
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-931971-47-8

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Focus: Querying Large Video Datasets
with Low Latency and Low Cost

Kevin Hsieh, Carnegie Mellon University; Ganesh Ananthanarayanan
and Peter Bodik, Microsoft; Shivaram Venkataraman, Microsoft / UW-Madison;

Paramvir Bahl and Matthai Philipose, Microsoft;
Phillip B. Gibbons, Carnegie Mellon University; Onur Mutlu, ETH Zurich

https://www.usenix.org/conference/osdi18/presentation/hsieh

Focus: Querying Large Video Datasets with Low Latency and Low Cost

Kevin Hsieh† Ganesh Ananthanarayanan§ Peter Bodik§ Shivaram Venkataraman§ℵ

Paramvir Bahl§ Matthai Philipose§ Phillip B. Gibbons† Onur Mutlu?†

†Carnegie Mellon University §Microsoft ℵUniversity of Wisconsin ?ETH Zürich

Abstract
Large volumes of video are continuously recorded by
cameras deployed for traffic control and surveillance with
the goal of answering “after the fact” queries such as:
identify video frames with objects of certain classes (cars,
bags) from many days of recorded video. Current systems
for processing such queries on large video datasets incur
either high cost at video ingest time or high latency at
query time. We present Focus, a system providing both
low-cost and low-latency querying on large video datasets.
Focus’ architecture flexibly and effectively divides the
query processing work between ingest time and query
time. At ingest time (on live videos), Focus uses cheap
convolutional network classifiers (CNNs) to construct
an approximate index of all possible object classes in
each frame (to handle queries for any class in the future).
At query time, Focus leverages this approximate index
to provide low latency, but compensates for the lower
accuracy of the cheap CNNs through the judicious use
of an expensive CNN. Experiments on commercial video
streams show that Focus is 48× (up to 92×) cheaper than
using expensive CNNs for ingestion, and provides 125×
(up to 607×) lower query latency than a state-of-the-art
video querying system (NoScope).

1. Introduction
Cameras are ubiquitous, with millions of them deployed
by public and private entities at traffic intersections, enter-
prise offices, and retail stores. Videos from these cameras
are continuously recorded [2,6], with the main purpose of
answering “after-the-fact” queries such as: identify video
frames with objects of certain classes (like cars or bags)
from many days of recorded video. Because the results
from these video analytics queries may be needed quickly
in many use cases, achieving low latency is crucial.

Advances in convolutional neural networks (CNNs)
backed by copious training data and hardware accelerators
(e.g., GPUs [12]) have led to highly accurate results in
tasks like object detection and classification of images.
For instance, the ResNet152 classifier CNN [45], winner
of the ImageNet challenge 2015 [73], surpasses human-
level performance in classifying 1,000 object classes on
a public image dataset that has labeled ground truths [44].

Despite the accuracy of image classifier CNNs (like
ResNet152) and object detectors (like YOLOv2 [68]),
using them for video analytics queries is both expensive

and slow. For example, even after using various motion
detection techniques to filter out frames with no moving
objects, using an object detector such as YOLOv2 [68]
to identify frames with a given class (e.g., ambulance)
on a month-long traffic video requires ≈ 190 hours on
a high-end GPU (NVIDIA P100 [12]) and costs over
$380 in the Azure cloud (Standard_NC6s_v2 instances).
To achieve a query latency of say one minute on 190
GPU hours of work would require tens of thousands of
GPUs detecting objects in the video frames in parallel,
which is two to three orders of magnitude more than
what is typically provisioned (few tens or hundreds of
GPUs) by traffic jurisdictions or retail stores. Recent work
like NoScope [51] has significantly improved the filtering
of frames by using techniques like lightweight binary
classifiers for the queried class (e.g., ambulance) before
running heavy CNNs. However, the latencies are still
long, e.g., it takes 5 hours to query a month-long video on
a GPU, in our evaluations. Moreover, videos from many
cameras often need to be queried, which increases the
latency and the GPU requirements even more.

The objective of our work is to enable low-latency and
low-cost querying over large historical video datasets.

A natural approach to enable low latency queries is
doing most of the work at ingest-time, i.e., on the live
video that is being captured. If object detection, using say
YOLO, were performed on frames at ingest-time, queries
for specific classes (e.g., ambulance) would involve only a
simple index lookup to find video frames with the queried
object class. There are, however, two main shortcomings
with this approach. First, most of the ingest-time work
may be wasteful because typically only a small fraction
of recorded frames ever get queried [16], e.g., only after
an incident that needs investigation. Second, filtering
techniques that use binary classifiers (as in NoScope [51])
are ineffective at ingest-time because any of a number
of object classes could be queried later and running even
lightweight binary classifiers for many classes can be
prohibitively expensive.
Objectives & Techniques. We present Focus, a system
to support low-latency, low-cost queries on large video
datasets. To address the above challenges and shortcom-
ings, Focus has the following goals: (a) provide low-
cost indexing of multiple object classes in the video at
ingest-time, (b) achieve high accuracy and low latency
for queries, and (c) enable trade-offs between the cost at

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 269

ingest-time and the latency at query-time. Focus takes as
inputs from the user a ground-truth CNN (or “GT-CNN”,
e.g., YOLO) and the desired accuracy of results that Focus
needs to achieve relative to the GT-CNN. With these in-
puts, Focus uses three key techniques to achieve the above
goals: (1) an approximate indexing scheme at ingest-time
using cheap CNNs, (2) redundancy elimination by clus-
tering similar objects, and (3) a tunable mechanism for
judiciously trading off ingest cost and query latency.

(1) Approximate indexing using a cheap ingest CNN.
To make video ingestion cheap, Focus uses compressed
and specialized versions of the GT-CNN that have fewer
convolutional layers [78], use smaller image sizes, and
are trained to recognize the classes specific to each video
stream. The cheap ingest CNNs, however, are less accu-
rate than the expensive GT-CNN, both in terms of recall
and precision. We define recall as the fraction of frames
in the video that contain objects of the queried class that
were actually returned in the query’s results. Precision,
on the other hand, is the fraction of frames in the query’s
results that contain objects of the queried class.

Using a cheap CNN to filter frames upfront risks incor-
rectly eliminating frames. To overcome this potential loss
in recall, Focus relies on an empirical observation: while
the top (i.e., most confident) classification results of the
cheap CNNs and expensive GT-CNN often do not match,
the top result of the expensive CNN often falls within the
top-K most confident results of the cheap CNN. Therefore,
at ingest-time, Focus indexes each frame with the “top-K”
results of the cheap CNN, instead of just the top result.
To increase precision, at query-time, after filtering frames
using the top-K index, we apply the GT-CNN and return
only frames that actually contains the queried object class.

(2) Redundancy elimination via clustering. To reduce
the query-time latency of using the expensive GT-CNN,
Focus relies on the significant similarity between objects
in videos. For example, a car moving across a camera will
look very similar in consecutive frames. Focus leverages
this similarity by clustering the objects at ingest-time. We
classify only the cluster centroids with the GT-CNN at
query-time, and assign the same class to all objects in the
cluster. This considerably reduces query latency. Clus-
tering, in fact, identifies redundant objects even across
non-contiguous and temporally-distant frames.

(3) Trading off ingest cost vs. query latency. Focus
intelligently chooses its parameters (including K and the
cheap ingest-time CNN) to meet user-specified targets
on precision and recall. Among the parameter choices
that meet the accuracy targets, it allows the user to trade
off between ingest cost and query latency. For example,
using a cheaper ingest CNN reduces the ingest cost but
increases the query latency as Focus needs to use a larger K
for the top-K index to achieve the accuracy targets. Focus
automatically identifies the “sweet spot” in parameters,

which sharply improves one of ingest cost or query latency
for a small worsening of the other. It also allows for
policies to balance the two, depending on the fraction of
videos the application expects to get queried.

In summary, Focus’ ingest-time and query-time oper-
ations are as follows. At ingest-time, Focus classifies
the detected objects using a cheap CNN, clusters simi-
lar objects, and indexes each cluster centroid using the
top-K most confident classification results, where K is
auto-selected based on the user-specified precision, recall,
and cost/latency trade-off point. At query-time, Focus
looks up the ingest index for cluster centroids that match
the class X requested by the user and classifies them using
the GT-CNN. Finally, Focus returns all objects from the
clusters that are classified as class X to the user.

Evaluation Highlights. We build Focus and evaluate it
on fourteen 12-hour videos from three domains – traffic
cameras, surveillance cameras, and news. We compare
against two baselines: “Ingest-heavy”, which uses the heavy
GT-CNN for ingest, and “NoScope”, a recent state-of-the-
art video querying system [51]. We use YOLOv2 [68] as
the GT-CNN. On average, across all the videos, Focus is
48× (up to 92×) cheaper than Ingest-heavy and 125× (up
to 607×) faster than NoScope, all the while achieving ≥
99% precision and recall. In other words, the latency to
query a month-long video drops from 5 hours to only 2.4
minutes, at an ingest cost of $8/month/stream. Figure 1
also shows representative results with different trade-off
alternatives for a surveillance video.

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

ize
d

Q
ue

ry
 L

at
en

cy

Normalized Ingest Cost

Focus-Opt-Query Focus-Opt-Ingest
Focus-Balance Ingest-heavy
NoScope

(I=53X, Q=698X)

(I=90X, Q=403X)

(I=84X, Q=607X)

0

0.001

0.002

0.003

0 0.01 0.02
Normalized Ingest Cost

Figure 1: Effectiveness of Focus at reducing both ingest cost
and query latency, for an example surveillance video. We
compare against two baselines: “Ingest-heavy” that uses the
YOLOv2 [68] object detector CNN for ingestion, and “No-
Scope”, the state-of-the-art video querying system [51]. On
the left, we see that Focus (the Focus-Balance point) is simul-
taneously 84× cheaper than Ingest-heavy in its cost (the I
value) and 607× faster than NoScope in query latency (the
Q value), all the while achieving at least 99% precision and
recall (not plotted). Zooming in, also shown are two alter-
native Focus designs offering different trade-offs, Focus-Opt-
Query and Focus-Opt-Ingest, each with at least 99% precision
and recall.

270 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Contributions: Our contributions are as follows.
• We present a new architecture for low-cost and low-

latency querying over large video datasets, based on a
principled split of ingest and query functionalities.

• We propose techniques for efficient indexing of multi-
ple object classes: we create a top-K index at ingest
time for high recall, while ensuring high precision by
judiciously using expensive CNNs at query time.

• We show new policies that trade off between ingest
cost and query latency: our system is significantly
cheaper than an ingest-heavy design and significantly
faster than query-optimized techniques like NoScope.

2. Background and Motivation
We first provide a brief overview of convolutional Neural
Networks, the state-of-the-art approach to detecting and
classifying objects in images (§2.1). We then discuss new
observations we make about real-world videos, which
motivate the design of our techniques (§2.2).

2.1. Convolutional Neural Networks
Convolution Neural Networks (CNNs) are the state-of-the-
art method for many computer vision tasks such as object
detection and classification (e.g., [45, 53, 59, 68, 84]).

Figure 2 illustrates the architecture of a representa-
tive image classification CNN. Broadly, CNNs consist of
different types of layers including convolutional layers,
pooling layers and fully-connected layers. The output
from the final layer of a classification CNN is the prob-
abilities of all object classes (e.g., dog, flower, car), and
the class with the highest probability is the predicted class
for the object in the input image.

Convolutional +

Rectification Layers

Pooling

Layers

…

.

.

.

.

.

.

Fully-Connected

Layer

Prob.(Car)

Prob.(Dog)

Prob.(Cat)

Prob.(Apple) ✓✓✓✓

Prob.(Flower)

Prob.(Orange)

Extracted

Features

Input

Image

.

.

.

Figure 2: Architecture of an image classification CNN.

The output of the penultimate (i.e., previous-to-last)
layer can be considered as “representative features” of
the input image [53]. The features are a real-valued vec-
tor, with lengths between 512 and 4096 in state-of-the-art
classifier CNNs (e.g., [45, 53, 78, 84]). It has been shown
that images with similar feature vectors (i.e., small Eu-
clidean distances) are visually similar [24, 53]. Thus,
the distance between feature vectors is a standard met-
ric to measure similarity of images in many applications,
such as face recognition (e.g., [47]) and image retrieval
(e.g., [23, 24, 67]).

Because inference using state-of-the-art CNNs is com-
putationally expensive (and slow), two main techniques
have been developed to reduce the cost of inference. First,
compression is a set of techniques that can dramatically
reduce the cost of inference at the expense of accuracy.
Such techniques include removing some expensive con-
volutional layers [78], matrix pruning [34, 42], reducing
input image resolution [68], and others [48,71]. For exam-
ple, ResNet18, which is a ResNet152 variant with only 18
layers, is 8× cheaper. Likewise, Tiny YOLO [68], a shal-
lower variant of the YOLO object detector, is 5× cheaper
than YOLOv2. However, the tradeoff is that compressed
CNNs are usually less accurate than the original CNNs.

The second technique is CNN specialization [43],
where the CNNs are trained on a subset of a dataset
specific to a particular context (such as a video stream).
Specialization simplifies the task of a CNN because spe-
cialized CNNs only need to consider a particular context.
For example, differentiating object classes in any possible
video is much more difficult than doing so in a traffic
video, which is likely to contain far fewer object classes
(e.g., cars, bicycles, pedestrians). As a result, specialized
CNNs can be more accurate and smaller at the expense of
generality. Leveraging compressed and specialized CNNs
is a key facet of our solution (see §4).

2.2. Characterizing Real-world Videos
We aim to support queries of the form: find all frames
in the video that contain objects of class X. We identify
some key characteristics of real-world videos towards
supporting these queries: (i) large portions of videos can
be excluded (§2.2.1), (ii) only a limited set of object
classes occur in each video (§2.2.2), and (iii) objects of
the same class have similar feature vectors (§2.2.3). The
design of Focus is based on these characteristics.

We analyze six 12-hour videos from three domains:
traffic cameras, surveillance cameras, and news channels
(§6.1 provides the details.) In this paper, we use results
from YOLOv2 [68], trained to classify 80 object classes
based on the COCO [60] dataset, as the ground truth.
2.2.1. Excluding large portions of videos. We find con-
siderable potential to avoid processing large portions of
videos at query-time. Not all the frames in a video are
relevant to a query because each query looks only for a
specific class of objects. In our video sets, an object class
occurs in only 0.16% of the frames on average, and even
the most frequent object classes occur in no more than
26%− 78% of the frames. This is because while there
are usually some dominant classes (e.g., cars in a traffic
camera, people in a news channel), most other classes are
rare. Overall, the above data suggests considerable poten-
tial to speed up query latencies by indexing frames using
the object classes. Also, in our experience, a system for
querying videos is more useful for less frequent classes:

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 271

querying for “ambulance” in a traffic video is more in-
teresting than querying for something commonplace like
“car”.

2.2.2. Limited set of object classes in each video. Most
video streams have a limited set of objects because each
video has its own context (e.g., traffic cameras can have
automobiles, pedestrians or bikes, but not airplanes).

0.5

0.6

0.7

0.8

0.9

1

0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 12.0%CD
F

(n
um

be
r o

f o
bj

ec
ts

)

Percentage of COCO's 80 classes

Auburn Jackson Hole
Lausanne Sittard
CNN MSNBC

95% of objects

Figure 3: CDF of frequency of object classes. The x-axis is
the fraction of classes out of the 80 classes recognized by the
COCO [60] dataset (truncated to 12%).

Figure 3 shows the cumulative distribution function
(CDF) of the frequency of object classes in our videos
(as classified by YOLOv2). We make two observations.
First, 2%−10% of the most frequent object classes cover
≥ 95% of the objects in all video streams. In fact, for
some videos like Auburn and Jackson Hole we find that
only 11%−19% object classes occur in the entire video.
Thus, for each video stream, if we can automatically
determine its most frequent object classes, we can train
efficient CNNs specialized for these classes. Second, a
closer analysis reveals that there is little overlap between
the object classes among different videos. On average, the
Jaccard index [85] (i.e., intersection over union) between
the videos based on their object classes is only 0.46. This
implies that we need to specialize CNNs for each video
stream separately to achieve the most benefits.

2.2.3. Feature vectors for finding duplicate objects.
Objects moving in the video often stay in the frame for
several seconds; for example, a pedestrian might take 15
seconds to cross a street. Instead of classifying each in-
stance of the same object across the frames, we would like
to inexpensively find duplicate objects and only classify
one of them using a CNN (and apply the same label to all
duplicates). Thus, given n duplicate objects, we would
like only one CNN classification operation instead of n.

Comparing pixel values across frames is an obvious
technique to identify duplicate objects, however, this
technique turns out to be highly sensitive to even small
changes in the camera’s view of an object. Instead, feature
vectors extracted from the CNNs (§2.1) are more robust
because they are specifically trained to extract visual fea-
tures for classification. We verify the robustness of feature
vectors using the following analysis. In each video, for

each object i, we find its nearest neighbor j using feature
vectors from a cheap CNN (ResNet18) and compute the
fraction of object pairs that belong to the same class. This
fraction is over 99% in each of our videos, which shows
the promise of using feature vectors from cheap CNNs to
identify duplicate objects even across frames that are not
temporally contiguous.

3. Overview of Focus
The goal of Focus is to index live video streams by the
object classes occurring in them and enable answering
“after-the-fact” queries later on the stored videos of the
form: find all frames that contain objects of class X. Op-
tionally, the query can be restricted to a subset of cameras
and a time range. Such a query formulation is the basis for
many widespread applications and could be used either
on its own (such as for detecting all cars or bicycles in
the video) or used as a basis for further processing (e.g.,
finding all collisions between cars and bicycles).
System Configuration. Focus is designed to work with
a wide variety of current and future CNNs. The user
(system administrator) provides a ground-truth CNN (GT-
CNN), which serves as the accuracy baseline for Focus,
but is far too costly to run on every video frame. Through
a sequence of techniques, Focus provides results of nearly-
comparable accuracy but at greatly reduced cost. In this
paper, we use YOLOv2 [68] as the default GT-CNN.

Because different applications require different accura-
cies, Focus permits the user to specify the accuracy target,
while providing reasonable defaults. The accuracy target
is specified in terms of precision, i.e., fraction of frames
output by the query that actually contain an object of
class X according to GT-CNN, and recall, i.e., fraction
of frames that contain objects of class X according to
GT-CNN that were actually returned by the query.
Architecture: Figure 4 overviews the Focus design.
• At ingest-time (left part of Figure 4), Focus classifies

objects in the incoming video frames and extracts
their feature vectors. For its ingest, Focus uses highly
compressed and specialized alternatives of the GT-
CNN model (IT1 in Figure 4). Focus then clusters
objects based on their feature vectors (IT2) and assigns
to each cluster the top K most likely classes these
objects belong to (based on classification confidence
of the ingest CNN) (IT3). It creates a top-K index,
which maps each class to the set of object clusters
(IT4). The top-K index is the output of Focus’ ingest-
time processing of videos.

• At query-time (right part of Figure 4), when the user
queries for a certain class X (QT1), Focus retrieves the
matching clusters from the top-K index (QT2), runs the
centroids of the clusters through GT-CNN (QT3), and
returns all frames from the clusters whose centroids
were classified by GT-CNN as class X (QT4).

272 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Objects
Specialized,

Compressed CNN

Object top-K
classes

Object
feature
vectors

Ingest-time Query-time

Querying for
class X

Object
clusters

Frames with
objects of

class X

GT-CNN

CNN
specialization

Matching
clusters for X

FramesFramesFrames

Top-K
index

Centroid
objects

IT1

IT2

IT3 IT4
QT2

QT1

QT3

QT4

Figure 4: Overview of Focus.

The top-K ingest index is a mapping between the object
classes and the clusters. In particular, we create a mapping
from each object class to the clusters with top K matching
object classes. Separately, we store the mapping between
clusters and their corresponding objects and frames. The
structure of the index is:
object class → 〈cluster ID〉
cluster ID → [centroid object, 〈objects〉 in
cluster, 〈frame IDs〉 of objects]

We next explain how Focus’ key techniques keep ingest
cost and query latency low while also meeting the user-
specified recall and precision targets.
1) Top-K index via cheap ingesting: Focus makes index-
ing at ingest-time cheap by using compressed and special-
ized alternatives of the GT-CNN for each video stream.
Compression of CNNs [34, 42, 48, 78] uses fewer con-
volutional layers and other approximations (§2.1), while
specialization of CNNs [43,75] uses the observation that a
specific video stream contains only a small number of ob-
ject classes and their appearance is more constrained than
in a generic video (§2.2.2). Both optimizations are done
automatically by Focus and together result in ingest-time
CNNs that are up to 96× cheaper than the GT-CNN.

The cheap ingest-time CNNs are less accurate, i.e.,
their top-most results often do not match the top-most
classifications of GT-CNN. Therefore, to improve recall,
Focus associates each object with the top-K classification
results of the cheap CNN, instead of only its top-most re-
sult. Increasing K increases recall because the top-most re-
sult of GT-CNN often falls within the ingest-time CNN’s
top-K results. At query-time, Focus uses the GT-CNN to
remove objects in this larger set that do not match the
class, to regain the precision lost by including the top-K.
2) Clustering similar objects. A high value of K at
ingest-time increases the work done at query time, thereby
increasing query latency. To reduce this overhead, Focus
clusters similar objects at ingest-time using feature vec-
tors from the cheap ingest-time CNN (§2.2.3). In each
cluster, at query-time, we run only the cluster centroid
through GT-CNN and apply the classified result from the
GT-CNN to all objects in the cluster. Thus, a tight cluster-
ing of objects is crucial for high precision and recall.

3) Trading off ingest vs. query costs. Focus automati-
cally chooses the ingest CNN, its K, and specialization
and clustering parameters to achieve the desired precision
and recall targets. These choices also help Focus trade off
between the work done at ingest-time and query-time. For
instance, to save ingest work, Focus can select a cheaper
ingest-time CNN, and then counteract the resultant loss
in recall by using a higher K and running the expensive
GT-CNN on more objects at query time. Focus chooses its
parameters so as to offer a sharp improvement in one of
the two costs for a small degradation in the other cost. Be-
cause the desired trade-off point is application-dependent,
Focus provides users with options: “ingest-optimized”,
“query-optimized”, and “balanced” (the default). Figure 1
(§1) presents an example result.

4. Video Ingest & Querying Techniques
We describe the main techniques used in Focus: construct-
ing approximate indexes with cheap CNNs at ingest-time
(§4.1), specializing the CNNs to the specific videos (§4.2),
and identifying similar objects and frames to save on
redundant CNN processing (§4.3). §4.4 describes how
Focus flexibly trades off ingest cost and query latency.

4.1. Approximate Index via Cheap Ingest
Focus indexes the live videos at ingest-time to reduce the
query-time latency. We detect and classify the objects
within the frames of the live videos using ingest-time
CNNs that are far cheaper than the ground-truth GT-CNN.
We use these classifications to index objects by class.
Cheap ingest-time CNN. As noted earlier, the user pro-
vides Focus with a GT-CNN. Optionally, the user can
also provide other CNN architectures to be used in Focus’
search for cheap CNNs. Examples include object detector
CNNs (which vary in their resource costs and accura-
cies) like YOLO [68] and Faster RCNN [69] that jointly
detect the objects in a frame and classify them. Alterna-
tively, objects can be detected separately using relatively
inexpensive techniques like background subtraction [28],
which are well-suited for static cameras, as in surveillance
or traffic installations, and then the detected objects can
be classified using object classification CNN architectures

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 273

such as ResNet [45], AlexNet [53] and VGG [78].1

Starting from these user-provided CNNs, Focus ap-
plies various levels of compression, such as removing
convolutional layers and reducing the input image reso-
lution (§2.1). This results in a large set of CNN options
for ingest, {CheapCNN1, . . . , CheapCNNn}, with a wide
range of costs and accuracies, out of which Focus picks
its ingest-time CNN, CheapCNNingest.
Top-K Ingest Index. To keep recall high, Focus indexes
each object using the top K object classes from the output
of CheapCNNingest, instead of using just the top-most
class. Recall from §2.1 that the output of the CNN is
a list of classes for each object in descending order of
confidence. We make the following empirical observation:
the top-most output of the expensive GT-CNN for an
object is often contained within the top-K classes output
by the cheap CNN, for a small value of K.

Figure 5 demonstrates the above observation by plot-
ting the effect of K on recall on one of our video streams
from a static camera, lausanne (see §6.1). We explore
many cheaper ResNet18 [45] models by removing one
layer at a time with various input image sizes. The trend
is the same among the CNNs we explore so we present
three models for clarity: ResNet18, and ResNet18 with
4 and 6 layers removed; correspondingly to each model,
the input images were rescaled to 224, 112, and 56 pixels,
respectively. These models were also specialized to the
video stream (more in §4.2). We make two observations.

0%
20%
40%
60%
80%

100%

1 2 3 4

Re
ca

ll

Number of selected results (K)

ResNet18 ResNet18 (4 fewer layers) ResNet18 (6 fewer layers)

Figure 5: Effect of K on the recall of three cheap classifier
CNNs to classify the detected objects. Recall is measured
relative to the results of the GT-CNN, YOLOv2 [68].

First, we observe steady increase in recall with increas-
ing K, for all three CheapCNNs. As the figure shows, all
the cheap CNNs reach ≥ 99% recall when K ≥ 4. Note
that all these models recognize 80 classes, so K = 4 rep-
resents only 5% of the possible classes. Second, there
is a trade-off between different models – typically, the
cheaper they are, the lower their recall with the same
K. However, we can compensate for the loss in recall in
cheaper models using a larger K to reach a certain recall
value. Overall, we conclude that by selecting the appro-

1Focus is agnostic to whether object detection and classification
are done together or separately. In practice, the set of detected object
bounding boxes (but not their classifications!) remain largely the same
with different ingest CNNs, background subtraction, and the GT-CNN.

priate model and K, Focus can achieve the target recall.
Achieving precision. Focus creates the top-K index from
the top-K classes output by CheapCNNingest for every
object at ingest-time. While filtering for objects of the
queried class X using the top-K index (with the appro-
priate K) will have a high recall, this will lead to very
low precision. Because we associate each object with
K classes (while it has only one true class), the average
precision is only 1/K. Thus, at query time, to improve
precision, Focus determines the actual class of objects
from the top-K index using the expensive GT-CNN and
returns only the objects that match the queried class X .
Skipping GT-CNN for high-confidence indexes. Focus
records the prediction confidence along with the top-K
results by CheapCNNingest. The system can skip invok-
ing GT-CNN for the indexes with prediction confidence
higher than a chosen threshold (Skipth). Not invoking
GT-CNN for these indexes can cause precision to fall if
the threshold is too low. Hence, this parameter needs to
be carefully selected to retain high precision.
Parameter selection. The selection of the cheap ingest-
time CNN model (CheapCNNingest) and the K value (for
the top-K results) has a significant influence on the recall
of the output produced. Lower values of K reduce recall,
i.e., Focus will miss frames that contain the queried ob-
jects. At the same time, higher values of K increase the
number of objects to classify with GT-CNN at query time,
and hence adds to the latency. §4.4 describes how Focus
sets these parameters because they have to be jointly set
with other parameters described in §4.2 and §4.3.

4.2. Video-specific Specialization of Ingest CNN
To further reduce the ingest cost, Focus specializes the
ingest-time CNN model to each video stream. As §2.1
describes, model specialization [43] reduces cost by sim-
plifying the task of CNNs. Specifically, model specializa-
tion takes advantage of two characteristics in real-world
videos. First, most video streams have a limited set of ob-
ject classes (§2.2.2). Second, objects in a specific stream
are often visually more constrained than objects in general
(say, in the COCO [60] dataset). The cars and buses that
occur in a specific traffic camera have much less variabil-
ity, e.g., they have very similar angle, distortion and size,
compared to a generic set of vehicle images. Thus, clas-
sifying objects from a specific camera is a much simpler
task than doing so from all cameras, resulting in cheaper
ingest-time CNNs.

While specializing CNNs to specific videos has been
attempted in computer vision research (e.g., [43, 75]), we
explain its two key implications within Focus.
1) Lower K values. Because the specialized CNN classi-
fies across fewer classes, they are more accurate, which
enables Focus to achieved the desired recall with a much
smaller K (for the top-K ingest index). We find that spe-

274 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cialized models can usually use K ≤ 4 (Figure 5), much
smaller compared to the typical K needed for generic
cheap CNNs. A smaller K translates to fewer objects
that have to be classified by GT-CNN at query time, thus
reducing latency.
2) Most frequent classes. On each video stream, Focus
periodically obtains a small sample of video frames and
classifies their objects using GT-CNN to estimate the
ground truth of the distribution of object classes for the
video (similar to Figure 3). From this distribution, Focus
selects the most frequently occurring Ls object classes to
retrain new specialized models. Because just a handful
of classes often account for a dominant majority of the
objects (§2.2.2), low values of Ls usually suffice.

While Focus specializes the CNN towards the most
frequently occurring Ls classes, we also want to support
querying of the less frequent classes. For this purpose,
Focus includes an additional class called “OTHER” in the
specialized model. Being classified as OTHER simply
means not being one of the Ls classes. At query time,
if the queried class is among the OTHER classes of the
ingest CNN’s index, Focus extracts all the clusters that
match the OTHER class and classifies their centroids
through the GT-CNN model.2

The parameter Ls (for each video stream) exposes the
following trade-off. Using a small Ls enables us to train a
simpler model with cheaper ingest cost and lower query-
time latency for the popular classes, but, it also leads to a
larger fraction of objects falling in the OTHER class. As
a result, querying for the OTHER class will be expensive
because all those objects will have to be classified by the
GT-CNN. Using a larger value of Ls, on the other hand,
leads to more expensive ingest and query-time models,
but cheaper querying for the OTHER classes. We select
Ls in §4.4.

4.3. Redundant Object Elimination
At query time, Focus retrieves the objects likely matching
the user-specified class from the top-K index and infers
their actual class using the GT-CNN. This ensures preci-
sion of 100%, but could cause significant latency at query
time. Even if this inference were parallelized across many
GPUs, it would incur a large cost. Focus uses the fol-
lowing observation to reduce this cost: if two objects are
visually similar, their feature vectors are also similar and
they would likely be classified as the same class (e.g.,
cars) by the GT-CNN model (§2.2.3).

Focus clusters objects that are similar, invokes the ex-
pensive GT-CNN only on the cluster centroids, and as-
signs the centroid’s label to all objects in each cluster.

2Specialized CNNs can be retrained quickly on a small dataset.
Retraining is relatively infrequent and done once every few days. Also,
because there will be considerably fewer objects in the video belonging
to the OTHER class, we proportionally re-weight the training data to
contain equal number of objects of all the classes.

Doing so dramatically reduces the work done by the GT-
CNN classifier at query time. Focus uses the feature vector
output by the previous-to-last layer of the cheap ingest
CNN (see §2.1) for clustering. Note that Focus clusters
the objects in the frames and not the frames as a whole.3

The key questions regarding clustering are how we
cluster and when we cluster. We discuss both below.
Clustering Heuristic. We require two properties in our
clustering technique. First, given the high volume of
video data, it should be a single-pass algorithm to keep the
overhead low, unlike most clustering algorithms, which
are quadratic complexity. Second, it should make no
assumption on the number of clusters and adapt to outliers
in data points on the fly. Given these requirements, we use
the following simple approach for incremental clustering,
which has been well-studied in the literature [30, 65].

We put the first object into the first cluster c1. To cluster
a new object i with a feature vector fi, we assign it to the
closest cluster c j if c j is at most distance T away from
fi, where T is a distance threshold. However, if none
of the clusters are within a distance T , we create a new
cluster with centroid at fi. We measure distance as the L2
norm [9] between the cluster centroid feature vector and
the object feature vector fi. To bound the time complexity
for clustering, we keep the number of clusters actively
being updated at a constant C. We do this by sealing the
smallest cluster when the number of clusters hits C+1,
but we keep growing the popular clusters (such as similar
cars). This maintains the complexity as O(Cn), which is
linear in n, the total number of objects. The value of C
has a very minor impact on our evaluation results, and we
set C as 100 in our evaluations.

Clustering can reduce precision and recall depending
on the parameter T . If the centroid is classified by GT-
CNN as the queried class X but the cluster contains an-
other object class, it reduces precision. If the centroid is
classified as a class different than X but the cluster has an
object of class X, it reduces recall. §4.4 discuss setting T .
Clustering at Ingest vs. Query Time. Focus clusters the
objects at ingest-time rather than at query-time. Cluster-
ing at query-time would involve storing all feature vectors,
loading them for objects filtered from the ingest index
and then clustering them. Instead, clustering at ingest
time creates clusters right when the feature vectors are
created and stores only the cluster centroids in the top-K
index. This makes the query-time latency much lower
and also reduces the size of the top-K index. We observe
that the ordering of indexing and clustering operations
is mostly commutative in practice and has little impact

3Recall from §4.1 that Focus’ ingest process either (i) employs an
object detector CNN (e.g., YOLO) that jointly detects and classifies ob-
jects in a frame; or (ii) detects objects with background subtraction and
then classifies objects with a classifier CNN (e.g. ResNet). Regardless,
we obtain the feature vector from the CNNs for each object in the frame.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 275

on recall and precision (we do not present these results
due to space constraints). We therefore use ingest-time
clustering due to its latency and storage benefits.

4.4. Trading off Ingest Cost and Query Latency
Focus’ goals of high recall/precision, low ingest cost and
low query latency are affected by its parameters: (i) K, the
number of top results from the ingest-time CNN to index
an object; (ii) Ls, the number of popular object classes
we use to create a specialized model; (iii) CheapCNNi,
the specialized ingest-time cheap CNN; (iv) Skipth, the
confidence threshold to skip invoking GT-CNN; and (v)
T , the distance threshold for clustering objects.
Viable Parameter Choices. Focus first prunes the param-
eter choices to only those that meet the desired precision
and recall targets. Among the five parameters, four param-
eters (K, Ls, CheapCNNi, and T) impact recall; only T
and Skipth impact precision. Focus samples a representa-
tive fraction of the video stream and classifies them using
GT-CNN for the ground truth. Next, for each combination
of parameter values, Focus computes the precision and
recall (relative to GT-CNN’s outputs) achievable for each
of the object classes, and selects only those combinations
that meet the precision and recall targets.

Among the viable parameter choices that meet the
precision and recall targets, Focus balances ingest- and
query-time costs. For example, picking a more accurate
CheapCNNingest will have higher ingest cost, but lower
query cost because we can use a smaller K. Using a less
accurate CheapCNNingest will have the opposite effect.
Pareto Boundary. Focus identifies “intelligent defaults”
that sharply improve one of the two costs for a small
worsening of the other cost. Figure 6 illustrates the trade-
off between ingest cost and query latency for one of our
video streams. The figure plots all the viable “configu-
rations” (i.e., parameter choices that meet the precision
and recall targets) based on their ingest cost (i.e., cost of
CheapCNNingest) and query latency (i.e., the number of
clusters that need to be checked at query time according
to K,Ls,T and Skipth).

We first extract the Pareto boundary [17], which is
defined as the set of configurations among which we can-
not improve one of the metrics without worsening the
other. For example, in Figure 6, the yellow triangles are
not Pareto optimal when compared to the points on the
dashed line. Focus can discard all non-Pareto configura-
tions because at least one point on the Pareto boundary is
better than all non-Pareto points in both metrics.
Tradeoff Policies. Focus balances ingest cost and query
latency (Balance in Figure 6) by selecting the configu-
ration that minimizes the sum of ingest cost and query
latency. We measure ingest cost as the compute cycles
taken to ingest the video and query latency as the average
time (or cycles) required to query the video on the object

Balance
Opt-Query

Opt-Ingest

0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040

0.008 0.010 0.012 0.014

No
rm

al
ize

d
Q

ue
ry

La

te
nc

y

Normalized Ingest Cost

Figure 6: Parameter selection based on the ingest cost and
query latency trade-off. The ingest cost is normalized to the
cost of ingesting all video frames with GT-CNN (YOLOv2),
while the query latency is normalized to the query latency
using NoScope. The dashed line is the Pareto boundary.

classes that are recognizable by the ingest CNN. By de-
fault, Focus chooses a Balance policy that equally weighs
ingest cost and query latency. Users can also provide any
other weighted function to optimize their goal.

Focus also allows for other configurations based on
the application’s preferences and query rates. Opt-Ingest
minimizes the ingest cost and is applicable when the ap-
plication expects most of the video streams to not get
queried (such as surveillance cameras), as this policy min-
imizes the amount of wasted ingest work. On the other
hand, Opt-Query minimizes query latency but it incurs
a larger ingest cost. More complex policies can be eas-
ily implemented by changing how the query latency cost
and ingest cost are weighted in our cost function. Such
flexibility enables Focus to fit a number of applications.

5. Implementation
Because Focus targets large video datasets, a key require-
ment of Focus’ implementation is the ability to scale and
distribute computation across many machines. To this
end, we implement Focus as three loosely-coupled mod-
ules which handle each of its three key tasks. Figure 7
presents the architecture and the three key modules of
Focus: the ingest processor (M1), the stream tuner (M2),
and the query processor (M3). These modules can be flex-
ibly deployed on different machines based on the video
dataset size and the available hardware resources (such as
GPUs). We describe each module in turn.

5.1. Ingest Processor
Focus’ ingest processor (M1) generates the approximate
index (§4.1) for the input video stream. The work is
distributed across many machines, with each machine
running one worker process for each video stream’s inges-
tion. An ingest processor handles its input video stream
with a four-stage pipeline: (i) extracting the moving ob-
jects from the video frames (IP1 in Figure 7), (ii) inferring
the top-K indexes and the feature vectors of all detected
objects with the ingest-time CNN (IP2 in Figure 7, §4.1),

276 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Frame / object
extraction

Objects Ingest CNN
evaluation

Feature vector
clustering

Approximate index

Ingest Processor

Specialized
model training

GT-CNN,
Accuracy target

Model and parameter
selection

Ingest CNN and
parameters

Stream Tuner
Trade-off policy

Query
object class

Centroid object
selection

GT-CNN
evaluation

FramesFrames

Frames with
queried object class

Query ProcessorM1

M2

M3

IP1

IP2 IP3

ST1
ST2

QP1 QP2

Figure 7: Key components of Focus.

(iii) using the feature vector to cluster objects (IP3 in Fig-
ure 7, §4.3), and (iv) storing the top-K indexes of centroid
objects in a database for efficient retrieval at query time.

An ingest processor is configured differently for static
(fixed-angle) and moving cameras. For static cameras, we
extract object boxes by subtracting each video frame from
the background frame, which is obtained by averaging
the frames in each hour of the video. We then index each
object box with an ingest-time object classifier CNN. We
accelerate the background subtraction with GPUs [14].
We use background subtraction for static cameras because
running background subtraction with a cheap object clas-
sifier is much faster than running an ingest-time object
detector CNN, and we find that both approaches have
almost the same accuracy in detecting objects in static
cameras. Hence, we choose the cheaper ingest option.

For moving cameras, we use a cheap, ingest-time ob-
ject detector CNN (e.g., Tiny YOLO [68]) to generate
the approximate indexes. We choose the object detection
threshold (the threshold to determine if a box has an ob-
ject) for the object detector CNN such that we do not miss
objects in GT-CNN while minimizing spurious objects.

5.2. Stream Tuner
The stream tuner (M2) determines the ingest-time CNN
and Focus’ parameters for each video stream (§4.4). It
takes four inputs: the sampled frames/objects, the GT-
CNN, the desired accuracy relative to the GT-CNN, and
the tradeoff policy between ingest cost and query latency
(§4.4). Whenever executed, the stream tuner: (i) generates
the ground truth of the sampled frames/objects with the
GT-CNN; (ii) trains specialized ingest-time CNNs based
on the ground truth (ST1 in Figure 7); and (iii) selects the
ingest-time CNN and Focus’ parameters (ST2 in Figure 7).

Focus executes the stream tuner for each video stream
before launching the corresponding ingest processor. As
the characteristics of video streams may change over
time, Focus periodically launches the stream tuner to vali-
date the accuracy of the selected parameters on sampled

frames. The ingest-time CNN and the system parameters
are re-tuned if necessary to meet the accuracy targets.

5.3. Query Processor
The task of the query processor is to return the video
frames that contain the user’s queried object class. In re-
sponse to a user query for class X , the query processor first
retrieves the centroid objects with matching approximate
indexes (QP1 in Figure 7), and then uses the GT-CNN to
determine the frames that do contain object class X (QP2
in Figure 7, §4.1). The GT-CNN evaluation can be easily
distributed across many machines, if needed.

We employ two optimizations to reduce the overhead
of GT-CNN evaluation. First, we skip the GT-CNN eval-
uation for high-confidence indexes (§4.1). Second, we
apply a query-specialized binary classifier [51] on the
frames that need to be checked before invoking the GT-
CNN. These two optimizations make the query processor
more efficient by not running GT-CNN on all candidate
centroid objects.

6. Evaluation
We evaluate our Focus prototype with more than 160
hours of videos from 14 real video streams that span
traffic cameras, surveillance cameras, and news channels.
Our main results are:
• Focus is simultaneously 48× cheaper on average (up

to 92×) than the Ingest-heavy baseline in processing
videos and 125× faster on average (up to 607×) than
NoScope [51] in query latency — all the while achiev-
ing at least 99% precision and recall (§6.2, §6.3).

• Focus provides a rich trade-off space between ingest
cost and query latency. If a user wants to optimize for
ingest cost, Focus is 65× cheaper on average (up to
96×) than the Ingest-heavy baseline, while reducing
query latency by 100× on average. If the goal is to
optimize for query latency, Focus can achieve 202×
(up to 698×) faster queries than NoScope with 53×
cheaper ingest. (§6.4).

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 277

Table 1: Video dataset characteristics
Type Camera Name Description

auburn_c A commercial area intersection in the
City of Auburn [5]

Traffic Static

auburn_r A residential area intersection in the
City of Auburn [4]

bellevue_d
A downtown intersection in the City of
Bellevue. The video streams are
obtained from city traffic cameras.

bellevue_r A residential area intersection in the
City of Bellevue

bend A road-side camera in the City of
Bend [7]

jackson_h A busy intersection in Jackson Hole [8]

jackson_ts
A night street in Jackson Hole. The
video is downloaded from the NoScope
project website [50].

Surveillance Static

coral An aquarium video downloaded from
the NoScope project website [50]

lausanne A pedestrian plaza (Place de la Palud)
in Lausanne [10]

oxford A bookshop street in the University
of Oxford [15]

sittard A market square in Sittard [3]

News Moving
cnn News channel
foxnews News channel
msnbc News channel

6.1. Methodology
Software Tools. We use OpenCV 3.4.0 [13] to decode
the videos into frames, and we feed the frames to our
evaluated systems, Focus and NoScope. Focus runs and
trains CNNs with Microsoft Cognitive Toolkit 2.4 [64], an
open-source deep learning system. Our ingest processor
(§5.1) stores the approximate index in MongoDB [11] for
efficient retrieval at query time.
Video Datasets. We evaluate 14 video streams that span
across traffic cameras, surveillance cameras, and news
channels. We record each video stream for 12 hours to
cover both day time and night time. Table 1 summarizes
the video characteristics. We strengthen our evaluation by
including down sampling (or frame skipping), one of the
most straightforward approaches to reduce ingest cost and
query latency, into our evaluation baseline. Specifically,
as the vast majority of objects show up for at least one
second in our evaluated videos, we evaluate each video at
1 fps instead of 30 fps. We find that the object detection
results at these two frame rates are almost the same. Each
video is split evenly into a training set and a test set. The
training set is used to train video-specialized CNNs and
select system parameters. We then evaluate the systems
with the test set. In some figures, we show results for only
eight representative videos to improve legibility.
Accuracy Target. We use YOLOv2 [68], a state-of-the-
art object detector CNN, as our ground-truth CNN (GT-
CNN): all objects detected by GT-CNN are considered
to be the correct answers.4 For each query, our default
accuracy target is 99% recall and precision. To avoid over-

4We do not use the latest YOLOv3 or other object detector CNN
such as FPN [59] as our GT-CNN because one of our baseline systems,
NoScope, comes with the YOLOv2 code. Fundamentally, there is no
restriction on the selection of GT-CNN for Focus.

fitting, we use the training set of each video to explore
system parameters with various recall/precision targets
(i.e., 100%–95% with a 0.5% step), and we report the
best system parameters that can actually achieve the re-
call/precision target on the test set. We also evaluate other
recall/precision targets such as 97% and 95% (§6.5).
Baselines. We use baselines at two ends of the design
spectrum: (1) Ingest-heavy, the baseline system that uses
GT-CNN to analyze all frames at ingest time, and stores
the results as an index for query; and (2) NoScope, a re-
cent state-of-the-art querying system [51] that analyzes
frames for the queried object class at query time. We
also use a third baseline, Ingest-NoScope that uses No-
Scope’s techniques at ingest time. Specifically, Ingest-
NoScope runs the binary classifiers of NoScope for all
possible classes at ingest time, invokes GT-CNN if any of
the binary classifiers cannot produce a high-confidence
result, and stores the results as an index for query. To
further strengthen the baselines, we augment all baseline
systems with background subtraction, thus eliminating
frames with no motion. As Focus is in the middle of
the design spectrum, we compare Focus’ ingest cost with
Ingest-heavy and Ingest-NoScope, and we compare Focus’
query latency with NoScope.
Metrics. We use two performance metrics. The first met-
ric is ingest cost, the end-to-end machine time to ingest
each video. The second metric is query latency, the end-
to-end latency for an object class query. Specifically, for
each video stream, we evaluate the object classes that
collectively make up 95% of the detected objects in GT-
CNN. We report the average query latency on these object
classes. We do not evaluate the bottom 5% classes be-
cause they are often random erroneous results in GT-CNN
(e.g., “broccoli” or “orange” in a traffic camera).

Both metrics include the time spent on all processing
stages, such as detecting objects with background subtrac-
tion, running CNNs, clustering, reading and writing to
the approximate index, etc. Similar to prior work [51, 68],
we report the end-to-end execution time of each system
while excluding the video decoding time, as the decoding
time can be easily accelerated with GPUs or accelerators.
Experimental Platform. We run the experiments on
Standard_NC6s_v2 instances on the Azure cloud. Each
instance is equipped with a high-end GPU (NVIDIA Tesla
P100), 6-core Intel Xeon CPU (E5-2690), 112 GB RAM,
a 10 GbE NIC, and runs 64-bit Ubuntu 16.04 LTS.

6.2. End-to-End Performance
Static Cameras. We first show the end-to-end perfor-
mance of Focus on static cameras when Focus aims to
balance these two metrics (§4.4). Figure 8 compares the
ingest cost of Focus and Ingest-NoScope with Ingest-heavy
and the query latency of Focus with NoScope. We make
three main observations.

278 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

35X
66X 67X 84X

40X 38X
92X 60X 44X

84X 53X 57X

1

10

100

au
bu

rn
_c

au
bu

rn
_r

be
lle

vu
e_

d

be
lle

vu
e_

r

be
nd

ja
ck

so
n_

h

ja
ck

so
n_

ts

co
ra

l

la
us

an
ne

ox
fo

rd

sit
ta

rd

Traffic Surveillance Avg

In
ge

st
 c

he
ap

er
 th

an

In

ge
st

-h
ea

vy
 b

y
(fa

ct
or

)
Ingest-NoScope Focus

304X
46X

444X
75X 40X

288X
46X

122X 322X 607X 350X 162X

1
10

100
1000

au
bu

rn
_c

au
bu

rn
_r

be
lle

vu
e_

d

be
lle

vu
e_

r

be
nd

ja
ck

so
n_

h

ja
ck

so
n_

ts

co
ra

l

la
us

an
ne

ox
fo

rd

sit
ta

rd
Traffic Surveillance Avg

Q
ue

ry
 fa

st
er

 th
an

N

oS
co

pe
 b

y
(fa

ct
or

)

Figure 8: (Top) Focus ingest cost compared to Ingest-heavy.
(Bottom) Focus query latency compared to NoScope.

First, Focus significantly improves query latency with
a very small cost at ingest time. Focus achieves 162×
speedup (on average) in query latency over NoScope with
a very small ingest cost (57× cheaper than Ingest-heavy,
on average), all the while retaining 99% recall and preci-
sion (not shown). Focus achieves two orders of magnitude
speedup over NoScope because: (i) the ingest-time ap-
proximate indexing drastically narrows down the frames
that need to be checked at query time; and (ii) the feature-
based clustering further reduces the redundant work. In
contrast, NoScope needs to go through all the frames at
query time, which is especially inefficient for the object
classes that appear infrequently. We conclude that Focus’
architecture provides a valuable trade-off between ingest
cost and query latency.

Second, directly applying NoScope’s techniques at in-
gest time (Ingest-NoScope) does not save much cost over
Ingest-heavy. There are two reasons for this: (1) While
each binary classifier is relatively cheap, running multi-
ple instances of binary classifiers (for all possible object
classes) imposes non-trivial cost. (2) The system needs
to invoke GT-CNN when any one of the binary classifiers
cannot derive the correct answer. As a result, GT-CNN
is invoked for most frames. Hence, the ingest cost of
Focus is much cheaper than both, Ingest-heavy and Ingest-
NoScope. This is because Focus’ architecture only needs
to construct the approximate index at ingest time which
can be done cheaply with an ingest-time CNN.

Third, Focus is effective across videos with varying
characteristics. It makes queries 46× to 622× faster
than NoScope with a very small ingest cost (35× to
92× cheaper than Ingest-heavy) among busy intersections
(auburn_c, bellevue_d and jackson_h), normal inter-
sections (auburn_r, bellevue_r, bend), a night street

(jackson_ts), busy plazas (lausanne and sittard),
a university street (oxford), and an aquarium (coral).
The gains in query latency are smaller for some videos
(auburn_r, bellevue_r, bend, and jackson_ts). This
is because Focus’ ingest CNN is less accurate on these
videos, and Focus selects more conservative parameters
(e.g., a larger K such as 4–5 instead of 1–2) to attain the
recall/precision targets. As a result, there is more work
at query time for these videos. Nonetheless, Focus still
achieves at least 40× speedup over NoScope in query la-
tency. We conclude that the core techniques of Focus are
general and effective on a variety of real-world videos.

Moving Cameras. We evaluate the applicability of Fo-
cus on moving cameras using three news channel video
streams. These news videos were recorded with moving
cameras and they change scenes between different news
segments. For moving cameras, we use a cheap object
detector (Tiny YOLO, which is 5× faster than YOLOv2
for the same input image size) as our ingest-time CNN.
Figure 9 shows the end-to-end performance of Focus on
moving cameras.

5X 5X 5X 5X

1

10

cn
n

fo
xn

ew
s

m
sn

bc Av
g

In
ge

st
 ch

ea
pe

r t
ha

n
In

ge
st

-h
ea

vy
 b

y
(fa

ct
or

)

27X

122X
34X 49X

1

10

100

1000

cn
n

fo
xn

ew
s

m
sn

bc Av
g

Q
ue

ry
 fa

st
er

 th
an

N

oS
co

pe
 b

y
(fa

ct
or

)
Figure 9: Focus performance on moving cameras. (Left)
Focus ingest cost compared to Ingest-heavy. (Right) Focus
query latency compared to NoScope.

As the figure shows, Focus is effective in reducing query
latency with only a modest ingest cost. Focus achieves a
49× speedup in query latency on average over NoScope,
with ingest cost that is 5× cheaper than Ingest-heavy. We
make two main observations. First, the ingest cost im-
provements on moving cameras (5×) is lower than the
ones on static cameras (57×). This is because moving
cameras require a detector CNN to detect objects, and it
is more costly to run a cheap object detector (like Tiny
YOLO) as opposed to using background subtraction to
detect the objects and then classifying them using a cheap
classifier CNN (like compressed ResNet18). Our design,
however, does not preclude using much cheaper detectors
than Tiny YOLO, and we can further reduce the ingest
cost of moving cameras by exploring even cheaper object
detector CNNs. Second, Focus’ techniques are very effec-
tive in reducing query latency on moving cameras. The
approximate index generated by a cheap detector CNN
significantly narrows down the frames that need to be

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 279

checked at query time. We conclude that the techniques
of Focus are general and can be applied to a wide range
of object detection CNNs and camera types.

Averaging over both static and moving cameras, Fo-
cus’ ingest cost is 48× cheaper than Ingest-heavy and its
queries are 125× faster than NoScope.

We now take a deeper look at Focus’ performance using
representative static cameras.

6.3. Effect of Different Focus Components
Figure 10 shows the breakdown of query latency gains
for two core techniques of Focus: (1) Approximate indexing,
which indexes each object with the top-K results of the
ingest-time CNN, and (2) Approximate indexing + Cluster-
ing, which adds feature-based clustering at ingest time to
reduce redundant work at query time. We show the results
that achieve at least 99% recall and precision. We make
two observations.

114X
195X

1
10

100
1000

au
bu

rn
_c

be
lle

vu
e_

d

be
nd

ja
ck

so
n_

ts

co
ra

l

la
us

an
ne

ox
fo

rd

sit
ta

rd

Av
g

Fa
st

er
 th

an
 N

oS
co

pe

by
 (f

ac
to

r)

Approximate indexing +Clustering

Figure 10: Effect of different Focus components on query
latency reduction

First, approximate indexing is the major source of
query latency improvement. This is because approxi-
mate indexing effectively eliminates irrelevant objects for
each query and bypasses the query-time verification for
high-confidence ingest predictions. As a result, only a
small fraction of frames need to be resolved at query time.
On average, approximate indexing alone is 114× faster
than NoScope in query latency.

Second, clustering is a very effective technique to fur-
ther reduce query latency. Using clustering (on top of ap-
proximate indexing) reduces the query latency by 195×,
significantly better than approximate indexing alone. We
see that clustering is especially effective on surveillance
videos (e.g., coral, lausanne, and oxford) because ob-
jects in these videos tend to stay longer in the camera (e.g.,
“person” on a plaza compared to “car” in traffic videos),
and hence there is more redundancy in these videos. This
gain comes with a negligible cost because we run our
clustering algorithm (§4.3) on the otherwise idle CPUs
of the ingest machine while the GPUs run the ingest-time
CNN model.

6.4. Ingest Cost vs. Query Latency Trade-off
One of the important features of Focus is the flexibility
to tune its system parameters to achieve different appli-

cation goals (§4.4). Figure 11 (the zoom-in region of
Figure 1) depicts three alternative settings for Focus that il-
lustrate the trade-off space between ingest cost and query
latency, using the oxford video stream: (1) Focus-Opt-
Query, which optimizes for query latency by increasing
ingest cost, (2) Focus-Balance, which is the default option
that balances these two metrics (§4.4), and (3): Focus-
Opt-Ingest, which is the opposite of Focus-Opt-Query. The
results are shown relative to the Ingest-heavy and NoScope
baselines. Each data label (I,Q) indicates its ingest cost
is I× cheaper than Ingest-heavy, while its query latency is
Q× faster than NoScope.

(I=53X, Q=698X)

(I=90X, Q=403X)

(I=84X, Q=607X)

0

0.001

0.002

0.003

0 0.01 0.02No
rm

al
ize

d
Q

ue
ry

 L
at

en
cy

Normalized Ingest Cost

Focus-Opt-Query Focus-Opt-Ingest
Focus-Balance

Figure 11: Focus’ trade-off policies on an example video

As Figure 11 shows, Focus offers very good options
in the trade-off space between ingest cost and query la-
tency. Focus-Opt-Ingest is 90× cheaper than Ingest-heavy,
and makes the query 403× faster than a query-optimized
system (NoScope). On the other hand, Focus-Opt-Query
reduces query latency even more (by 698×) but it is still
53× cheaper than Ingest-heavy. As these points in the
design space are all good options compared to the base-
lines, such flexibility enables a user to tailor Focus for
different contexts. For example, a camera that requires
fast turnaround time for queries can use Focus-Opt-Query,
while a video stream that will be queried rarely would
choose Focus-Opt-Ingest to reduce the amount of wasted
ingest cost in exchange for longer query latencies.

Figure 12 shows the (I,Q) values for both Focus-Opt-
Ingest (Opt-I) and Focus-Opt-Query (Opt-Q) for the repre-
sentative videos. As the figure shows, the flexibility to
make different trade-offs exists in most other videos. On
average, Focus-Opt-Ingest is 65× (up to 96×) cheaper
than Ingest-heavy in ingest cost while providing 100× (up
to 443×) faster queries. Focus-Opt-Query makes queries
202× (up to 698×) faster with a higher ingest cost (53×
cheaper than Ingest-heavy). Note that there is no funda-
mental limitation on the spread between Focus-Opt-Query
and Focus-Opt-Ingest as we can expand the search space
for ingest-time CNNs to further optimize ingest cost at
the expense of query latency (or vice versa). We conclude
that Focus enables flexibly optimizing for ingest cost or
query latency for application’s needs.

280 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1

10

100

1000

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

O
pt

-I

O
pt

-Q

auburn_c bellevue_d bend jackson_ts coral lausanne oxford sittard

Im
pr

ov
em

en
ts

 (f
ac

to
r) Ingest Cheaper by Query Faster by

Figure 12: Ingest cost vs. query latency trade-off

It is worth noting that the fraction of videos that get
queried can affect the applicability of Focus, especially in
the case where only a tiny fraction of videos gets queried.
While Focus-Opt-Ingest can save the ingest cost by up to
96×, it can be more costly than any purely query-time-
only solution if the fraction of videos that gets queried
is less than 1

96 ≈ 1%. In such a case, a user can still use
Focus to significantly reduce query latency, but the cost
of Focus can be higher than query-time-only solutions.

6.5. Sensitivity to Recall/Precision Target
Figure 13 illustrates Focus’ reduction in query latency
compared to the baselines under different recall/precision
targets. Other than the default 99% recall and precision
target, we evaluate both Focus and NoScope with two
lower targets, 97% and 95%.

195X
167X

169X

1
10

100
1000

au
burn_c

belle
vu

e_d
bend

jac
kso

n_ts
co

ral

lausanne
oxfo

rd
sit

tard Avg

Q
ue

ry
 fa

st
er

 th
an

No

Sc
op

e
by

 (f
ac

to
r) 99% 97% 95%Precision/Recall:

Figure 13: Sensitivity of query latency reduction to re-
call/precision target

We observe that with lower accuracy targets, the query
latency improvement decreases slightly for most videos,
while the ingest cost improvement does not change much
(not graphed). The ingest cost is not sensitive to the accu-
racy target because Focus still runs similar ingest CNNs.
NoScope can however apply more aggressive query-time
optimization to reduce query latency given lower accu-
racy targets. This decreases Focus’ improvement over
NoScope for several videos. On average, Focus is faster
than NoScope in query latency by 195×, 167×, and 169×
with recall/precision of 99%, 97%, and 95%, respectively.
We conclude that Focus’ techniques can achieve signifi-
cant improvements on query latency, irrespective of re-
call/precision targets.

6.6. Sensitivity to Object Class Numbers
We use the 1000 object classes in the ImageNet
dataset [73] to study the sensitivity of Focus’ performance

to the number of object classes (compared to the 80 de-
fault object classes in the COCO [60] dataset). Our result
shows that Focus is 15× faster (on average) in query la-
tency and 57× cheaper (on average) in ingest cost than
the baseline systems, while achieving 99% recall and pre-
cision. We observe that the query latency improvements
with 1000 object classes is lower than the ones with 80
object classes. The reason is that ingest-time CNNs are
less accurate on more object classes, and we need to select
a larger K to achieve the target recall. Nonetheless, the im-
provements of Focus are robust with more object classes
as Focus is over one order of magnitude faster than the
baseline systems when differentiating 1000 object classes.

7. Other Applications
Applications that leverage CNNs to process large and
continuously growing data share similar challenges as
Focus. Examples of such applications are:
1) Video and audio. Other than querying for objects,
many emerging video applications are also based on
CNNs, such as event detection (e.g., [90]), emotion recog-
nition (e.g., [49]), video classification (e.g., [52]), and
face recognition (e.g., [74]). Audio applications such as
speech recognition (e.g., [19]) are also based on CNNs.
2) Bioinformatics and geoinformatics. Many bioinfor-
matics and geoinformatics systems leverage CNNs to
process a large dataset, such as anomaly classification in
biomedical imaging (e.g., [57, 72]), information decoding
in biomedical signal recordings (e.g., [82]), and pattern
recognition in satellite imagery (e.g., [20, 35]).

Naturally, these applications need to answer user-
specified queries, such as “find all brain signal recordings
with a particular perception” or “find all audio record-
ings with a particular keyword”. Supporting these queries
faces similar challenges to Focus, as a system either: (i)
generates a precise index at ingest time, which incurs high
cost; or (ii) does most of the heavy-lifting at query time,
which results in high query latency. Hence, Focus’ archi-
tecture offers a low-cost and low-latency option: building
an approximate index with cheap CNNs at ingest time
and generating precise results based on the approximate
index at query time. While the indexing structure may
need to be adapted to different applications, we believe
Focus’ architecture and techniques can benefit many of
these emerging applications.

8. Related Work
To our knowledge, Focus is the first system that offers low-
cost and low-latency queries for CNN-based object de-
tection in videos by effectively splitting query-processing
work between ingest time and query time. We discuss key
works related to our system.
1) Cascaded classification. Various works in vision re-
search propose speeding up classification by cascading a

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 281

series of classifiers. Viola et al. [88] is the earliest work
that cascades a series of classifiers (from the simplest to
the most complicated) to quickly disregard regions in an
image. Many improvements follow (e.g., [58, 91, 92]).
CNNs are also cascaded (e.g., [29, 43, 56, 83]) to reduce
object detection latency. Our work is different in two
major ways. First, we decouple the compressed CNN
from the GT-CNN, which enables us to choose from a
wider range of ingest-time CNNs and thus enables better
trade-offs between ingest cost and query latency, a key
aspect of our work. Second, we cluster similar objects
using CNN features to eliminate redundant work, which
is an effective technique for video streams.
2) Context-specific model specialization. Context-
specific specialization of models can improve accu-
racy [63] or speed up inference [43, 51, 75]. Among
these, the closest to our work is NoScope [51]. No-
Scope optimizes for the specified class at query-time using
lightweight binary classifiers. In contrast, Focus’ architec-
ture splits work between ingest and query times, leading
to two orders of magnitude lower latency (§6). To achieve
these gains, Focus uses techniques to index all possible
classes at ingest-time, and thus can handle any class that
will get queried in the future. Focus’ indexing is espe-
cially effective for less frequent object classes, which is
arguably of more interest for video querying systems.
3) Stream processing systems. Systems for general
stream data processing (e.g., [1,18,22,25,31,32,61,66,86,
87, 95]) and specific to video stream analytics (e.g., [96])
mainly focus on general stream processing challenges
such as load shedding, fault tolerance, distributed exe-
cution, or limited network bandwidth. In contrast, our
work is specific to querying on recorded video data with
ingest and query trade-offs, and, thus, mostly orthogonal.
Focus coud be integrated with one of these general stream
processing systems.
4) Video indexing and retrieval. A large body of work
in multimedia and information retrieval research proposes
various content-based video indexing and retrieval tech-
niques to facilitate queries on videos (e.g., [46,55,80,81]).
Among them, most works focus on indexing videos for
different types of queries, such as shot boundary detection
(e.g., [94]), semantic video search (e.g., [33,37,41]), video
classification (e.g., [27]), spatio-temporal information-
based video retrieval (e.g., [38, 70]) or subsequence simi-
larity search (e.g., [76, 97]). Some works (e.g., [36, 79])
focus on the query interface to enable querying by key-
words, concepts, or examples. These works are largely
orthogonal to our work because we focus on reducing cost
and latency of CNN-based video queries, not on creating
an indexing structure for new query types or query inter-
faces. We believe our approach of splitting ingest-time
and query-time work can be extended to many different
types of video queries (§7).

5) Database indexing. Using index structures to reduce
query latency [77] is a commonly-used technique in con-
ventional databases (e.g., [26, 54]), key-value databases
(e.g., [62]), similarity search (e.g., [39,40]), graph queries
(e.g., [93]), genome analysis (e.g., [21, 89]), and many
others. Our Ingest-heavy and Ingest-NoScope baselines are
also examples that index all video frames at ingest time.
While queries are naturally faster with these baselines,
they are too costly and are potentially wasteful for large-
scale videos. In contrast, our work offers new trade-off
options between ingest cost and query latency by creating
low-cost approximate indexes at ingest time and retaining
high accuracy with little work at query time.

9. Conclusion
Answering queries of the form, find me frames that con-
tain objects of class X, is an important workload on
recorded video datasets. Such queries are used by an-
alysts and investigators for various immediate purposes,
and it is crucial to answer them with low latency and
low cost. We present Focus, a system that flexibly di-
vides the query processing work between ingest time and
query time. Focus performs low-cost ingest-time analytics
on live video that later facilitates low-latency queries on
the recorded videos. At ingest time, Focus uses cheap
CNNs to construct an approximate index of all possible
object classes in each frame to retain high recall. At
query time, Focus leverages this approximate index to pro-
vide low latency, but compensates for the lower precision
by judiciously using expensive CNNs. This architecture
enables orders-of-magnitude faster queries with only a
small investment at ingest time, and allows flexibly trad-
ing off ingest cost and query latency. Our evaluations
using real-world videos from traffic, surveillance, and
news domains show that Focus reduces ingest cost on av-
erage by 48× (up to 92×) and makes queries on average
125× (up to 607×) faster compared to state-of-the-art
baselines. We conclude that Focus’ architecture and tech-
niques make it a highly practical and effective approach to
querying large video datasets. We hope that the ideas and
insights behind Focus can be applied to designing efficient
systems for many other forms of querying on large and
continuously-growing datasets in many domains, such as
audio, bioinformatics, and geoinformatics.

Acknowledgments
We thank our shepherd, Andrew Warfield, and the anony-
mous OSDI reviewers for their valuable and construc-
tive suggestions. We acknowledge the support of our
industrial partners: Google, Huawei, Intel, Microsoft, and
VMware. This work is supported in part by NSF and Intel
STC on Visual Cloud Systems (ISTC-VCS).

282 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Apache Storm. http://storm.apache.org/

index.html.
[2] Avigilon. http://avigilon.com/products/.
[3] City Cam, WebcamSittard: Town Square Sit-

tard (NL). https://www.youtube.com/watch?v=
iKxhsl3rurA.

[4] City of Auburn North Ross St and East Magno-
lia Ave. https://www.youtube.com/watch?v=
cjuskMMYlLA.

[5] City of Auburn Toomer’s Corner Webcam. https:
//www.youtube.com/watch?v=yJAk_FozAmI.

[6] Genetec. https://www.genetec.com/.
[7] Greenwood Avenue Bend, Oregon. https://www.

youtube.com/watch?v=YqyERQwXA3U.
[8] Jackson Hole Wyoming USA Town Square. https:

//www.youtube.com/watch?v=K-F4CeVsWHA.
[9] L2̂ Norm. http://mathworld.wolfram.com/

L2-Norm.html.
[10] Lausanne, Place de la Palud. https://www.

youtube.com/watch?v=7uF7DsUQ9vc.
[11] MongoDB. https://www.mongodb.com/.
[12] Nvidia Tesla P100. http://www.nvidia.com/

object/tesla-p100.html.
[13] Opencv 3.4. http://opencv.org/opencv-3-4.

html.
[14] OpenCV GPU-accelerated computer vision.

https://docs.opencv.org/2.4/modules/gpu/
doc/gpu.html.

[15] Oxford Martin School Webcam - Broad Street,
Oxford. https://www.youtube.com/watch?v=
Qhq4vQdfrFw.

[16] Top Video Surveillance Trends for 2016. https:
//technology.ihs.com/api/binary/572252.

[17] Wikipedia: Pareto efficiency. https://en.
wikipedia.org/wiki/Pareto_efficiency.

[18] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çet-
intemel, M. Cherniack, J. Hwang, W. Lindner,
A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. B. Zdonik. The design of the Borealis stream
processing engine. In CIDR, 2005.

[19] O. Abdel-Hamid, A. Mohamed, H. Jiang, and
G. Penn. Applying convolutional neural networks
concepts to hybrid NN-HMM model for speech
recognition. In ICASSP, 2012.

[20] A. Albert, J. Kaur, and M. C. Gonzalez. Using con-
volutional networks and satellite imagery to identify
patterns in urban environments at a large scale. In
SIGKDD, 2017.

[21] C. Alkan, J. M. Kidd, T. Marques-Bonet, G. Ak-
say, F. Antonacci, F. Hormozdiari, J. O. Kitzman,
C. Baker, M. Malig, O. Mutlu, S. C. Sahinalp, R. A.

Gibbs, and E. E. Eichler. Personalized copy num-
ber and segmental duplication maps using next-
generation sequencing. Nature genetics, 2009.

[22] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen,
R. King, P. Selo, Y. Park, and C. Venkatramani. SPC:
A distributed, scalable platform for data mining. In
DM-SSP, 2006.

[23] A. Babenko and V. S. Lempitsky. Aggregating deep
convolutional features for image retrieval. In ICCV,
2015.

[24] A. Babenko, A. Slesarev, A. Chigorin, and V. S.
Lempitsky. Neural codes for image retrieval. In
ECCV, 2014.

[25] P. Bailis, E. Gan, S. Madden, D. Narayanan,
K. Rong, and S. Suri. MacroBase: Prioritizing at-
tention in fast data. In SIGMOD, 2017.

[26] R. Bayer and E. M. McCreight. Organization and
maintenance of large ordered indexes. In SIGFIDET,
1970.

[27] D. Brezeale and D. J. Cook. Automatic video clas-
sification: A survey of the literature. IEEE Trans.
Systems, Man, and Cybernetics, Part C, 2008.

[28] S. Brutzer, B. Höferlin, and G. Heidemann. Evalua-
tion of background subtraction techniques for video
surveillance. In CVPR, 2011.

[29] Z. Cai, M. J. Saberian, and N. Vasconcelos. Learn-
ing complexity-aware cascades for deep pedestrian
detection. In ICCV, 2015.

[30] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-
based clustering over an evolving data stream with
noise. In SIAM International Conference on Data
Mining, 2006.

[31] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Monitoring streams - A new class of
data management applications. In VLDB, 2002.

[32] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishna-
murthy, S. Madden, F. Reiss, and M. A. Shah. Tele-
graphCQ: Continuous dataflow processing. In SIG-
MOD, 2003.

[33] S. Chang, W. Ma, and A. W. M. Smeulders. Recent
advances and challenges of semantic image/video
search. In ICASSP, 2007.

[34] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger,
and Y. Chen. Compressing neural networks with the
hashing trick. CoRR, abs/1504.04788, 2015.

[35] G. Cheng, Y. Wang, S. Xu, H. Wang, S. Xiang, and
C. Pan. Automatic road detection and centerline
extraction via cascaded end-to-end convolutional
neural network. IEEE Trans. Geoscience and Re-
mote Sensing, 2017.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 283

http://storm.apache.org/index.html
http://storm.apache.org/index.html
http://avigilon.com/products/
https://www.youtube.com/watch?v=iKxhsl3rurA
https://www.youtube.com/watch?v=iKxhsl3rurA
https://www.youtube.com/watch?v=cjuskMMYlLA
https://www.youtube.com/watch?v=cjuskMMYlLA
https://www.youtube.com/watch?v=yJAk_FozAmI
https://www.youtube.com/watch?v=yJAk_FozAmI
https://www.genetec.com/
https://www.youtube.com/watch?v=YqyERQwXA3U
https://www.youtube.com/watch?v=YqyERQwXA3U
https://www.youtube.com/watch?v=K-F4CeVsWHA
https://www.youtube.com/watch?v=K-F4CeVsWHA
http://mathworld.wolfram.com/L2-Norm.html
http://mathworld.wolfram.com/L2-Norm.html
https://www.youtube.com/watch?v=7uF7DsUQ9vc
https://www.youtube.com/watch?v=7uF7DsUQ9vc
https://www.mongodb.com/
http://www.nvidia.com/object/tesla-p100.html
http://www.nvidia.com/object/tesla-p100.html
http://opencv.org/opencv-3-4.html
http://opencv.org/opencv-3-4.html
https://docs.opencv.org/2.4/modules/gpu/doc/gpu.html
https://docs.opencv.org/2.4/modules/gpu/doc/gpu.html
https://www.youtube.com/watch?v=Qhq4vQdfrFw
https://www.youtube.com/watch?v=Qhq4vQdfrFw
https://technology.ihs.com/api/binary/572252
https://technology.ihs.com/api/binary/572252
https://en.wikipedia.org/wiki/Pareto_efficiency
https://en.wikipedia.org/wiki/Pareto_efficiency

[36] M. G. Christel and R. M. Conescu. Mining novice
user activity with TRECVID interactive retrieval
tasks. In CIVR, 2006.

[37] S. Dagtas, W. Al-Khatib, A. Ghafoor, and R. L.
Kashyap. Models for motion-based video indexing
and retrieval. IEEE Trans. Image Processing, 2000.

[38] M. E. Dönderler, Ö. Ulusoy, and U. Güdükbay. Rule-
based spatiotemporal query processing for video
databases. VLDB J., 2004.

[39] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In VLDB,
1999.

[40] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, 1984.

[41] A. Hampapur. Semantic video indexing: Approach
and issue. SIGMOD Record, 1999.

[42] S. Han, J. Pool, J. Tran, and W. Dally. Learning
both weights and connections for efficient neural
network. In NIPS, 2015.

[43] S. Han, H. Shen, M. Philipose, S. Agarwal,
A. Wolman, and A. Krishnamurthy. MCDNN: An
approximation-based execution framework for deep
stream processing under resource constraints. In
MobiSys, 2016.

[44] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. In ICCV, 2015.

[45] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, 2016.

[46] W. Hu, N. Xie, L. Li, X. Zeng, and S. J. Maybank. A
survey on visual content-based video indexing and
retrieval. IEEE Trans. Systems, Man, and Cybernet-
ics, Part C, 2011.

[47] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-
Miller. Labeled faces in the wild: A database for
studying face recognition in unconstrained environ-
ments. Technical Report 07-49, University of Mas-
sachusetts, Amherst, October 2007.

[48] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speed-
ing up convolutional neural networks with low rank
expansions. CoRR, abs/1405.3866, 2014.

[49] S. E. Kahou, C. J. Pal, X. Bouthillier, P. Frou-
menty, Ç. Gülçehre, R. Memisevic, P. Vincent,
A. C. Courville, Y. Bengio, R. C. Ferrari, M. Mirza,
S. Jean, P. L. Carrier, Y. Dauphin, N. Boulanger-
Lewandowski, A. Aggarwal, J. Zumer, P. Lamblin,
J. Raymond, G. Desjardins, R. Pascanu, D. Warde-
Farley, A. Torabi, A. Sharma, E. Bengio, K. R.
Konda, and Z. Wu. Combining modality specific
deep neural networks for emotion recognition in
video. In ICMI, 2013.

[50] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and
M. Zaharia. NoScope project website. https://
github.com/stanford-futuredata/noscope.

[51] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and
M. Zaharia. NoScope: Optimizing deep CNN-based
queries over video streams at scale. PVLDB, 2017.

[52] A. Karpathy, G. Toderici, S. Shetty, T. Leung,
R. Sukthankar, and F. F. Li. Large-scale video clas-
sification with convolutional neural networks. In
CVPR, 2014.

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
geNet classification with deep convolutional neural
networks. In NIPS, 2012.

[54] P. L. Lehman and S. B. Yao. Efficient locking
for concurrent operations on B-trees. ACM Trans.
Database Syst., 1981.

[55] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain.
Content-based multimedia information retrieval:
State of the art and challenges. TOMCCAP, 2006.

[56] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A con-
volutional neural network cascade for face detection.
In CVPR, 2015.

[57] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and
M. Chen. Medical image classification with convo-
lutional neural network. In ICARCV, 2014.

[58] R. Lienhart and J. Maydt. An extended set of Haar-
like features for rapid object detection. In ICIP,
2002.

[59] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan,
and S. J. Belongie. Feature pyramid networks for
object detection. In CVPR, 2017.

[60] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft
COCO: common objects in context. In ECCV, 2014.

[61] W. Lin, H. Fan, Z. Qian, J. Xu, S. Yang, J. Zhou,
and L. Zhou. StreamScope: Continuous reliable
distributed processing of big data streams. In NSDI,
2016.

[62] Y. Mao, E. Kohler, and R. T. Morris. Cache crafti-
ness for fast multicore key-value storage. In EuroSys,
2012.

[63] A. Mhalla, H. Maâmatou, T. Chateau, S. Gazzah,
and N. E. B. Amara. Faster R-CNN scene special-
ization with a sequential monte-carlo framework. In
DICTA.

[64] Microsoft. The microsoft Cognitive Toolkit.
https://www.microsoft.com/en-us/
cognitive-toolkit/.

[65] L. O’Callaghan, N. Mishra, A. Meyerson, and
S. Guha. Streaming-data algorithms for high-quality
clustering. In ICDE, 2002.

284 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/stanford-futuredata/noscope
https://github.com/stanford-futuredata/noscope
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/

[66] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J.
Freedman. Aggregation and degradation in Jet-
Stream: Streaming analytics in the wide area. In
NSDI, 2014.

[67] A. S. Razavian, H. Azizpour, J. Sullivan, and
S. Carlsson. CNN features off-the-shelf: An as-
tounding baseline for recognition. In CVPR Work-
shops, 2014.

[68] J. Redmon and A. Farhadi. YOLO9000: Better,
faster, stronger. CoRR, abs/1612.08242, 2016.

[69] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster
R-CNN: Towards real-time object detection with
region proposal networks. In NIPS, 2015.

[70] W. Ren, S. Singh, M. Singh, and Y. S. Zhu. State-of-
the-art on spatio-temporal information-based video
retrieval. Pattern Recognition, 2009.

[71] A. Romero, N. Ballas, S. E. Kahou, A. Chassang,
C. Gatta, and Y. Bengio. FitNets: Hints for thin
deep nets. CoRR, abs/1412.6550, 2014.

[72] H. R. Roth, L. Lu, J. Liu, J. Yao, A. Seff, K. M.
Cherry, L. Kim, and R. M. Summers. Improving
computer-aided detection using convolutional neural
networks and random view aggregation. IEEE Trans.
Med. Imaging, 2016.

[73] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei.
ImageNet large scale visual recognition challenge.
IJCV, 2015.

[74] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet:
A unified embedding for face recognition and clus-
tering. In CVPR, 2015.

[75] H. Shen, S. Han, M. Philipose, and A. Krishna-
murthy. Fast video classification via adaptive cas-
cading of deep models. In CVPR, 2017.

[76] H. T. Shen, B. C. Ooi, and X. Zhou. Towards effec-
tive indexing for very large video sequence database.
In SIGMOD, 2005.

[77] A. Silberschatz, H. F. Korth, and S. Sudarshan.
Database System Concepts, 5th Edition. McGraw-
Hill Book Company, 2005.

[78] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition.
In ICLR, 2015.

[79] C. Snoek, K. E. A. van de Sande, O. de Rooij,
B. Huurnink, E. Gavves, D. Odijk, M. de Rijke,
T. Gevers, M. Worring, D. Koelma, and A. W. M.
Smeulders. The mediamill TRECVID 2010 seman-
tic video search engine. In TRECVID 2010 work-
shop participants notebook papers, 2010.

[80] C. Snoek and M. Worring. Multimodal video index-
ing: A review of the state-of-the-art. Multimedia
Tools Appl., 2005.

[81] C. G. M. Snoek and M. Worring. Concept-based
video retrieval. Foundations and Trends in Informa-
tion Retrieval, 2009.

[82] S. Stober, D. J. Cameron, and J. A. Grahn. Using
convolutional neural networks to recognize rhythm
stimuli from electroencephalography recordings. In
NIPS, 2014.

[83] Y. Sun, X. Wang, and X. Tang. Deep convolutional
network cascade for facial point detection. In CVPR,
2013.

[84] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. In CVPR,
2015.

[85] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining, (First Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2005.

[86] N. Tatbul, U. Çetintemel, and S. B. Zdonik. Stay-
ing FIT: efficient load shedding techniques for dis-
tributed stream processing. In VLDB, 2007.

[87] Y. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shed-
ding in stream databases: A control-based approach.
In VLDB, 2006.

[88] P. A. Viola and M. J. Jones. Rapid object detection
using a boosted cascade of simple features. In CVPR,
2001.

[89] H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu,
and C. Alkan. Accelerating read mapping with
FastHASH. BMC Genomics, 2013.

[90] Z. Xu, Y. Yang, and A. G. Hauptmann. A discrimi-
native CNN video representation for event detection.
In CVPR, 2015.

[91] Z. E. Xu, M. J. Kusner, K. Q. Weinberger, and
M. Chen. Cost-sensitive tree of classifiers. In ICML,
2013.

[92] Q. Yang, C. X. Ling, X. Chai, and R. Pan. Test-cost
sensitive classification on data with missing values.
IEEE Trans. Knowl. Data Eng., 2006.

[93] D. Yuan and P. Mitra. Lindex: a lattice-based index
for graph databases. VLDB J., 2013.

[94] J. Yuan, H. Wang, L. Xiao, W. Zheng, J. Li, F. Lin,
and B. Zhang. A formal study of shot boundary
detection. IEEE Trans. Circuits Syst. Video Techn.,
2007.

[95] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker,
and I. Stoica. Discretized streams: fault-tolerant
streaming computation at scale. In SOSP, 2013.

[96] H. Zhang, G. Ananthanarayanan, P. Bodík, M. Phili-
pose, P. Bahl, and M. J. Freedman. Live video analyt-
ics at scale with approximation and delay-tolerance.
In NSDI, 2017.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 285

[97] X. Zhou, X. Zhou, L. Chen, and A. Bouguettaya.
Efficient subsequence matching over large video
databases. VLDB J., 2012.

286 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	1 Introduction
	2 Background and Motivation
	2.1 Convolutional Neural Networks
	2.2 Characterizing Real-world Videos
	2.2.1 Excluding large portions of videos
	2.2.2 Limited set of object classes in each video
	2.2.3 Feature vectors for finding duplicate objects

	3 Overview of Focus
	4 Video Ingest & Querying Techniques
	4.1 Approximate Index via Cheap Ingest
	4.2 Video-specific Specialization of Ingest CNN
	4.3 Redundant Object Elimination
	4.4 Trading off Ingest Cost and Query Latency

	5 Implementation
	5.1 Ingest Processor
	5.2 Stream Tuner
	5.3 Query Processor

	6 Evaluation
	6.1 Methodology
	6.2 End-to-End Performance
	6.3 Effect of Different Focus Components
	6.4 Ingest Cost vs. Query Latency Trade-off
	6.5 Sensitivity to Recall/Precision Target
	6.6 Sensitivity to Object Class Numbers

	7 Other Applications
	8 Related Work
	9 Conclusion

