-
formation and collaborative filtering to infer the tenants’
resource requirements. It additionally monitors service
performance and adjusts allocations when target laten-
cies are not met. In contrast, PerfIso, ensures some slack
is always available to accommodate the bursty demands
of the primary tenant without assuming explicit server-
level performance requirements or tail latency targets.

Heracles [20] uses a feedback mechanism to adjust

the secondary tenants’ resources based on the tail latency
of the primary tenant. Heracles needs the latency SLOs
of the primary and exploits hardware mechanisms such
as Intel’s Cache Allocation Technology [2]. Heracles is
complementary to this work since the knowledge of pri-
mary tenant SLOs and availability of specific hardware
mechanisms limits wider deployment.

Jail [28] is Google’s cache partitioning performance
isolation mechanism. It incorporates Intel CMT and
CAT [2] support into Linux cgroups, but allows only
static partitioning of resources. In contrast our experi-
ments show dynamic isolation techniques (such as blind
isolation) provide more resources to the secondary while
protecting the primary’s tail latency. Additionally, data
center machines span multiple hardware generations, not
all of which supporting CAT.

RubikColoc [16] configures per-core DVFS to com-
pensate for the overhead of multiplexing primary and
secondary tenants on the same core. RubikColoc needs
server-level latency SLOs and per-core DVFS support.

Elfen [34] provides CPU-level performance isolation
for primary and secondary tenants running on the same
core using Simultaneous Multi-Threading (SMT) tech-
nology available on modern CPUs. Effectively, the sec-
ondary is colocated with the primary on the same physi-
cal core only when the primary’s measured performance
is within its SLO. Elfen needs latency SLOs for the pri-
mary, OS support to query SMT-to-process mappings,
and application-level instrumentation for the secondary.

BatchDB [23] is a database system that handles both
OLTP and OLAP queries, providing good performance
isolation for the former. Our approach instead focuses on
the scenario where the tenants are distinct applications.

Leverich et al. [18] advocate using colocation to im-
prove cluster throughput-per-TCO, and identify queuing
delay, scheduling delay, and worker-thread load imbal-
ance as the challenges in providing service-level QoS.
They propose better cluster provisioning and custom OS
schedulers to mitigate tenant interference. However,
given the complexity of large commercial services, we
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cannot make changes, neither at the hardware nor kernel
level, which is why we adopt a “black-box” model.

CPI2 [37] is a performance isolation mechanism
which uses Clock Per Instruction (CPI) data to build
probabilistic distribution models and to find stragglers
(victims of resource interference). CPI2 identifies the
antagonists of latency-sensitive tasks by matching CPI
patterns, and restricts their CPU cycle-share. We show
that restricting CPU cores is significantly more effective
in protecting primary tail latency.

HipsterCo [26] is a task scheduler for latency-sensitive
workloads running on heterogeneous multi-core systems.
HipsterCo colocates batch jobs with latency-sensitive
workloads to increase resource utilization. HipsterCo
uses reinforcement learning to build the CPU and DVFS
configuration required to meet target SLOs. All remain-
ing CPU cores are allocated to batch jobs. However,
HipsterCo requires performance feedback from latency-
sensitive workloads which is not available in our envi-
ronment. Furthermore, we argue that for complex com-
mercial latency-sensitive services, some buffer cores are
required to prevent performance degradation.

Bubble-Up [24] and Bubble-Flux [33] focus on mem-
ory bandwidth and last-level cache interference as the
main actors in colocation performance degradation. The
former proposes a static profiling technique to accurately
estimate the expected degradation, while the later uses an
online approach, both assuming live performance infor-
mation from the latency-sensitive service is available.

Zhang et al. [39] use historical resource utiliza-
tion data and disk re-imaging patterns of tenants in
task scheduling and data placement. The primary has
resource-priority, meaning that a load-surge kills off sec-
ondary tasks. Thus, the scheduling algorithm places sec-
ondaries as to minimize the likelihood of termination.
Misra et al. [25] improved upon this work by proposing a
scalable distributed file system design which maximizes
data availability for secondary tenants. Due to the highly
spiking and unpredictable nature of the primary services
we target, relying on historical data is insufficient to in-
sure that performance guarantees are met.

Pisces [30] achieves fairness and per-tenant perfor-
mance isolation in shared key-value storage. Pisces
uses deficit-weighted-round-robin (DWRR) to schedule
requests at server-level, thus mediating resource con-
tention. In our case secondary tasks are batch jobs, and
therefore do not lend themselves to request scheduling,
so we only employ DWRR for I/O throttling.

2DFQ [22] proposes a new weighted fair queuing al-
gorithm to ensure fairness for multi-tenant services that
use thread pools inside a single process. This technique
benefits the primary tenants and could reduce the bursti-
ness of their execution, which complements PerfIso and
potentially reduces the number of buffer cores required.

Alizadeh et. al [6] propose HULL — a system which
leaves ‘bandwidth headroom’ to mitigate the problem of
packet queuing in low-latency networked systems. This
is similar in spirit to our non-work-conserving resource
management approach, but focuses on avoiding network
congestion rather than performance isolation.

8 Conclusions
Machines hosting large commercial latency-sensitive

services are often underutilized because important ser-
vices are provisioned for peak load as to meet business
availably and fault-tolerance constraints.

Colocating batch jobs with latency-sensitive services
is an important way of increasing utilization and data
center efficiency, but comes with key challenges. Large
latency-sensitive services are complex, and follow a lay-
ered architecture and therefore require short tail laten-
cies. The diversity of commercial systems prevents us
from using explicit knowledge of their latency targets,
motivating us to adopt an approach in which we assume
limited information about the primary tenant.

This paper presents the design and implementation of
PerfIso, a performance isolation framework that makes
use of idle resources to run batch jobs without affecting
the primary tenant. It uses CPU blind isolation to meet
the requirements of commercial large latency-sensitive
services. The key insight is ensuring that the primary
tenant always has idle cores available to accommodate
its bursty workload, while allowing the secondary tenant
to make progress.

We evaluate PerfIso experimentally on a single ma-
chine and on a cluster of machines using Bing In-
dexServe as the primary workload. We compare exist-
ing CPU isolation techniques (such as rate limiting and
static core affinitization) to our approach, and we find
that under the latter the 99th percentile of the tail latency
values remain largely unchanged compared to running
standalone. PerfIso allows compute-intensive batch jobs
to use up to 47% of CPU cycles for off-peak loads which
would have otherwise remained idle.
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AND FEDOROVA, A. The linux scheduler: a decade of wasted
cores. In Proceedings of the Eleventh European Conference on
Computer Systems (2016), ACM, p. 1.

[22] MACE, J., BODIK, P., MUSUVATHI, M., FONSECA, R., AND
VARADARAJAN, K. 2dfq: Two-dimensional fair queuing for
multi-tenant cloud services. In Proceedings of the 2016 ACM
SIGCOMM Conference (New York, NY, USA, 2016), SIG-
COMM ’16, ACM, pp. 144–159.

[23] MAKRESHANSKI, D., GICEVA, J., BARTHELS, C., AND
ALONSO, G. BatchDB: Efficient isolated execution of hybrid
OLTP+ OLAP workloads for interactive applications. In Pro-
ceedings of the 2017 ACM International Conference on Manage-
ment of Data (2017), ACM, pp. 37–50.

[24] MARS, J., TANG, L., HUNDT, R., SKADRON, K., AND SOFFA,
M. L. Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations. In Proceedings of the
44th annual IEEE/ACM International Symposium on Microarchi-
tecture (2011), ACM, pp. 248–259.

[25] MISRA, P. A., GOIRI, I., KACE, J., AND BIANCHINI, R. Scal-
ing distributed file systems in resource-harvesting datacenters. In
2017 USENIX Annual Technical Conference (USENIX ATC 17)
(Santa Clara, CA, 2017), USENIX Association, pp. 799–811.

[26] NISHTALA, R., CARPENTER, P., PETRUCCI, V., AND MAR-
TORELL, X. Hipster: Hybrid task manager for latency-critical
cloud workloads. In High Performance Computer Architecture
(HPCA), 2017 IEEE International Symposium on (2017), IEEE,
pp. 409–420.

[27] OUSTERHOUT, K., RASTI, R., RATNASAMY, S., SHENKER, S.,
CHUN, B.-G., AND ICSI, V. Making sense of performance in
data analytics frameworks. In NSDI (2015), vol. 15, pp. 293–307.

[28] ROHIT, J., AND DAVID, L. CAT at scale: Deploying cache iso-
lation in a mixed workload environment. LinuxCon + Container-
Con North America, August 2016.

[29] SCHURMAN, E., AND BRUTLAG, J. Performance related
changes and their user impact. In velocity web performance and
operations conference (2009).

[30] SHUE, D., FREEDMAN, M. J., AND SHAIKH, A. Performance
isolation and fairness for multi-tenant cloud storage. In Presented
as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12) (Hollywood, CA, 2012),
USENIX, pp. 349–362.

[31] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGAR-
WAL, S., KONAR, M., EVANS, R., GRAVES, T., LOWE, J.,
SHAH, H., SETH, S., ET AL. Apache hadoop YARN: Yet another
resource negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing (2013), ACM, p. 5.

[32] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER,
D., TUNE, E., AND WILKES, J. Large-scale cluster manage-
ment at Google with Borg. In Proceedings of the Tenth European
Conference on Computer Systems (2015), ACM, p. 18.

530    2018 USENIX Annual Technical Conference USENIX Association

http://hadoop.apache.org
https://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
https://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
https://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
https://msdn.microsoft.com/en-us/library/windows/desktop/hh684161(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh684161(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh684161(v=vs.85).aspx
http://en.wikipedia.org/wiki/Cgroups
https://github.com/Microsoft/diskspd
https://github.com/Microsoft/diskspd


[33] YANG, H., BRESLOW, A., MARS, J., AND TANG, L. Bubble-
flux: Precise online qos management for increased utilization in
warehouse scale computers. In ACM SIGARCH Computer Archi-
tecture News (2013), vol. 41, ACM, pp. 607–618.

[34] YANG, X., BLACKBURN, S. M., AND MCKINLEY, K. S.
Elfen scheduling: Fine-grain principled borrowing from latency-
critical workloads using simultaneous multithreading. In
USENIX Annual Technical Conference (2016), pp. 309–322.

[35] ZAHARIA, M., XIN, R. S., WENDELL, P., DAS, T., ARM-
BRUST, M., DAVE, A., MENG, X., ROSEN, J., VENKATARA-
MAN, S., FRANKLIN, M. J., ET AL. Apache Spark: A unified
engine for big data processing. Communications of the ACM 59,
11 (2016), 56–65.

[36] ZHANG, W., RAJASEKARAN, S., DUAN, S., WOOD, T., AND
ZHUY, M. Minimizing interference and maximizing progress
for Hadoop virtual machines. ACM SIGMETRICS Performance
Evaluation Review 42, 4 (2015), 62–71.

[37] ZHANG, X., TUNE, E., HAGMANN, R., JNAGAL, R.,
GOKHALE, V., AND WILKES, J. CPI2: CPU performance iso-
lation for shared compute clusters. In Proceedings of the 8th
ACM European Conference on Computer Systems (2013), ACM,
pp. 379–391.

[38] ZHANG, X., ZHONG, R., DWARKADAS, S., AND SHEN, K. A
flexible framework for throttling-enabled multicore management
(TEMM). In Parallel Processing (ICPP), 2012 41st International
Conference on (2012), IEEE, pp. 389–398.

[39] ZHANG, Y., PREKAS, G., FUMAROLA, G. M., FONTOURA,
M., GOIRI, I., AND BIANCHINI, R. History-based harvest-
ing of spare cycles and storage in large-scale datacenters. In
12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (GA, 2016), USENIX Association,
pp. 755–770.

USENIX Association 2018 USENIX Annual Technical Conference    531




