
JANUS: Fast and Flexible Deep Learning

via Symbolic Graph Execution of Imperative Programs
�

Eunji Jeong
ejjeong@snu.ac.kr

Seoul National University

Sungwoo Cho
sungwoocho@snu.ac.kr

Seoul National University

Gyeong-In Yu
gyeongin@snu.ac.kr

Seoul National University
Joo Seong Jeong

joosjeong@snu.ac.kr
Seoul National University

DongJin Shin
dongjin.shin@spl.snu.ac.kr
Seoul National University

Byung-Gon Chun
bgchun@snu.ac.kr

Seoul National University

Abstract

The rapid evolution of deep neural networks is de-
manding deep learning (DL) frameworks not only to
satisfy the traditional requirement of quickly executing
large computations, but also to support straightforward
programming models for quickly implementing and ex-
perimenting with complex network structures. However,
existing frameworks fail to excel in both departments si-
multaneously, leading to diverged e�orts for optimizing
performance and improving usability.

This paper presents JANUS, a system that combines
the advantages from both sides by transparently convert-
ing an imperative DL program written in Python, the
de-facto scripting language for DL, into an e�ciently
executable symbolic dataflow graph. JANUS can con-
vert various dynamic features of Python, including dy-
namic control flow, dynamic types, and impure func-
tions, into elements of a symbolic dataflow graph. Ex-
periments demonstrate that JANUS can achieve fast DL
training by exploiting the techniques imposed by sym-
bolic graph-based DL frameworks, while maintaining
the simple and flexible programmability of imperative
DL frameworks at the same time.

1 Introduction

In recent years, deep neural networks have been widely
used in various application domains such as computer
vision, speech, and natural language processing for their
powerful capabilities of extracting abstract features from
data. Scientists have created deep learning (DL) frame-
works – TensorFlow [6], PyTorch [29], Ca�e2 [12],
MXNet [8], and many more [42, 40, 27, 37, 25, 14, 38, 7]
– to improve the performance of deep neural networks in
various jobs and promote the use of deep neural networks
in both production and research.

* Preprint version, to appear at NSDI ’19

Such DL frameworks can be classified into two dis-
tinct families depending on their execution models. One
family comprises frameworks that base their execution
on symbolic graphs constructed from DL programs. The
other family consists of frameworks that directly execute
DL programs in an imperative manner.
Symbolic graph execution. Frameworks such as Ten-
sorFlow [6], Ca�e2 [12], and MXNet [8] formulate neu-
ral networks as symbolic dataflow graphs. Graph ver-
tices denote the states and operations of a neural net-
work, while graph edges indicate the flow of data be-
tween vertices. Operations in the graph are executed
as their dependencies are solved, similar to how most
dataflow systems process dataflow graphs [10, 19]. The
graph representation allows the framework to identify
which operations can be run in parallel, and apply var-
ious compiler optimization techniques such as common
subexpression elimination or constant folding to gener-
ate optimized versions of graphs. Moreover, it is easy to
process dataflow graphs on accelerator devices or deploy
graphs across multiple machines by assigning an opera-
tion to the appropriate device or machine.

However, the separation of building a symbolic graph
and executing it complicates user experience, because
users are not actually running any numerical computa-
tions when defining neural networks through the frame-
work interface. Rather, they are constructing graphs that
will be executed later through separate functions.
Imperative program execution. In contrast, frame-
works including PyTorch [29], TensorFlow Eager [37],
and MXNet Imperative [24] have adopted the execution
model of running operations imperatively, without going
through a separate graph construction phase. Stemming
from popular Python libraries for scientific, numerical
computation such as NumPy [41] and Scikit-learn [30],
this imperative approach is useful for rapidly experi-

menting and working with new neural network models,
particularly those with complex structures. The native
control flow statements of Python can be exploited to
build models of interest. Unfortunately, skipping the for-
mation of a dataflow graph means that such frameworks
lose the chance to apply the many optimizations that
were possible in the symbolic graph execution model,
leading to significant performance di�erences for certain
neural network models.

The di�erent characteristics of DL frameworks sug-
gest that we cannot achieve high performance and good
usability at the same time. To reach high performance,
we must sacrifice framework usability to a certain ex-
tent, and vice versa. Otherwise, users are forced to resort
to an awkward approach of learning how to use several
frameworks and switching between them according to
the current task in hand.

From imperative programs to symbolic graphs. In
this paper, we propose to transparently convert impera-
tive Python DL programs into symbolic dataflow graphs
before execution. By not altering the user-facing inter-
face for building neural networks, we maintain the flexi-
ble programmability of frameworks with imperative ex-
ecution models. At the same time, behind the scenes, we
execute the symbolic graph versions of the imperative
programs to enjoy the performance optimizations done
by symbolic graph execution models.

However, this approach introduces a technical chal-
lenge of capturing the dynamic semantics of an impera-
tive Python program in a symbolic dataflow graph. The
dynamic aspects of Python, including dynamic control
flow, dynamic typing, and impure functions, must be em-
bedded in a symbolic graph correctly while providing the
performance of symbolic graph execution frameworks.

To this end, we present JANUS, a DL framework that
achieves the best of both worlds by receiving an impera-
tive DL program as input and creating symbolic graphs
of the program accordingly with speculative program
context assumptions if possible. JANUS makes environ-
ment assumptions on the program context (e.g., constant
variables and conditional branches) based on past iter-
ations to simplify the dynamic nature of the program
and transform the program into a symbolic graph. These
assumptions are speculative, because the context may
change during execution; an incorrect assumption results
in an invalidation of a symbolic graph, in which case
JANUS falls back to imperative execution to guarantee
correctness. For design (Section 4.3.1) and implementa-
tional (Section 4.3.2) reasons, JANUS converts only the
subset of Python programs into the e�cient symbolic
graphs, but the rest of them still can be executed imper-

1 class RNNModel(object):

2 def __call__(self, sequence):

3 state = self.state

4 outputs = []

5 for item in sequence:

6 state = rnn_cell(state, item)

7 outputs += [state]

8 self.state = state

9 return compute_loss(outputs)

10
11 for sequence in sequences:

12 optimize(lambda: model(sequence))

Figure 1: A Python program that implements train-
ing process of a recurrent neural network (RNN) in an
imperative manner. For each item in the sequence,
rnn_cell function is called to produce the next state
required for the next rnn_cell invocation. After fin-
ishing up processing the whole sequence, the model
holds the final state by replacing self.state at-
tribute for processing the next sequence.

atively, ensuring the full Python coverage.
We have implemented JANUS on TensorFlow

1.8.0 [6]. To demonstrate the performance of JANUS,
we evaluated JANUS with 7 imperative DL programs
including convolutional, recurrent, and recursive neural
networks that extensively use the dynamic features of
Python. JANUS converted the programs into symbolic
dataflow graphs successfully, trained the models to
reach target accuracy with up to 18.7 times higher
throughput compared to TensorFlow Eager, while
executing the identical imperative programs.

2 Challenges and Proposed Solution

2.1 Challenges

Converting an imperative program written in Python into
a DL dataflow graph brings on many challenges, be-
cause dataflow graphs consist of a restrictive set of op-
erations, lacking the dynamic semantics of the program-
ming language. More specifically, various characteristics
of a Python program, such as the execution count and
execution order of statements, the types of expressions,
or the global program execution state, can only be de-
termined after the program is actually executed. For the
rest of this paper, we will refer to these characteristics as
the dynamic features of Python. In contrast, DL dataflow
graphs are expected to be defined before the computa-
tion starts, to apply aggressive graph optimizations and
e�ciently schedule the graph operations by viewing the

2

Frameworks
Imp.
pgm

Sym.
exec

Correctness Optimization
w/ runtime info Language

DCF DT IF
Symbolic: TensorFlow(TF), Ca�e2, MXNet ù ‚ – – – – Python

Imperative: PyTorch (PTH), TF Eager, DyNet ‚ ù – – – – Python

Imperative to Symbolic

Tracing: TF defun, PTH JIT, MXNet Gluon ‚ ‚ ù ù ‚ (unsafe) Python
JAX ‚ ‚ ‚ ù ‚ (unsafe) Python subset
Swift for TensorFlow (S4TF) ‚ ‚ ‚ – ‚ ù Swift
JANUS ‚ ‚ ‚ ‚ ‚ ‚ Python

Table 1: Comparison of DL frameworks with respect to correctly supported features for converting imperative programs
into symbolic graphs ("Correctness") and the ability to optimize the generated graphs with the information given only
at program runtime ("Optimization w/ runtime info"). The host language is also specified.

entire graph. In this sense, DL dataflow graphs are usu-
ally considered to be static [23, 27, 29]. The di�erence
in characteristics makes it di�cult to embed dynamic
Python features in static dataflow graphs.

Figure 1 depicts a DL program written in Python, of
which semantics are di�cult to be captured in a dataflow
graph correctly due to the following representative dy-
namic features of Python.
• Dynamic control flow (DCF): Conditional branches

and iterative loop constructs have di�erent execution
paths depending on intermediate values. Lines 5-7 of
Figure 1 show an example of an iterative loop con-
struct used in a DL program. Such control flow state-
ments are intensively used in Python and must be cor-
rectly represented in the dataflow graph.

• Dynamic types (DT): Python is a dynamically-typed
language, i.e., the type of a Python expression can only
be determined at program execution time. The exam-
ple program in Figure 1 does not have any type annota-
tions (e.g. int or float), which makes it di�cult to
statically decide the type of target dataflow graph op-
erations. Furthermore, various non-numerical types of
Python, such as lists, dictionaries, and arbitrary class
instances, are even harder to be converted into ele-
ments of a dataflow graph, of which vertices usually
output numerical arrays.

• Impure
1

functions (IF): Another useful feature for
using Python is the ease of accessing and mutating
global states within functions. In Figure 1, the func-
tion __call__ reads from and writes to an object
attribute2 at Lines 3 and 8, to pass the final state of
a sequence to the next sequence. Since the modified
global states can make the following function call be-

1A pure function is a function whose return value is determined
only by its parameters, and has no side e�ects.

2"class members" in C++ terminology

have di�erently, such reads and writes of global states
must be handled correctly while generating dataflow
graphs.
Moreover, correctness is not the only issue when con-

verting an imperative program; achieving the high per-

formance of state-of-the-art symbolic graph execution
DL frameworks is also a challenge on its own. State-of-
the-art frameworks require additional information on dy-
namic types and control flow in order to optimize graph
execution. However, a naïve, one-shot converter would
be unable to extract this information from an imperative
program before execution, and thus is incapable of sup-
plying frameworks with such hints. For instance, if the
input sequence at Line 2 in Figure 1 is expected to
always have a fixed length, then that information can be
exploited to unroll the following loop at Line 5 when
generating the corresponding dataflow graph. It is un-
clear how a naïve converter would do this without actu-
ally executing the program to check the loop length.

2.2 Related Works

Concurrent works that try to translate a Python DL pro-
gram into a dataflow graph either fail to capture the im-
portant dynamic semantics of Python, or run in slower
performance due to the lack of su�cient information
at graph build time. Table 1 summarizes state-of-the-
art DL frameworks alongside their execution models
and their status regarding the coverage and e�ciency of
graph conversion support.

Tracing-based graph generation approaches such as
PyTorch’s JIT compiler [29], MXNet Gluon [25], and the
defun [39] functionality of TensorFlow Eager [37] exe-
cute the imperative program once, and convert the single
execution trace directly into a dataflow graph. Though
this approach enables generating optimized symbolic
graphs with su�cient information gathered from a spe-
cific execution trace, it fails to capture dynamic seman-

3

tics of the Python interpreter correctly, leading to incor-
rect computation results for dynamically changing exe-
cution path, dynamic types of non-tensor or non-input
expressions, or impure functions of Python at runtime.
Moreover, these approaches currently do not give any
feedback about incorrectly-converted control flows to
users, making the problem even worse.

On the other hand, there exist other approaches that se-
lect a less-dynamic host language and therefore succeed
in capturing the wider semantics of source programs.
JAX [14] limits the Python syntax and supports con-
verting only pure-and-statically-composed functions.
S4TF [38] supports Swift, losing the merit of support-
ing Python, the de-facto standard programming language
for DL programming, and introduces new programming
models that most DL researchers are unfamiliar with.
Moreover, since the graph conversion occurs before ac-
tually executing the program, these approaches can miss
the opportunity to further optimize the graph with the
information only obtainable during the program execu-
tion. For example, always converting a Python loop into
control flow operations can be sub-optimal if the loop
iteration count is known to be fixed.

2.3 Proposed Solution: Speculative

Graph Generation and Execution

Existing optimizers and compilers for dynamic lan-
guages suggest a useful technique for performing such
conversions from imperative programs to symbolic
dataflow graphs: speculative optimization. Managed lan-
guage runtimes have succeeded in exploiting the in-
herent static nature of dynamic programs which rarely
changes during the execution to convert them into static,
low-level representations while maintaining correctness.
For example, JavaScript just-in-time (JIT) compilers
convert dynamic JavaScript programs into e�cient ma-
chine code, and this conversion is done speculatively as-
suming that the program inherently maintains some stat-
ically fixed structures over repeated executions. In case
this assumption breaks, the function falls back to the in-
terpreter and attempts to compile the program again with
di�erent assumptions.

We propose to adopt this concept of speculative opti-
mization when converting imperative DL programs into
symbolic dataflow graphs. Converting various dynamic
features like dynamic control flow and impure func-
tions correctly may impose some inevitable overheads if
we generate dataflow graphs in a conservative manner.
To overcome this challenge, JANUS makes assumptions
about the program’s behavior based on the runtime pro-
filing information, and generates a symbolic graph tai-

lored for the assumptions. This speculatively constructed
dataflow graph can show much better performance com-
pared to the conservative counterpart due to specializa-
tions. If the assumptions do not hold, JANUS builds a new
dataflow graph based on di�erent assumptions, just like
JavaScript JIT compilers. Since a DL program comprises
a number of iterations of an optimization procedure, the
speculative approach is a good fit since the interpreter
is likely to execute specific code blocks of the program
repeatedly.

Unlike the JIT compilers of managed language run-
times, however, the goal of JANUS is not to optimize
the host language execution itself. In fact, when running
imperative DL programs, the execution time of the lan-
guage runtime is usually much shorter compared to the
execution time of the mathematical operations for DL,
such as convolution or matrix multiplication. However,
since these mathematical operations are usually imple-
mented in separate low-level language like C++, exist-
ing JIT compilers of managed language runtimes would
execute them just as separated function invocations. Un-
der such execution model, it is impossible to see the mul-
tiple mathematical operations at once and apply com-
piler optimizations or execute them in parallel. On the
other hand, JANUS understands the function invocations
for such mathematical operations, and converts them into
appropriate target graph operations, which can be opti-
mized and be executed e�ciently by symbolic graph ex-
ecutors.

3 JANUS System Design

In this section, we introduce JANUS, a DL framework
that receives an imperative DL program and either ex-
ecutes it as is directly, or generates a symbolic graph
version of the program and executes the graph instead.
JANUS assumes that the input program is written using
the API and the programming model of existing imper-
ative DL frameworks like TensorFlow Eager [37]. From
the user’s point of view, the whole graph conversion and
execution process is done transparently; in other words,
the given DL program is automatically transformed into
a corresponding graph representation without any inter-
actions with the user.

Figure 2 depicts the system components and the over-
all execution model of JANUS. The common case in
which an e�cient dataflow graph is utilized is depicted
as a solid line in the figure, while the rare case where
the graph representation is not available is depicted as a
dotted line.

4

Imperative
Executor

Abstract
Runtime Information

Imperative
DL Program

Python
Interpreter

Speculative Graph Executor

Graph Executor

Speculative Graph Generator

Assumption
Fails

(D) Execute Graph

Graph
Cache

Pr
ofi

le
r

(A) Profile

(E) Fallback cache
miss

cache
hit

runtime
assertion

Comon Case Rare Case

1

2

(C) Do Not Generate (B) Generate Graph

Figure 2: An illustration of the execution model of
JANUS, showing how a DL program is processed by sev-
eral components. Profiler observes imperative program
execution and collects information to make the realis-
tic assumptions. Speculative Graph Generator generates
dataflow graphs from the program and hands the opti-
mized graphs over to Speculative Graph Executor. The
Speculative Graph Executor actually runs the generated
graph and handles assumption failures.

3.1 Fast Path for Common Cases

Runtime profiling. Once JANUS receives a DL pro-
gram, the program is first executed imperatively, while
the Profiler gathers abstract runtime information re-
quired for making reasonable assumptions (Figure 2
(A)). Various information is collected, including control
flow decisions on conditional branches, loop iteration
counts for iterative loop constructs, variable type infor-
mation, non-local variables, object attributes, and so on.

Symbolic graph generation. After a su�cient
amount of information has been collected, the Specula-
tive Graph Generator tries to convert the program into a
symbolic dataflow graph with the assumptions based on
the runtime information (Figure 2 (B)). To avoid making
any hasty generalizations, JANUS does not begin graph
generation until the executor has profiled the program
for a certain amount of iterations.3 First, JANUS tra-
verses the abstract syntax tree (AST) of the DL program
and generates the corresponding graph elements for
each AST node, along with assertion operations that
can validate the context assumption at runtime. Since
JANUS targets DL programs, operations for automatic
di�erentiation and model parameter updates are also
automatically inserted if necessary. Next, the generated

3We found that 3 iterations were enough to come up with a decent
program context assumption, for our experimental workloads.

graph is further optimized by the post-processor, of
which optimizations were not applicable to the original
imperative DL program. Finally, the optimized graph
and the assumption that were used to generate the graph
are saved into the graph cache.

Graph execution. If a graph representation with cor-
rect assumptions regarding the program context is avail-
able, the Speculative Graph Executor executes the sym-
bolic graph (Figure 2 (D)). Note that the same graph can
be reused multiple times, given that the runtime context
assumption holds for future invocations.

3.2 Accurate Path for Rare Cases

Assumption failure. Handling the assumptions is im-
portant to guarantee the correctness of the converted
graph. If an assumption is proven to be wrong, the as-
sociated graph cannot be executed for the current run-
time as it may produce incorrect results. Instead, JANUS
falls back to the imperative executor (Figure 2 (E)) and
resumes runtime profiling to make more relaxed assump-
tions for subsequent executions.

Assumptions that can be validated before actually exe-
cuting the associated graph, such as type assumptions on
input arguments, are checked when retrieving the graph
from the graph cache (Figure 2 1). In the unfortunate
case where such an assumption is wrong, JANUS regards
this as a cache miss and falls back to imperative execu-
tion.

On the other hand, for assumptions that can only be
validated during graph execution (Figure 2 2), JANUS
cannot simply abort the current execution to fall back
to the imperative executor, because the global state may
have been changed during the current execution. To
solve this issue, JANUS defers state update operations
until the very end of the computation (Section 4.2.3).
This way, even if an assumption turns out to be wrong
during computation, no state update operation has been
triggered yet and thus no state has been mutated. Know-
ing this, the system can safely stop the current execu-
tion. States are updated only when every assumption
is checked and the computation finishes, in an "all-or-
nothing" manner.

In order to validate an assumption, a runtime assertion
is encoded into the symbolic graph as an operation called
AssertOp. TheAssertOp aborts the graph execution
if the given condition fails. It also reports which assump-
tion has been broken, and this information is used to give
up further optimizations that rely on the assumptions that
repeatedly break.

Imperatively executed programs. With Turing-
complete graph representations, any Python program

5

can be represented as a symbolic graph, in theory.
However, the Speculative Graph Generator does not
convert every single Python feature into a symbolic
graph operation. For example, to ensure the "all-or-
nothing" characteristic of state updates, programs that
include invisible state mutations are not converted into
symbolic graphs. Some complicated Python features
such as coroutines and generators are also not converted,
since they do not have any clear graph representations.
Section 4.3 describes the design choices and current
limitations of the Speculative Graph Generator in
terms of Python coverage. In spite of such limitations
of the Speculative Graph Generator, however, it is
worth noting that JANUS users can still freely use the all
features of Python on the imperative executor.

4 Symbolic Graph Generation

In this section, we describe in detail how JANUS con-
verts an imperative DL program into a symbolic dataflow
graph. We start the section by showing the conversion
process of a basic DL program free of dynamic fea-
tures (Section 4.1). Next, we explain how JANUS con-
verts dynamic features of Python, including dynamic
control flow, dynamic types, and impure functions, into
symbolic graph operations. (Section 4.2). JANUS uses
the abstract runtime information collected at runtime to
simplify the dynamic program and treat it as a program
of only static aspects, which is then easily transformed
into a static graph. Finally, we discuss the Python cover-
age limitations of the Symbolic Graph Generator (Sec-
tion 4.3). More thorough discussion about the Python
coverage of JANUS is in Appendix A.

For simplicity, we describe our design using various
operations of TensorFlow [6], a widely-used DL frame-
work. However, our design is not necessarily coupled
with TensorFlow and can be applied to other DL frame-
works such as MXNet.

4.1 Graph Generation Basics

Figure 3a is a simple, imperative Python program that
calculates a linear model, written as a pure function with-
out any dynamic control flow or arbitrary Python objects.
We use this program as an example to show the basic
graph conversion process.

Input parameters (x and y) are converted into graph in-
put objects that require external inputs in order to execute
the graph. In the case of TensorFlow, this corresponds to
the Placeholder4 object. At runtime, they are filled

4
Placeholders are unique operations that generate errors unless

they are provided with external inputs before graph execution. Tensor-
Flow expects users to feed a Placeholder dictionary {ph1: v1,

ph2: v2, ...} to the system.

1 def loss_fn(x, y):

2 y_ = 0.5 � x + 1.5
3 return (y_ * y) �� 2

(a) Source code of a DL program calculating a linear model

=

y_

*

+

1.5

0.5 x

Ret

**

y_ y

2-

Body

(b) AST of loss_fn

MultOp

AddOp

1.5

0.5
x

loss

PowOp

y

2SubOp

(c) Generated graph from loss_fn

Figure 3: The Python source code, AST, and symbolic
graph of a simple linear model that receives several ex-
ternal inputs. The static features of the program are rep-
resented as nodes in the AST, which in turn are converted
to vertices of the symbolic graph.

with the actual argument values. The return value of the
return statement is marked as the computation target of
the graph, so that we can retrieve the value after execut-
ing the graph.

Python literals such as 0.5, 1.5 and 2 are simply
converted into operations that output constant values –
ConstantOp for TensorFlow. The conversion of math-
ematical operators is done by finding the corresponding
mathematical graph operations and replacing them one-
to-one. For standard Python operators such as + and **,
JANUS places the appropriate primitive calculation oper-
ations in the graph, like AddOp and PowOp for Tensor-
Flow.

An assignment to a Python local variable and a value
retrieval from the same variable is converted into a con-
nection between two operations, just as in Pydron [26].
Figures 3b and 3c show how such a connection is made
for the program in Figure 3a, along with the rest of the
program.

4.2 Dynamic Features

In addition to the basic features, JANUS converts the
dynamic features of Python into the elements of the
symbolic DL graph as well to provide the performance
of dataflow graphs while maintaining the same pro-
grammability of imperative DL frameworks. Moreover,
JANUS exploits the fact that the dynamism in Python
DL programs can often be simplified to static dataflow,
treating a dynamic program as a program of only static
aspects with appropriate program context assumptions.

6

Context assumptions are generated based on the profile
information JANUS profiles at runtime.

4.2.1 Dynamic Control Flow

Basic translation rules. Among various dynamic
control flow statements, JANUS focuses on conditional
branches, loop constructs, and function calls, similar to
Pydron [26]. As shown in Pydron, these three constructs
are enough to express most complex dynamic control
flows in Python. Furthermore, they can all be expressed
using special control flow graph operations proposed in
recent works [43, 20] as follows.

Python’s conditional statement, the if statement, can
be obtained by combining switch and merge primitives.
The switch and merge primitives, originating from clas-
sic dataflow architectures [11, 9, 28], act as demulti-
plexers and multiplexers, respectively, selecting a sin-
gle path to pass their inputs or outputs. In TensorFlow,
the SwitchOp and MergeOp [43] operations serve as
symbolic dataflow graph counterparts for these primi-
tives, allowing JANUS to plant conditional branches in
graphs.

The iterative statements of Python, while and
for, are handled by using the switch and merge
primitives together with loop context primitives that
hold iteration frames. TensorFlow conveniently provides
NextIterationOps [43] for tracking iterations and
passing iteration frames.

Finally, for function calls, a separate graph is gener-
ated for the callee function, and a function invocation
operation that points to the generated graph is inserted in
the position of the function calls. Recent work proposes
a TensorFlow implementation of this operation called
InvokeOp [20], which can even represent an invoca-
tion of a recursive function.

Speculative graph generation: unrolling and inlining.

If JANUS detects that only a single particular path is
taken for a certain control flow operation during profil-
ing, JANUS presumes that the control flow decision is ac-
tually fixed. The system replaces the control flow oper-
ation with a assertion operation that double-checks the
assumption for this control flow decision, and proceeds
with graph generation as if the control flow operation
were unrolled. This allows JANUS to remove control flow
operation overheads and apply graph optimizations such
as common subexpression elimination or constant fold-
ing in broader portions of the graph. If the assertion op-
eration fails, JANUS falls back to imperative execution.

To be more specific, for conditional branches, if the
program takes only one side of the branch during profil-
ing, JANUS generates that particular side of the branch

in the final graph without any switch or merge primi-
tives and adds an assertion operation that can detect a
jump to the other side of the branch. For iterative state-
ments, if the number of iterations of a loop is discovered
to be fixed, JANUS unrolls the loop with this fixed itera-
tion count, and adds an assertion operation to check that
the number of iterations is indeed correct.

For function calls, if the callee is expected to be fixed
for a function call at a certain position, JANUS inlines the
callee function body inside the caller unless that func-
tion call is identified as a recursive one. In addition, for
callee functions whose implementation is already known
for JANUS, e.g., the functions provided by the framework
such as matmul() or conv2d(), or Python built-in
functions like print() or len(), JANUS adds the cor-
responding graph operations which behave the same as
the original callee functions, based on the prior knowl-
edge about their behaviors. Section 4.3.1 includes more
details and limitations about such function calls.

4.2.2 Dynamic Type

Basic translation rules. The types of all expressions
within a Python program must be known before JANUS
can convert the program into a symbolic graph, because
graph operations require operands to have fixed types.
This is a challenging task for Python programs because
we cannot determine the type of an arbitrary Python ex-
pression before actually executing the expression. For-
tunately, it is possible to infer the types of some expres-
sions, given the types of other expressions; for example,
it is clear that the variable c in c = a + b is an integer
if a and b are integers.

As a basic rule, JANUS converts numerical Python val-
ues such as scalars, list of numbers, and numpy [41]
arrays into corresponding tensors, and converts non-
numerical values, including arbitrary class instances,
into integer-typed scalar tensors which hold pointers to
the corresponding Python values. Next, JANUS infers the
types of other expressions that are derived from expres-
sions covered by the basic rule.

Speculative graph generation: specialization. Ex-
pressions whose types cannot be inferred from other
expressions require a di�erent measure. For instance,
it is impossible to identify the types of input parame-
ters for functions, or Python object attribute accesses
(obj.attr) without any external clues. Inferring the
return types of recursive function calls is also impossi-
ble due to the circular dependencies. To make proper as-
sumptions about the types of such expressions, Profiler
observes the types of the expressions during imperative
executions. Given these context assumptions, JANUS can

7

float,
(4,?)

float,
(4, 7)

float,
(4, 8)

float,
(?, 8)

float,
(3, 8)

[[1.0, …],
[…], …]

float,
Unknown

Abstract

Concrete
[[2.0, …],
[…], …]

[[6.0, …],
[…], …]

1 2

1

2
1 2

1 2

Sequence of
observed

tensor shapes

Sequence of
shape

assumptions

Figure 4: Type, shape, and value specialization hierar-
chy for an example tensor.

finish inferring the types of remaining expressions, and
construct a specialized dataflow graph accordingly.

JANUS makes further assumtions about the expres-
sions to apply more aggresive optimizations. If the pro-
filed Python expressions always have the same values,
JANUS converts them into constant nodes in the dataflow
graph. Moreover, for numerical expressions, we can try
to specialze the shape of tensors before contructing the
graph. With statically determined values or shapes, the
graph can be optimized even further by techniques such
as constant folding or loop unrolling.

Figure 4 shows an example hierarchy of shapes and
values that a certain tensor may have. After profiling the
first few runs, JANUS finds out that even though the val-
ues of the tensor are di�erent every time, they all have the
same shape, for example (4, 8), as in the Figure. JANUS
exploits this information to generate a dataflow graph
with an assumption that the shape of this tensor is (4,
8).

When the assumption fails, JANUS tries to relax the
assumption and generate more generalized version. For
instance, in case the tensor has a shape (3, 8) for the next
iteration to process a di�erent size of mini-batch, JANUS
modifies the assumption to suit both shapes (4, 8) and
(3, 8), resulting in another dataflow graph with a shape
assumption of (?, 8). The system does not have to repeat
the graph generation process for a possible future case
in which the example tensor has yet another unpredicted
shape of (2, 8) or (6, 8).

4.2.3 Impure Functions

Naïve translation rules. It is common for a Python
function to access global variables to calculate return
values and have side-e�ects, mutating its enclosing
Python context during execution. Likewise, it is com-
mon for a Python DL program to read from and write
to global states, such as global and nonlocal variables,
or heap objects. JANUS respects this characteristic and
handles global state accesses and updates alongside sym-

Deferred
Writeback

Copy on
Write

Read
& Write

Gradient Model
Updateloss Python

Heap

PyGetAttrOp

0xb84c

“state”

PySetAttrOp
RNN Loop

Local
Copy

Read
Only

seq

1

3

42

Figure 5: Symbolic dataflow graph generated graph
from Figure 1 and the global states.

bolic graph execution.
A trivial solution is to use TensorFlow’s PyFuncOps,

which can execute arbitrary Python functions as graph
operations. A function for reading and updating a certain
global state can be created and inserted in the appropri-
ate position within the graph. However, this trivial ap-
proach has clear limitations. First, since only one Python
function can be executed at a time due to the global in-
terpreter lock (GIL), the overall performance can be re-
duced when multiple operations should be executed in
parallel. It also complicates the fallback mechanism of
JANUS. If a global state has already been mutated before
the fallback occurs, instead of starting the imperative ex-
ecutor from the function entrance at fallback, execution
must start from the middle of the function to be correct,
by mapping the state update operation with the corre-
sponding Python bytecode.

Optimized graph generation: deferred state update.

To make things simpler and also faster, JANUS does
not mutate globally accessible states in place on the fly.
JANUS instead creates local copies of global states, and
mutates only the local copies during symbolic graph ex-
ecution.

Figure 5 shows the symbolic dataflow graph version
of the program in Figure 1, which includes the ob-
ject attribute expressions (self.state) that access
and mutate the global states. We add new graph ele-
ments PyGetAttrOp and PySetAttrOp to repre-
sent Python attribute read and write. Each of them re-
ceives an object pointer (0xb84c) and a name of the at-
tribute ("state") as inputs, and behaves as follows: 1
The PyGetAttrOp can access Python heap to read the
state unless a corresponding local copy exists. 2 When
the PySetAttrOp wants to update the attribute, a new
value is inserted to the local copy instead of directly up-
dating the Python heap. 3 Further read and write oper-
ations are redirected to the local-copied attribute. Note
that JANUS inserts appropriate dependencies between
PyGetAttrOps and PySetAttrOps if necessary to
prevent any data hazards. 4 After the graph executor fin-
ishes this run, the local copies are written back to the

8

Python heap. Subscript expressions (obj[subscr])
are similarly implemented with equivalent custom op-
erations.

By not mutating the Python heap directly, JANUS can
always bypass Python GIL to execute more read and
write operations in parallel. Also, the fallback mecha-
nism of JANUS can be simplified thanks to the all-or-
nothing based state update mechanism.

4.3 Imperative-Only Features

Albeit being able to support a wide range of impera-
tive DL programs, the current JANUS Symbolic Graph
Generator does not convert some particular features of
Python into dataflow graph elements. Programs with
such features are only executed on the imperative execu-
tor.

4.3.1 Coverage Limitations from Design

Alignment with the design principles. To be aligned
with the design of JANUS in previous sections, the
JANUS graph generator does not convert some features
of Python. For example, to keep the implementation
of local copies of global state simple (Section 4.2.3),
Python object with custom accessor functions (i.e.,
__getattr__ or __setattr__, ...) are not sup-
ported by the JANUS graph executor. Also, a function
should always return the same type of value, to infer the
type of call expression (Section 4.2.2).

External function calls. As described in Sec-
tion 4.2.1, JANUS must understand the behavior of
functions to convert them into corresponding graph
operations. In this sense, the JANUS graph generator
converts the external functions, i.e., the framework-
provided functions or foreign functions5, into dataflow
graph operations based on a separate white-list. Most
of the framework-provided functions such as matmul
or conv2d, and many commonly-used Python built-in
functions such as print or len are included in this
white-list. We plan to cover more functions in the
standard Python library.

JANUS handles such external functions with extra cau-
tion to ensure correctness. First, since the underlying
assumption here is that the implementation of external
functions never changes, JANUS prohibits the modifica-
tion of the functions included in the whitelist. Also, if a
framework (or foreign) function includes state mutation
(e.g., assign() in TensorFlow), the execution of the
corresponding graph operation is deferred until all the
other assumptions are validated, under the same princi-
ple about the deferred state update in Section 4.2.3.

5functions written in the languages other than Python

4.3.2 Coverage Limitations from Implementation

Currently, JANUS does not cover a few features from
Python that do not have clear graph representations.
Such Python features include coroutines, generators,
and in-line class definitions and in-line import state-
ments. We plan to support these features as future work.

5 Implementation

JANUS is implemented on top of TensorFlow [6] 1.8.0
and CPython [13] 3.5.2. JANUS exploits the existing Ten-
sorFlow graph executor and TensorFlow Eager impera-
tive executor as the components. In this section, we ex-
plain the modifications to existing systems, and then de-
scribe how we implemented data-parallel training.

Modifications to existing systems TensorFlow has
been modified for several reasons. First, to transpar-
ently separate out the neural network computation from
the entire Python program without extra user interven-
tion, the automatic di�erentiation functionality of Ten-
sorFlow Eager is modified to trigger JANUS graph con-
version. Since the users specify the scope of program to
be di�erentiated by the framework, JANUS converts the
di�erentiated target function into the symbolic graph.
Second, to share the model parameters between eager
mode and graph mode, JANUS slightly modifies the pa-
rameter storing mechanism of TensorFlow Eager. Third,
several custom operations had been added, including the
InvokeOp or PyAttrOp as described in earlier sec-
tions.

CPython has also been modified to have bytecode-
level instrumentation functionality for transparent profil-
ing. Without modifying the interpreter, instrumentation
for the profiling should exist at the source-code level,
which would significantly a�ect the performance and the
debuggability of the imperative execution.

Data-Parallelization on JANUS Using multiple ma-
chines equipped with multiple GPUs is a common ap-
proach for accelerating deep learning jobs. We inte-
grate JANUS with Horovod [32], a distributed train-
ing module for TensorFlow that encapsulates the MPI-
style [16] communication as an operation inside the sym-
bolic graph. After converting an imperative program into
a dataflow graph, JANUS inserts appropriate communica-
tion operations to the graph in order to get the average of
gradients generated by multiple workers. Since the gen-
erated dataflow graph contains both communication and
computation operations, we can parallelize communica-
tion and computation operations and achieve better per-
formance compared to distributed training with the im-
perative execution model.

9

6 Evaluation

This section presents experimental results that show how
imperatively defined deep learning programs can be exe-
cuted both correctly and e�ciently when converted into
symbolic graphs on JANUS.

6.1 Experimental Setup.

Frameworks. As baseline frameworks representing
symbolic graph execution frameworks and impera-
tive execution frameworks respectively, we use Ten-
sorFlow [6] and TensorFlow Eager [37]. We could
run the same DL program on JANUS as on Tensor-
Flow Eager, thanks to the transparent graph conver-
sion feature of JANUS. In addition, to demonstrate the
correctness of graph conversion of JANUS, we also
compare JANUS with TensorFlow defun [39], which
implements a trace-based graph conversion mecha-
nism. TensorFlow-based frameworks have been chosen
to avoid implementation-dependent performance di�er-
ences.
Applications. We have evaluated JANUS with
three convolutional neural networks (LeNet [22],
ResNet50 [17], Inception-V3 [35]), two recurrent neural
networks (LSTM [44], LM [21]), and two recursive
neural networks (TreeRNN [33], TreeLSTM [36]).

Category DCF DT IF

Conv. NNs cond.expr. unk.type –
Recurrent NNs loop unk.type global var.
Recursive NNs recursion unk.type heap object

Table 2: DL applications and their dynamic features.
These models are implemented in an imperative pro-

gramming style, using a number of dynamic features in
Python as shown in Table 2. First, convolutional neu-
ral network models ResNet50 and Inception-V3 have
conditional statements for handling batch normaliza-
tion [18], which make them behave di�erently under
particular conditions when training and evaluating the
model. Next, recurrent neural network models include
Pythonfor loops, and they also include global state mu-
tation statements to retain hidden states inside the mod-
els. Finally, recursive neural network models require all
three kinds of dynamic features. First, they include re-
cursive function calls, and conditional statements to sep-
arate recursion base cases and inductive cases. Second,
they include values with undecided type, the return type
of a recursive function is unknown until the function re-
turns certain values. Lastly, They include the Python ob-
ject access to fetch the information of the current sub-
tree. The implementation of TreeLSTM on TensorFlow

follows the recent recursion-based implementation with
InvokeOp [20], and JANUS can convert the imperative
Python program into the similar recursion-based graph.
All models use Python function calls, including Python
class methods of high-level deep learning programming
APIs such as Keras [2]. Training data instances fed into
each neural network have di�erent shapes over di�erent
training iterations, when the length of the dataset cannot
be divided by the batch size.

As the datasets and the mini-batch sizes used when
training models, ImageNet [31] was used for ResNet50
and Inception-V3 models, and the Stanford Sentiment
Treebank(SST) [34] dataset was used for TreeRNN and
TreeLSTM. MNIST [3], Penn Treebank(PTB) [44], and
One Billion Word Benchmark(1B) [1] datasets were
used for LeNet, LSTM, and LM models, respectively.
Batch sizes 50, 64, 64, 20, 256, 25, and 25 per GPU
were used for LeNet, ResNet50, Inception-V3, LSTM,
LM, TreeRNN, and TreeLSTM models respectively.

Environments. All applications are evaluated on a ho-
mogeneous GPU cluster of 6 machines, connected via
Mellanox ConnectX-4 cards with 100Gbps InfiniBand.
Each machine is equipped with two 18-core Intel Xeon
E5-2695 @ 2.10 GHz, and 6 NVIDIA GeForce TITAN
Xp GPU cards. Ubuntu 16.04, horovod 0.12.1, CUDA
9.0, cuDNN 7, OpenMPI v3.0.0, and NCCL v2.1 are in-
stalled for each machine.

LeNet and LSTM-PTB models are evaluated on a
single GPU, since these models and the datasets are
regarded to be too small to amortize the communica-
tion cost of parallel execution. Similarly, TreeRNN and
TreeLSTM models are evaluated on a single CPU, since
these models and datasets are regarded to be too small
to amortize the communication between CPU and GPU.
The other models are evaluated using multiple GPUs.
ResNet50 and Inception-V3 models are evaluated using
up to 36 GPUs, and LM is evaluated on up to 12 GPUs.
The network bandwidth made the throughput of LM sat-
urated on more than 2 machines with MPI-style commu-
nication, due to the huge parameter size of LM (0.83 bil-
lion parameters). Therefore, model convergence of LM
is experimented with 6GPUs.

6.2 Model Convergence

Figure 6 shows how the neural networks converge on
various underlying frameworks, with ResNet50 with the
ImageNet dataset, LSTM with the 1B dataset and TreeL-
STM with the SST dataset on four frameworks. We fol-
lowed the hyperparameter settings reported in the litera-
tures [15, 4, 5]. For all evaluated models, JANUS, Tensor-
Flow, and TensorFlow Eager succeeded to make the neu-

10

Figure 6: (a) The test error of ResNet50(ImageNet), (b)
validation perplexity of LM(1B), and (c) test accuarcy of
TreeLSTM(SST) models implemented in JANUS, Ten-
sorFlow (Sym.), TensorFlow Eager (Imp.), and Ten-
sorFlow defun (Tracing). Each marker in LSTM and
TreeLSTM convergence graph represents each training
epoch, describing that TensorFlow defun does not con-
verge properly after the same number of epochs com-
pared to other frameworks.

ral networks converge correctly as reported in original
papers: 23.7% top-1 error for ResNet50-ImageNet, per-
plexity 47.5 for LM-1B, and 82.0% binary accuracy for
TreeLSTM-SST. Also, JANUS could make the model to
converge 18.7 times faster than TensorFlow Eager, while
executing the identical imperative program. The perfor-
mance di�erence between JANUS and TensorFlow was
within 4.0%.

However, trace-based TensorFlow defun failed to
make the models to converge correctly. The ResNet50
model includes the conditional statement to distinguish
the behavior of batch-normalization [18] layer on model
training and evaluation. If a user evaluates the ini-
tial accuracy before training the model by manipulat-
ing the model object attribute, TensorFlow defun con-
verts the first execution trace into graph operations,
which silently leads to an inaccurate result. Similarly, the
LM model does not converge properly with TensorFlow
defun, since it failed to capture state passing across se-
quences, due to its trace-based conversion mechanism.
The TreeLSTM model could not be converted into the
symbolic graph at all with TensorFlow defun, since
it does not support recursive function call. TensorFlow

Model (A)
Imp.

(B)
JANUS

(C)
Sym.

(B)
(A)

(B)
(C) –1

LeNet 7.94k 25.84k 26.82k 3.25x -3.6%
ResNet50 188.46 200.37 207.39 1.06x -3.4%
Inception-V3 108.36 119.32 124.33 1.10x -4.0%
LSTM 2.75k 22.06k 22.58k 8.03x -2.3%
LM 19.02k 40.18k 40.45k 2.11x -0.7%
TreeRNN 20.76 988.72 928.66 47.6x +6.5%
TreeLSTM 7.51 138.12 141.71 18.39x -2.5%

Table 3: Training throughput of all models evaluated on
a single machine with a single GPU in JANUS, Tensor-
Flow (Sym.), and TensorFlow Eager (Imp.). The num-
bers represent processed images/s for CNN models, pro-
cessed words/s for RNN models, and processed sen-
tences/s for Recursive NN models.

Eager converges slowly, since its training throughput is
much lower than TensorFlow and JANUS. We next ana-
lyze the training throughput of the frameworks, exclud-
ing TensorFlow defun, which fails to make models
converge correctly.

6.3 Training Throughput

6.3.1 Single-machine Throughput

Table 3 presents the training throughput of all models ex-
ecuted with JANUS, TensorFlow Eager, and TensorFlow
on a single machine with a single GPU. As shown in
the table, JANUS outperforms TensorFlow Eager (imper-
ative execution) by up to 47.6 times, and shows through-
put similar to TensorFlow (symbolic graph execution) by
up to 4.0% performance degradation. JANUS even per-
forms slightly better (+6.5%) for recursive neural net-
works, since there is no need to pre-process the input
sentences, which are the tree-structured Python objects.

JANUS achieves bigger performance gain on recurrent
and recursive neural networks than convolutional neural
networks since recurrent and recursive neural networks
have many concurrently executable operations. In addi-
tion, the performance gain of JANUS on a single ma-
chine is larger on models with fine-grained graph opera-
tions, since the e�ect of the Python interpreter overhead
is more severe when the computation time of an opera-
tion is short.

For large convolutional neural networks such as
ResNet50 or Inception-V3, optimized GPU kernel com-
putation accounts for most of the computation time,
which makes the performance di�erence among JANUS,
TensorFlow, and TensorFlow Eager relatively small.

11

Figure 8: Training throughput for the ResNet50, Inception-V3, and LM models on JANUS, TensorFlow, TensorFlow
Eager, using varying numbers of GPUs. The scale factor of JANUS is 0.77, 0.81, 0.18 for each applications, which is
much bigger than the scale factor of TensorFlow Eager (0.24, 0.24, 0.14 each), and similar with the scale factor of
TensorFlow (0.81, 0.80, 0.18).

Figure 7: The contribution of optimizations to im-
prove training throughput. Optimizations are cumu-
lative. IMP: Imperative, BASE: JANUS without fol-
lowing optimizations, +UNRL: control flow unrolling,
+SPCN: type specialization, +PARL: graph executor
with 72 threads in threadpool (JANUS)

Optimization E�ect. Figure 7 analyzes the cause of
the performance improvement of JANUS in detail. Con-
verting the imperative program into the symbolic graph
without any following optimizations (BASE) enabled
up to 4.9x performance improvement compared to the
imperative execution (IMP). It removes the Python in-
terpreter and framework code overhead, which has the
bigger e�ect when each graph operation is relatively
smaller. Control flow unrolling(+UNRL) and type spe-
cialization(+SPCN) enable more aggressive compiler
optimizations. On recurrent neural networks, +UNRL

improved the performance of LSTM-PTB and LM-1B
by 2.09x, 1.04x. The control flow statements in CNNs
and Recursive NNs could not be unrolled due to their dy-
namicity. +SPCN enabled some compiler optimizations
and improved the throughput up to 18.3% in small neu-
ral networks. Finally, executing multiple operations in
parallel(+PARL) improved the throughput up to 9.81x.

Especially higher gain could be achieved for recursive
neural networks, since there exist many operations that
could be executed in parallel in multiple independent
tree nodes. We have also measured the e�ect of assump-
tion validation, but the e�ect was negligible (in the error
range), since the AssertOps can be executed with the
other operations in parallel.

6.3.2 Scalability

We evaluated JANUS on the cluster to see if JANUS can
exploit data parallelism with multiple machines. Fig-
ure 8 shows the scalability of ResNet50, Inception-V3
and LM models on JANUS, TensorFlow, and TensorFlow
Eager on the cluster with 36 GPUs(12 GPUs for LM).
We measured the scale factor, which is defined as Multi-
GPU Throughput / (Single-GPU Throughput ù Number
of GPUs). JANUS achieves similar scalability (scale fac-
tor 0.77, 0.81, 0.18 each) as TensorFlow (0.81, 0.80, 0.18
each), but TensorFlow Eager does not scale well (0.24,
0.24, 0.14 each), due its inability to overlap computation
and communication.

The slight di�erence in the scalability of ResNet50
comes from the under-optimized input pipeline of Ten-
sorFlow Eager, which JANUS also uses. Optimizing the
input processing pipeline for JANUS will further reduce
the performance di�erence between JANUS and Tensor-
Flow. We leave this optimization as a future work.

7 Conclusion

In this paper, we introduced JANUS that enables imper-
atively defining a deep neural network and executing it
as a symbolic dataflow graph. JANUS converts the im-
perative deep learning program written in Python into
a dataflow graph by exploiting the inherently static na-
ture of deep learning programs to speculatively generate
and execute symbolic dataflow graphs. JANUS solves the

12

challenges of converting important dynamic features of
Python into e�cient graph elements. Experimental re-
sults showed that JANUS can execute various deep neural
networks e�ciently while retaining programmability of
imperative programming.

Acknowledgements

We thank the anonymous reviewers for their insightful
comments. This work was supported by Samsung Ad-
vanced Institute of Technology and the AWS Machine
Learning Research Awards program.

References

[1] 1-billion-word-language-modeling-benchmark.
https://github.com/ciprian-chelba/

1-billion-word-language-modeling

-benchmark.

[2] Keras: The Python Deep Learning library.
https://keras.io/.

[3] The MNIST Database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

[4] lm, 2016. https://github.com/

rafaljozefowicz/lm.

[5] RecursiveNN, 2016. https://github.com/
sapruash/RecursiveNN.

[6] ABADI, M., ET AL. TensorFlow: A system for
large-scale machine learning. In OSDI (2016).

[7] BEZANSON, J., EDELMAN, A., KARPINSKI, S.,
AND SHAH, V. B. Julia: A Fresh Approach to Nu-
merical Computing, 2017.

[8] CHEN, T., LI, M., LI, Y., LIN, M., WANG,
N., WANG, M., XIAO, T., XU, B., ZHANG, C.,
AND ZHANG, Z. MXNet: A flexible and e�cient
machine learning library for heterogeneous dis-
tributed systems. In Workshop on Machine Learn-
ing Systems in NIPS (2015).

[9] CULLER, D. E. Dataflow architectures. Annual
review of computer science 1, 1 (1986), 225–253.

[10] DEAN, J., AND GHEMAWAT, S. Mapreduce: sim-
plified data processing on large clusters. Commu-
nications of the ACM 51, 1 (2008), 107–113.

[11] DENNIS, J. B., AND MISUNAS, D. P. A prelim-
inary architecture for a basic data-flow processor.
In ACM SIGARCH Computer Architecture News
(1975), vol. 3, ACM, pp. 126–132.

[12] FACEBOOK. Ca�e2, 2017. https://caffe2.
ai.

[13] FOUNDATION, P. S. Python programming lan-
guage. https://www.python.org/.

[14] FROSTIG, R., JOHNSON, M. J., AND LEARY, C.
Compiling machine learning programs via high-
level tracing. In SysML (2018).

[15] GOYAL, P., DOLLÁR, P., GIRSHICK, R. B., NO-
ORDHUIS, P., WESOLOWSKI, L., KYROLA, A.,
TULLOCH, A., JIA, Y., AND HE, K. Accurate,
large minibatch SGD: training imagenet in 1 hour.

[16] GROPP, W., LUSK, E., AND SKJELLUM, A. Us-
ing MPI: portable parallel programming with the
message-passing interface, vol. 1. MIT press,
1999.

[17] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep
residual learning for image recognition. In CVPR
(2016).

[18] IOFFE, S., AND SZEGEDY, C. Batch normal-
ization: Accelerating deep network training by re-
ducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[19] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND
FETTERLY, D. Dryad: distributed data-parallel pro-
grams from sequential building blocks. In ACM
SIGOPS operating systems review (2007), vol. 41,
ACM, pp. 59–72.

[20] JEONG, E., JEONG, J. S., KIM, S., YU, G.-I.,
AND CHUN, B.-G. Improving the expressiveness
of deep learning frameworks with recursion. In Eu-
roSys (2018).

[21] JOZEFOWICZ, R., VINYALS, O., SCHUSTER, M.,
SHAZEER, N., AND WU, Y. Exploring the limits
of language modeling.

[22] LECUN, Y., BUTTOU, L., BENGIO, Y., AND
HAFFNER, P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE
(1998).

[23] LOOKS, M., HERRESHOFF, M., HUTCHINS, D.,
AND NORVIG, P. Deep learning with dynamic com-
putation graphs. In ICLR (2017).

[24] MXNET. Deep Learning Programming Style,
2018. https://mxnet.incubator.

apache.org/architecture/program_

model.html.

13

[25] MXNET DEVELOPERS. Gluon, 2018. http://
gluon.mxnet.io/.

[26] MÜLLER, S. C., ALONSO, G., AND CSILLAGHY,
A. A. A. Pydron: Semi-automatic parallelization
for multi-core and the cloud. In OSDI (2014).

[27] NEUBIG, G., ET AL. DyNet: The Dynamic
Neural Network Toolkit, 2017. arxiv preprint
arXiv:1701.03980.

[28] NIKHIL, R., ET AL. Executing a program on the mit
tagged-token dataflow architecture. IEEE Transac-
tions on computers 39, 3 (1990), 300–318.

[29] PASZKE, A., GROSS, S., CHINTALA, S., CHANAN,
G., YANG, E., DEVITO, Z., LIN, Z., DESMAISON,
A., ANTIGA, L., AND LERER, A. Automatic di�er-
entiation in pytorch. In Autodi� Workshop in NIPS
(2017).

[30] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT,
A., MICHEL, V., THIRION, B., GRISEL, O.,
BLONDEL, M., PRETTENHOFER, P., WEISS, R.,
DUBOURG, V., ET AL. Scikit-learn: Machine learn-
ing in python. Journal of machine learning re-
search 12, Oct (2011), 2825–2830.

[31] RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE,
J., SATHEESH, S., MA, S., HUANG, Z., KARPA-
THY, A., KHOSLA, A., BERNSTEIN, M., ET AL.
Imagenet large scale visual recognition challenge.
International Journal of Computer Vision 115, 3
(2015), 211–252.

[32] SERGEEV, A., AND BALSO, M. D. Horovod: fast
and easy distributed deep learning in tensorflow.
arXiv preprint arXiv:1802.05799 (2018).

[33] SOCHER, R., LIN, C. C.-Y., NG, A. Y., AND MAN-
NING, C. D. Parsing natural scenes and natural
language with recursive neural networks. In ICML
(2011).

[34] SOCHER, R., PERELYGIN, A., WU, J., CHUANG,
J., MANNING, C. D., NG, A., AND POTTS, C. Re-
cursive deep models for semantic compositionality
over a sentiment treebank. In EMNLP (2013).

[35] SZEGEDY, C., VANHOUCKE, V., IOFFE, S.,
SHLENS, J., AND WOJNA, Z. Rethinking the in-
ception architecture for computer vision. In CVPR
(2016).

[36] TAI, K. S., SOCHER, R., AND MANNING,
C. D. Improved semantic representations from
tree-structured long short-term memory networks.
In ACL (2015).

[37] TENSORFLOW. Eager Execution, 2018.
https://www.tensorflow.org/

programmers_guide/eager.

[38] TENSORFLOW. Swift for TensorFlow, 2018.
https://github.com/tensorflow/

swift.

[39] TENSORFLOW. tf.contrib.eager.defun, 2018.
https://www.tensorflow.org/

versions/master/api_docs/python/

tf/contrib/eager/defun.

[40] THEANO DEVELOPMENT TEAM. Theano: A
Python Framework for Fast Computation of Math-
ematical Expressions, 2016. arXiv preprint
arXiv:1605.02688.

[41] WALT, S. V. D., COLBERT, S. C., AND VARO-
QUAUX, G. The NumPy Array: a Structure for Ef-
ficient Numerical Computation, 2011. Computing
in Science & Engineering, 13, 2, 22-30.

[42] YU, D., EVERSOLE, A., SELTZER, M., YAO,
K., HUANG, Z., GUENTER, B., KUCHAIEV, O.,
ZHANG, Y., SEIDE, F., WANG, H., ET AL. An in-
troduction to computational networks and the com-
putational network toolkit. Microsoft Technical Re-
port MSR-TR-2014–112 (2014).

[43] YU, Y., ET AL. Dynamic control flow in large-scale
machine learning. In EuroSys (2018).

[44] ZAREMBA, W., SUTSKEVER, I., AND VINYALS,
O. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329 (2014).

Appendix

A Python Syntax Coverage

Table 4 describes the entire set of opcode in the
CPython [13] 3.5.2 interpreter, and maps them to the
sections which describe the corresponding graph genera-
tion rules. Python programs whose opcodes are mapped
to Section 4.3 can only be executed on the imperative
executor, and the others can be executed on the graph
executor if they satisfy the assumptions. Also, Python

14

features that are not covered in previous sections are dis-
cussed in Appendix A.1.

A.1 Other Dynamic Features

Exceptions. A Python raise statement can be
represented as an AssertOp in the dataflow graph.
When the AssertOp for an exception aborts the
graph execution, the fallback occurs, and the actual,
Python-style exception can be safely raised on the
imperative executor. Under the same principle,
for try-except-finally statements, only the
try-finally part is converted into the graph
elements, and the except part is simply not converted,
since the exception will never be caught by the symbolic
graph. By avoiding exception handling inside the
symbolic graph, we can protect users from having
to debug through symbolic graph execution traces,
which are relatively more complicated than imperative
execution traces.
Context manager. Since exception handling always
occurs on the imperative executor, as described in
the previous paragraph, the with statement can be
converted into the simple function calls to __enter__
and __exit__ of the corresponding context manager
object.

15

Opcode Num Description Section
Reference

POP_TOP, ROT_TWO, ROT_THREE, DUP_TOP, DUP_TOP_TWO, NOP,
EXTENDED_ARG

7 Stack
manipulation

No
conversion is
necessary

LOAD_CONST 1 constant Section 4.1

UNARY_INVERT, UNARY_NEGATIVE, UNARY_NOT, UNARY_POSITIVE,
BINARY_ADD, BINARY_AND, BINARY_FLOOR_DIVIDE, BINARY_LSHIFT,
BINARY_MATRIX_MULTIPLY, BINARY_MODULO, BINARY_MULTIPLY,
BINARY_OR, BINARY_POWER, BINARY_RSHIFT, BINARY_SUBTRACT,
BINARY_TRUE_DIVIDE, BINARY_XOR, INPLACE_ADD,
INPLACE_AND, INPLACE_FLOOR_DIVIDE, INPLACE_LSHIFT,
INPLACE_MATRIX_MULTIPLY, INPLACE_MODULO, INPLACE_MULTIPLY,
INPLACE_OR, INPLACE_POWER, INPLACE_RSHIFT, INPLACE_SUBTRACT,
INPLACE_TRUE_DIVIDE, INPLACE_XOR, COMPARE_OP

31 Mathematical
operators

Section 4.1

LOAD_FAST, STORE_FAST, DELETE_FAST, UNPACK_SEQUENCE,
UNPACK_EX

5 local variables Section 4.1

JUMP_ABSOLUTE, JUMP_FORWARD, JUMP_IF_FALSE_OR_POP,
JUMP_IF_TRUE_OR_POP, POP_JUMP_IF_FALSE, POP_JUMP_IF_TRUE,
POP_BLOCK, GET_ITER, FOR_ITER, BREAK_LOOP, CONTINUE_LOOP,
SETUP_LOOP

12 dynamic
control flow

Section 4.2.1

CALL_FUNCTION, CALL_FUNCTION_KW, CALL_FUNCTION_VAR,
CALL_FUNCTION_VAR_KW, RETURN_VALUE, MAKE_FUNCTION

6 function call Section 4.2.1,
Section 4.3.1

LOAD_ATTR, STORE_ATTR, DELETE_ATTR 3 arbitrary
object

Section 4.2.2,
Section 4.2.3

BUILD_LIST, BUILD_LIST_UNPACK, LIST_APPEND, BUILD_MAP,
BUILD_MAP_UNPACK, BUILD_MAP_UNPACK_WITH_CALL, MAP_ADD,
BUILD_SET, BUILD_SET_UNPACK, SET_ADD, BUILD_SLICE,
BUILD_TUPLE, BUILD_TUPLE_UNPACK, BINARY_SUBSCR,
STORE_SUBSCR, DELETE_SUBSCR

16 list, set, map Section 4.2.2,
Section 4.2.3

LOAD_GLOBAL, LOAD_DEREF, LOAD_NAME, STORE_GLOBAL,
STORE_DEREF, STORE_NAME, DELETE_GLOBAL, DELETE_DEREF,
DELETE_NAME, LOAD_CLOSURE, MAKE_CLOSURE

11 non-local
variables

Section 4.2.3

POP_EXCEPT, SETUP_EXCEPT, SETUP_FINALLY, RAISE_VARARGS,
END_FINALLY

5 exception
handling

Section A.1

SETUP_WITH, WITH_CLEANUP_FINISH, WITH_CLEANUP_START 3 with Section A.1

YIELD_FROM, YIELD_VALUE, GET_YIELD_FROM_ITER 3 yield Section 4.3.2

IMPORT_FROM, IMPORT_NAME, IMPORT_STAR 3 in-line import Section 4.3.2

LOAD_BUILD_CLASS, LOAD_CLASSDEREF 2 in-line class
definition

Section 4.3.2

GET_AITER, GET_ANEXT, GET_AWAITABLE, BEFORE_ASYNC_WITH,
SETUP_ASYNC_WITH

5 coroutine Section 4.3.2

Total 113

Table 4: The mapping of the full list of CPython opcode and the corresponding sections.

16

