
F2: Reenvisioning Data Analytics Systems
Robert Grandl†, Arjun Singhvi, Raajay Viswanathan◦, Aditya Akella

University of Wisconsin - Madison, †Google, ◦Uber
under review

Abstract— Today’s data analytics frameworks are intrinsi-
cally compute-centric. Key details of analytics execution
– work allocation to distributed compute tasks, interme-
diate data storage, task scheduling, etc. – depend on
the pre-determined physical structure of the high-level
computation. Unfortunately, this hurts flexibility, perfor-
mance, and efficiency. We present F 2, a new analytics
framework that cleanly separates computation from inter-
mediate data. It enables runtime visibility into data via
programmable monitoring, and data-driven computation
(where intermediate data values drive when and what com-
putation runs) via an event abstraction. Experiments with
an F 2 prototype on a large cluster using batch, streaming,
and graph analytics workloads show that it significantly
outperforms state-of-the-art compute-centric engines.

1 Introduction
Many important applications in diverse settings (e.g.,
health care, cybersecurity, education, and IoT) rely on an-
alyzing large volumes of data which can include archived
relational tables, event streams, graph data, etc. To ease
analysis of such diverse large data sets, several analytics
frameworks have emerged [43, 18, 44, 35, 26, 36, 10, 32,
4, 38, 39]. These enable data parallel computation, where
a job’s analysis logic is run in parallel on data shards
spread across multiple machines in large clusters.

Almost all these frameworks, be they for batch [23, 43,
18], stream [44, 4] or graph processing [35, 26, 36], have
their intellectual roots in MapReduce [23], a time-tested
execution framework for data parallel workloads. While
they have many differences, existing frameworks share a
key attribute with MapReduce, in that they are compute-
centric. Their focus, like MapReduce, is on splitting a
given job’s computational logic and distributing it across
compute units, or tasks, to be run in parallel. Like MapRe-
duce, all aspects of the subsequent execution of the job
are rooted in the job’s computational logic and its task-
level distribution, i.e., job structure (§2). These include
the fact that the logic running inside tasks, and task paral-
lelism, are static and/or predetermined; intermediate data
is partitioned as it is generated, and routed to where it is
consumed, as a function of the original compute structure;
dependent tasks are launched when a fraction of tasks
they depend on finish, etc.

Compute-centricity was a natural choice for MapRe-

duce. Knowing job structure beforehand made it easy to
understand how to carve computational units to execute
tasks. Also, because failures are a common case in large
clusters, fault tolerance is important, and compute centric-
ity provided clean mechanisms to recover from failures1.
Schedulers became simple because of having to deal with
static inputs (fixed tasks/dependency structures). Support
for fault tolerance and scheduling allowed developers to
focus on improving the programming model to support
broad applications [5, 3], which ultimately spurred wide
adoption of the MapReduce paradigm.

But, is compute-centricity the right choice, especially
for the diverse frameworks that emerged from MapRe-
duce? Is it the right choice today given that compute
infrastructure is vastly different, with advances in comput-
ing such as containerization and serverless platforms [6],
and in distributed key-value (KV) storage services [9, 41]?

We answer the first question by arguing that compute
centricity gets in the way by imposing at least four funda-
mental limitations (§2): (1) Intermediate data is opaque;
there is no way to adapt job execution based on runtime
data properties. (2) Static parallelism and intermediate
data partitioning constrain adaptation to data skew and
resource flux. (3) Tying execution schedules to compute
structure can lead to resource waste while tasks wait for
input to become available. (4) Compute-based organiza-
tion of intermediate data can result in storage hotspots
and poor cross-job I/O isolation, and it curtails data local-
ity.2 Thus, while compute-centricity has served us well,
it begets inflexibility, poor performance, and inefficiency,
hurting current and future key applications.

The above limitations arise from (1) tight coupling be-
tween data and compute, and (2) intermediate data being
relegated to a second class citizen. Motivated by these ob-
servations, and inspired by modern serverless platforms,
we propose a new framework, F 2. It cleanly separates
computation from all intermediate data. Intermediate data
is written to/read from a separate key-value datastore. The
store is programmable – applications can provide custom
logic for monitoring runtime properties of data. We intro-
duce an event abstraction that allows the store to signal
to an execution layer when an application’s intermediate
data values satisfy certain properties. Events thus enable

1Only tasks on a failed machine needed to be re-executed.
2E.g., it is impossible to achieve data-local reduce task placement.

complete data-driven computation in F 2, where, based on
runtime data properties, the execution layer decides what
logic to launch in order to further process data generated,
how many parallel tasks to launch and when/where to
launch them, and which resources to allocate to tasks to
process specific data. Data-driven computation improves
performance, efficiency, isolation, and flexibility relative
to all compute-centric frameworks.

In designing F 2, we make the following contributions:

• We present novel and scalable APIs for programmable
intermediate data monitoring, and for leveraging
events for rich data-driven actions. Our APIs balance
expressiveness against overhead and complexity.

• We show how to organize intermediate data from mul-
tiple jobs in the datastore so as to achieve per-job
data locality and fault tolerance, and cross-job isola-
tion. Since obtaining an optimal data organization is
NP-Hard, we develop novel heuristics that carefully
trade-off among these storage objectives.

• We develop novel altruism-based heuristics for the
job execution layer for data-driven task parallelism
and placement. This minimizes both skew in data
processed and data shuffle cost, while operating under
the constraints of dynamic resource availability. Each
task is launched in a container whose size is late-bound
to the actual data allocated to the task.

We have built an F 2 prototype by refactoring and
adding to Tez [40] and YARN [45] (15000 lines).We
currently support batch, graph, and stream processing.
We deploy and experiment with our prototype on a 50
machine cluster in CloudLab [7].

We compare against the state-of-the-art compute cen-
tric (CC) approaches. F 2 improves median (95%-ile) job
completion time (JCT) by 1.3−1.7× (1.5−2.2×) across
batch, streaming, and graph analytics. F 2 reduces idling
by launching (the right number of appropriately-sized)
tasks only when custom predicates on input data are met,
and avoids expensive data shuffles even for consumer
tasks. Under high cluster load, F 2 offers 1.8× better JCT
than CC due to better cross-job data management and
isolation. F 2’s data-driven actions enable computation to
start much sooner than CC, leading to 1.6× better stream
or graph JCTs. Finally, F 2’s data-driven logic changes
can improve JCT by 1.4×.

2 On Eschewing Compute Centricity
Background: Production batch [50, 23, 5], stream [4, 50,
14] or graph [25, 35, 26] analytics frameworks support
the execution of multiple inter-dependent stages of com-
putation. Each stage is executed simultaneously within
different tasks, each processing different data shards, or

1	 1	
M11	

1	 1	
M12	

1	 1	
M21	

1	 1	
M22	

R11	 R12	

Intermediate	Data		
Shuffle	

(a) A batch analytics
job. Intermediate data is
partitioned into two key
ranges, one per reduce
task, and stored in local
files at map tasks.

0me	

CPU	idling	–	S2		
CPU	idling	–	S3		

Records	from	S1	
100	records	S2	starts	work	

(b) Data flow in sample streaming job. Tasks
in all stages are always running. Output of a
stage is immediately passed to a task in imme-
diate downstream stage. However, CPU is idle
until task in Stage 2 receives 100 records after
which computation is triggered.

Figure 1: Simplified examples of existing analytics systems. Graph
analytics, not shown, is similar: the different stages are iterations in a
graph algorithm; thus, all stages execute the same processing logic (the
vertex program). Intermediate data generated by one iteration is a set
of messages for each graph vertex. This data is moved to the relevant
vertex program where it becomes input to the next iteration.

partitions, to generate input for a subsequent stage.
A simple batch analytics job is shown in Fig. 1a; here,

two tables need to be filtered on provided predicates and
joined to produce a new table. The computation has three
stages – two maps (M1 and M2) to filter the tables, and
one reduce (R1) to execute the join. Execution of this job
proceeds as follows [23, 5]: (1) The map tasks from both
the stages execute first, and are run simultaneously (as
they have no dependencies) with each task processing a
partition of the corresponding input table. (2) Map inter-
mediate results are written to local disk by each task, split
into files, one per downstream reduce task. (3) Reduce
tasks are launched when the map stages are nearing com-
pletion; each reduce task shuffles relevant intermediate
data from all map tasks’ locations and generates output.

A typical stream analytics job has a similar compu-
tation model [14, 33, 51]. The main difference is that,
tasks in all streaming stages are always running. A graph
analytics job, in a framework that relies on the popular
message passing abstraction [35], has a similar, even more
simplified model (see Fig. 1 caption).
Compute-centricity: The above frameworks are de-
signed primarily with the goal of splitting up and dis-
tributing computation across multiple machines. The
composition and structure of this distributed computation
is a first class entity. The exact computation in each task is
assumed to be known beforehand. The way in which inter-
mediate data is partitioned and routed to consumer tasks,
and when and how dependent computation is launched,
are tied to compute structure. We use the term compute-
centric to refer to this design pattern. Here, intermediate
data is a strict second class entity.

2.1 Issues with Compute-centricity

The above systems’ performance depends on a few fac-
tors: (1) the computation logic for each stage which de-
termines task run time, e.g., for joining two large datasets

2

sort-merge join is more expensive than a hash or broad-
cast join, (2) stages’ parallelism — the higher the #tasks
the lesser the amount of work each task has to do, lead-
ing to potentially lower stage execution times, (3) the
resource allocation and task scheduling algorithms, and
(4) the volume of data shuffled between stages, and skew
in cross-task data distribution [17]. Improving overall per-
formance requires careful optimization of all these factors.
However, existing systems’ compute-centricity imposes
key constraints on potential optimizations:
(1) Data opacity, and compute rigidity: Being a second
class entity, data transferred between stages of compu-
tation is treated as an opaque blob; there’s no visibility
into it. A job cannot programmatically monitor all data
produced by any stage (e.g., determining if a certain value
v was seen in intermediate data). This prohibits triggering
or adapting computation based on run time intermediate
data properties (e.g., launch a particular program T in
downstream tasks if upstream stage’s output satisfies a
certain predicate p; else launch T ′).3

Programmable monitoring, and monitoring-driven com-
putation, can help by significantly speeds up job execution.
Consider the batch job in Fig. 1a. Existing frameworks
determine the type of join in the reduce stage based on
coarse statistics [3]; unless one of the tables is small,
a sort-merge join is employed to avoid out-of-memory
(OOM) errors. However, if per-key histograms of inter-
mediate data are available, we can dynamically determine
the type of join to use for different reduce tasks. A task
can use hash join if the total size of its key range is less
than the available memory, and merge join otherwise.
(2) Static data plane, and inadaptability to re-
sources/skew: We use the term data plane to refer to
a job’s tasks, their interconnecting dependency edges, and
the data partitioning strategy that controls how intermedi-
ate data flows on those edges. Current frameworks deter-
mine the data plane statically, prior to job execution. E.g.,
in Spark [50] the number of tasks in a stage is determined
by the user application or the SparkSQL [13] framework.
A hash partitioner is used to place an intermediate (k, v)
pair into one of the |tasks| buckets. Pregel [35] vertex-
partitions the input graph; partitions do not change during
the execution of the graph algorithm.

Static data planes impact performance. First, work al-
location to tasks cannot adapt to run time changes. A
currently running stage cannot utilize newly available
compute resources4 and dynamically increase its paral-

3Some frameworks [5] only collect coarse information, such as the
final intermediate data file sizes, which they use to avoid launching a
task in case relevant upstream files that form task input are empty.

4this could happen, e.g., when the job is running on VMs derived
from a spot market, or due to large-job departures in a cluster.

lelism. Second, work allocation cannot adapt to runtime
data skew which can be hard to predict. If some key (or
some vertex program) in a partition has an abnormally
large number of records (or messages) to process then the
corresponding task is significantly slowed down [17].

If parallelism and partitioning strategies can be altered
based on intermediate data, we can optimally adapt to
resource changes and data skew. Realizing such flexible
data planes, however, is difficult today due to data opacity.
It is also complicated by the coupling of intermediate data
to producer tasks: repartitioning data across all produc-
ers to align with changes to downstream parallelism is
onerous.
(3) Idling due to compute-driven scheduling: Modern
cluster schedulers [45, 24] decide when to launch tasks
for a stage based on the static task-level structure of a job.
When a stage’s computation is commutative+associative,
schedulers launch its tasks once 90% of all tasks in up-
stream stages complete [5]. However, the remaining 10%
producers can take long to complete (e.g., due to data
skew) resulting in tasks idling.

Idling is more common in the streaming setting where
downstream tasks are continuously waiting for data from
upstream tasks. Consider the example in Fig. 1b: the task
in Stage 2 computes and outputs the median for every
100 records received. Thus, it idles, as it can’t emit any
output until it has received 100 records from Stage 1; as
a result the task in Stage 3 also idles for a long time. A
similar situation arises in graph processing where a task
waits for all messages from the previous iteration before
proceeding with computation for the current iteration.

Ideally, tasks should be scheduled only when relevant
input is available. This depends both on the computation
logic and the data it consumes. In the above example,
computation should be launched only after≥ 100 records
have been generated by an upstream task. As another
example, if computation is commutative+associate, it is
reasonable to “eagerly” launch tasks to process interme-
diate data as long as enough data has been generated to
process in one batch; also, such a task should be able to
exit after it is done processing the current batch. Today,
tasks linger to process all data preassigned to them.

Scheduling in the above fashion is difficult today due
to the lack of suitable APIs for programmable monitoring
(to identify whether relevant data has been generated)
and for monitoring-driven computation (to then launch
additional computation appropriate for the data).
(4) Second-class data, and storage inefficiencies: An-
other key issue is where to schedule tasks. Because
second-class intermediate data is spread across producer
tasks’ locations (Fig. 1a), it is impossible to place con-

3

sumer asks in a data-local fashion. Such tasks are placed
at random [23] and forced to shuffle data for processing.
Shuffles substantially inflate job runtimes (∼30% [22]).

Storage inefficiencies also arise from lack of isolation
across jobs. Today, tasks are scheduled where appropriate
compute units are available [24, 8]. Unfortunately, when
tasks from multiple jobs are collocated, it becomes diffi-
cult to isolate their hard-to-predict runtime intermediate
data I/O. Tasks from jobs generating significant interme-
diate data may occupy much more local storage and I/O
bandwidth than those generating less. Multiple jobs’ tasks
generating data heavily can create storage hotspots.

3 Data-driven Design in F 2

F 2 overcomes the flaws of compute-centricity by reenvi-
sioning analytics stacks based on three principles:
1. Decoupling compute and data: Many of the above
issues are rooted in intermediate data being a second
class citizen today. Thus, inspired by serverless architec-
tures [6], F 2 cleanly decouples compute from intermedi-
ate data (§4). The latter is written to/read from a separate
distributed KV datastore, and managed by a distinct data
management layer, called the data service (DS). An exe-
cution service (ES) manages compute tasks. Because the
store manages data from all stages across all jobs, it can,
similar to multi-tenant KV stores [9, 41], enforce univer-
sal policies to organize data to meet per-job objectives,
e.g., locality for any stage’s tasks, and cluster objectives,
such as I/O hotspot avoidance and cross-job isolation.
2. Programmable data visibility: The above separation
also enables rich, low-overhead, and scalable approaches
to gain visibility into all of a stage’s runtime data. Inspired
by programmable network monitoring [48, 37], F 2 allows
a programmer to gather custom runtime properties for all
intermediate data of any stage of a job, and of values
contained therein, via a narrow, well-defined API (§5.1).
3. Data-driven computation using events: Building on
data visibility, F 2 provides an API for subscribing to
events (§5.2) which form the basis for a rich intermedi-
ate data publish-subscribe substrate. Programmers can
define custom predicates on properties of data values for
each stage of their computation. F 2 events notify the
application when intermediate data satisfies the predi-
cates. Crucially, events help achieve general data-driven
computation, where properties of intermediate data drive
further computation (§6): Specifically (1) Events ensure
that computation is launched only when data whose keys/-
values satisfy relevant properties is available. (2) Coupled
with data properties, events help dynamically determine
(a) resource adaptation and optimal parallelism selection
based on total data volume and skew across keys, and (b)

1  JOB	job	=	F2.createJob(“WordCount”);	
2  job.addStage(“s1”,	S1Impl.class,	

DS.DEFAULT_TRIGGER.BATCH).addStage(“s2”,	
S2Impl.class,	DS.DEFAULT_TRIGGER.BATCH);	

3  job.addDependency(“s1”,	“s2”);	
4  //	Program	DS	to	raise	a	DataEvent	indica0ng		
5  //	#words	with	more	than	100	occurrences.				
6  Module	monitor	=	job.createModule(“s1”,	 	 	 		

	 	 	DS.MONITOR.NUM_ENTRIES,	100);	

7  //	Create	an	ac0on	to	trigger	run0me	changes.	
8  Ac0on	ac0on	=	job.createAc0on()	{		
9  		@Override		
10  			void	run(DataEvent	event)	{	
11  				if	(event.type	==	DS.MONITOR.NUM_ENTRIES	
12  										&&	event.value	==	0)	{		
13  									job.replaceStage(event.stageID,	
14  									EmptyImpl.class,	event.granuleID);														
15  							job.refresh();	
16  					}	
17  }	

18  job.addModule(monitor,	ac0on);	
19  job.submit();	

Figure 2: F 2 user program for a job where the requirement is to print
all the words with more than 100 occurrences.

F2	CLIENT	

EXECUTION	
SERVICE	(ES)	

DATA	
SERVICE	(DS)	

Submit		Program	

Trans
fer	DA

G	

Manage	computa0on	 Push	intermediate	data	[DATA	SPILLS]	 Data	organiza0on	

Data	ready	for	processing	[DATA	READY	events]	

Report	custom	data	

sta0s0cs	[DATA	events]	Compute	run0me	DAG	
changes	

1

2 2

3

4

4
5

Figure 3: Control flow between the main components of F 2. On re-
ceiving data from tasks (of “s1”), the DS stores it across granules. DS
notifies ES when a granule is ready for further processing (by “s2”)
via an event (step 4). DS sends per-granule collected statistics (number
of words with ≥ 100 occurrences; line 6 in Fig. 2) to F 2 client via
events as well (step 4). Upon receiving this event the ES (step 5) queries
the DS for compute logic to be applied to specific granules; here, any
granule with < 100 word occurrences does not need to be processed by

“s2”(lines 13-14 in Fig. 2); and decides task parallelism and placement
based on resource availability. ES loads corresponding operations into
a task and starts its execution. The above process repeats.

suitable computation logic to apply to available data.
Programming model: F 2 extends the programming
model of existing frameworks [23, 40, 14, 35] in two
key ways - (1) user no longer provides low-level details
(e.g., stage parallelism); and (2) user can write custom
modules to monitor data (Fig. 2 lines 4 – 6) and use them
to alter stage computation on-the-fly (Fig. 2 lines 7 – 17).
Example: Consider a simple batch analytics program
(Fig. 2) that prints words with more than 100 occur-
rences. The programmer first provides this to the F 2

client (Fig. 3). The ES starts executing the root logical
vertex (“s1”), and pushes its output to the datastore (steps
1 - 3). The remaining steps are outlined in Fig. 3’s caption,
and covered in greater detail later. The same control flow
is adopted by graph as well as streaming jobs.

We provide details of the API and F 2’s algorithmic
and design innovations in the next few sections.

4 Data Store
All jobs’ intermediate data is written to/read from a sep-
arate data store. Similar to today, we structure data as
<key,value> pairs. In batch/stream analytics, the keys
are generated by the stage computation logic itself; in
graph analytics, keys are identifiers of vertices to which
messages (values) are destined for processing in the next
iteration. We now address how this data is organized in the

4

store. Naively writing <k,v> pairs to random machines
impacts consumer tasks’ read performance. Writing all
data corresponding to a key range, irrespective of which
producer task generated it, into one file on a randomly-
chosen machine ensures consumer task data locality. But
such a task-centric view cannot support cross-job isola-
tion; also, “popular” <k,v> pairs can result in data skew,
and create I/O hotspots at machines hosting them.

An ideal data organization should achieve three
mutually-conflicting goals: (1) it should load balance
data across machines, specifically, avoid hotspots, im-
prove isolation, and minimize skew in data processing. (2)
It should maximize data locality by co-locating as much
data having the same key as possible. (3) It should be
fault tolerant - when a storage node fails, recovery should
have minimal impact on job runtime.

Next, we describe data storage granularity, which forms
the basis for our first-order goals, load balance and low
skew. We then show how we meet other objectives.

4.1 Granule: A Unit of Data in F 2

F 2 groups intermediate data based on <key>s. Our
grouping is based on an abstraction called granules. Each
stage’s intermediate data is organized into N granules; N
is a large system-wide constant. Each granule stores all
<k, v> data from a fixed, small key range (total key range
split N -ways). F 2 strives to materialize all granule data
on one machine; whereas in today’s systems, data from
the same key range may be written at different producers’
locations. This materialization property of granules forms
the basis for consumer task data locality. A granule may
be spread across machines in the low-likelihood event
that the runtime data size corresponding to its key range
is unexpectedly large (> a threshold).

Note that key ranges of the intermediate data partitions
of today’s systems are tied to pre-determined parallelism
of consumer tasks, whereas granule key ranges are unre-
lated to compute structure; they are also generally much
smaller. The small size and compute-structure agnosticity
help both in managing skew and determining runtime par-
allelism. The analogy is with bin-packing: for the same
total size (amount of data), smaller individual balls (gran-
ules) can be better packed (efficiently, and with roughly
equal final load) into the fewest bins (compute units).

4.2 Allocating Granules to Machines

We consider how to place multiple jobs’ granules to avoid
hotspots, reduce per-granule spread (for data locality) and
minimize job runtime impact on data loss. We formulate
a binary integer linear program (see Fig. 4) to this end.
The indicator decision variables, xk

i , denote that all future
data to granule gk is materialized at machine Mi. The ILP

Objectives (to be minimized):

O1 maxi

(∑
k

(b
k
i + x

k
i e

k
)

)

O2

∑
k

P
k −

∑
i∈Ik−

x
k
i

 b
k
î(k) +

∑
i∈Ik

+

x
k
i

(
b
k
i + e

k
)

O3

∑
k

(1− f
k
)
∑
i∈I◦

x
k
i

Constraints:

C1

∑
k:J(gk)=j

(
b
k
i + x

k
i e

k
)
≤ Qj , ∀j, i

Variables:
xk
i Binary indicator denoting granule gk is placed on machine i

Parameters:
bki Existing number of bytes of granule gk in machine i

ek Expected number of remaining bytes for granule, gk

Pk ek +
∑
i

b
k
i

J(gk) The job ID for job gk
î(k) argmaxi bki

Ik
−, I

k
+ {i : bki ≤ bk

î(k)
− ek}, {i : bki > bk

î(k)
− ek}

fk Binary parameter indicating that granules for same stage as
gk share locations with granules for preceding stages

I◦ Set of machines where granules of preceding stages are stored
Qj Administrative storage quota for job, j.

Figure 4: Binary ILP formulation for granule placement.

finds the best xk
i ’s that minimizes a multi-part weighted

objective function, one part each for the three objectives
mentioned above.

The first part (O1) represents the maximum amount
of data stored across all machines across all granules.
Minimizing this ensures load balance and avoids hotspots.
The second part (O2) represents the sum of data-spread
penalty across all granules. Here, for each granule, we
define the primary location as the machine with the largest
volume of data for that granule. The total volume of
data in non-primary locations is the data-spread penalty,
incurred from shuffling the data prior to processing it.
The third part (O3) is the sum of fault-tolerance penalties
across granules. Say a machine m storing intermediate
for current stage s fails; then we have to re-execute s to
regenerate the data. If the machine also holds data for
ancestor stages of s then multiple stages have to be re-
executed. If we ensure that data from parent and child
stages are stored on different machines, then, upon child
data failure only the child stage has to be executed. We
model this by imposing a penalty whenever a granule in
the current stage is materialized on the same machine as
the parent stage. Penalties O2, O3 need to be minimized.

Finally, we impose isolation constraint (C1) requiring
the total data for a job to not exceed an administrator set
quota Qj . Quotas help ensure isolation across jobs.

5

Initial GRANULES Location Runtime GRANULES Location
1.  Determine number of machines
2.  Pick machines providing max

possible LB, DL and FT guarantees
3.  Spread GRANULES across selected

machines

1.  Detect machines at risk of overload
2.  Detect hot GRANULES on these

machines
3.  Close these GRANULES and pick

machines to spread them

Stage ready
to

generate data
t0 t1

t2 …. end

Figure 5: Overview of data organization in F 2.
h1 // Qj : max storage quota per job j and machine m.

Based on fairness considerations across all runnable jobs J .
// Mv: number machines (out of M) to organize data that will be
//generated by v of j.

h2
a. Count number machines Mj75 where j is using < 75% of Qj ;

b. Mv = max(2,Mj75 ×
M−Mj75

M).
// Given Mv , compute list of machines

−→
Mv .

h3

Considers only machines where j is using < 75% of Qj ;
a. Pick machines that provide LB5, DL6 and maximum possible FT7;
b. If |
−→
Mv|< Mv , relax FT guarantees and pick machines that

provide LB and DL;
c. If |
−→
Mv| is still < Mv , pick machines that just provide LB.

// How to spread granules across
−→
Mv?

h4 Uniformly spread: ||granules||
Mv

per machine.
// Which machines are at risk of violating Qj?

h5 −→
Mj : machines which store data of j and j is using≥ 75% of Qj .
// Which granules are hot on

−→
Mj?

h6 Significantly larger in size or have a higher increasing rate than others.

Table 1: Heuristics employed in data organization

4.3 Fast Granule Allocation

Solving the above ILP at scale can take several seconds
delaying granule placement. Further, since the ILP con-
siders granules from multiple stages across jobs, stages’
data needs to be batched first, which adds further delay.
F 2 instead uses a simpler, practical approach for the

granule placement problem. First, instead of jointly op-
timizing global placement decisions for all the granules,
F 2 solves a “local” problem of placing granules for each
stage independently; when new stages arrive, or when
existing granules may exceed job quota on a machine,
new locations for some of these granules are determined.
Second, instead of solving a multi-objective optimization,
F 2 uses a linear-time rule-based heuristic to place gran-
ules; the heuristic prioritizes load and locality (in that
order) in case machines satisfying all objectives cannot
be found. Isolation (quota) is always enforced.
Granule location for new stages: (Fig.5) When a job j
is ready to run, DS invokes an admin-provided heuristic
h1 (Table 1) that assigns j a quota Qj per machine.

When a stage v of job j starts to generate intermediate
data, DS invokes h2 to determine the number of machines
Mv for organizing v’s data. h2 picks Mv between 2 and
a fraction of the total machines which are below 75% of
the quota Qj for j. Mv ≥ 2 ensures opportunities for
data parallel processing (§6.1); a bounded Mv (Table 1)
controls shuffle cost when data is processed (§6.1).

Given Mv , DS invokes h3 to generate a list of machines
−→
Mv to materialize data on. It starts by creating three sub-

lists: (1) For load balancing, machines are sorted lightest-
load-first, and only ones which are ≤ 75% quota usage
for the corresponding job are considered. (2) For data
locality, we prefer machines which already materialize
other granules for this stage v, or granules from other
stages whose output will be consumed by same down-
stream stage as v (e.g., the two map stages in Fig. 1a).
(3) For fault tolerance, we pick machines where there are
no granules from any of v’s k upstream stages in the job,
sorted in descending order of k.8 From the sub-lists, we
pick least loaded machines that are data local and provide
as high fault tolerance as possible.

If despite completely trading off fault tolerance – i.e.,
reaching the bottom of the fault tolerance sub-list – the
number of machines picked falls below Mv , we trade-off
data locality as well and simply pick least-loaded ma-
chines. Finally, given

−→
Mv, DS invokes h4 and uniformly

spreads the granules across the machines.
New locations for existing granules: (Fig.5) Data gen-
eration patterns can significantly vary across different
stages, and jobs, due to heterogeneous compute logics,
data skew, etc. Thus a job j may run out of its quota
Qj on machine m, leaving no room to grow already-
materialized granules of j on m. Thus, DS periodically
reacts to runtime changes by determining for every j: (1)
which machines are at risk of being overloaded; (2) which
granules on these machines to spread at other locations;
and (3) on which machines to them spread to.

Given a job j, DS invokes h5 to determine machines
where j is using at least 75% of its quota Qj . DS then
starts closing some granules of j on these machines; fu-
ture intermediate data for these is materialized on another
machine, thereby mitigating any potential hotspot. Specif-
ically, DS invokes h6 to pick granules that are either sig-
nificantly larger in size or have a higher size increase rate
than others for j on m. These granules are more likely to
dominate the load and potentially violate Qj . Focusing
on them bounds the number of granules that will spread
out. DS groups the granules selected based on the stage
which generated them, and invokes heuristic h3 as before
to compute the set of machines where to spread. Group-
ing helps to maximize data locality, and using h3 provides
load balance and fault tolerance.

5 Data Visibility
A separate store for intermediate data, organized as above,
enables run-time programmable data monitoring. This
then supports data-driven computation, as discussed next.

8Thus, for the largest value of k, we have all machines that do not
store data from any of v’s ancestors; for k = 1 we have nodes that store
data from the immediate parent of v

6

ES

DS
ES

data_spills

data_ready data_ready_all

data_generated
1

v1

v2

data_spills events non-ready
GRANULES ready

GRANULES

2

3

4

5

Figure 6: Events and how they facilitate data-compute interaction

5.1 Data Monitoring

F 2 consolidates a granule in a single file, materialized
at one or a few locations (§4.1). Thus, granules can be
analyzed in isolation, simplifying data visibility.
F 2 supports both built-in and customizable modules

that periodically gather statistics per granule, spanning
properties of keys and values. These statistics are carried
to a per-stage master (DS-SM, described below) where
they are aggregated before being used by ES to take fur-
ther data-driven actions (§5.2). In parallel, data events
from the DS-SM carry granule statistics to the F 2 client
to aid with data-driven compute logic changes (§6.3).

Built-in modules run constantly and collect statistics
such as current granule size, number of (k,v) pairs and rate
of growth; in addition to supporting applications, these
are used by the store in runtime data organization (§4.3).

Custom modules are programmer-provided UDFs (user
defined functions). Since supporting arbitrary UDFs can
impose high overhead, we restrict UDFs to those that can
execute in linear time and O(1) state. We provide a library
of common UDFs, such as computing the number of
entries for which values are <,=, or > than a threshold.

The distributed datastore with small granules, and dis-
tributed DS-SMs, ensure monitoring is naturally scalable.

5.2 Acting on Monitored Data Properties

The ability to provide data visibility at runtime, along with
a decoupled compute and data architecture, enables F 2 to
cleanly support data-driven computation. At a high level,
DS triggers computation when certain data properties are
met through an event abstraction, and the ES performs
corresponding computation on the given data.
F 2 introduces the events shown in Fig. 6. 1 When

a stage v1 generates a batch of intermediate data, a
data spill containing the data is sent to the DS, 2 which
accumulates it into granules (§4). The DS-SM is made
aware of the number of v1 granules. 3 Whenever the DS-
SM determines that a collection of v1’s granules are ready
for further processing, it sends a data ready event per
granule to the ES for subsequent processing by tasks of a
consumer stage v2. This event carries per-granule infor-
mation such as: a list of machine(s) on which each gran-
ule is spread, and a list of (aggregated) statistics (coun-

ters) collected by the built-in data modules. 4 Finally, a
data generated event (from ES) notifies the v1 DS-SM
that v1 finished generating data spills (due to v1 compu-
tation completing). 5 Subsequently, DS-SM notifies the
ES through a data ready all event that all the data gen-
erated by v1 is ready for consumption (i.e., data ready
events were sent by the DS-SM for all granules of v1).
The pair of <data generated, data ready all> events
thus enables ES to determine when an immediate down-
stream stage v2, that is reading the data generated by v1,
has received all of its input data (Fig. 6).

The key enabler of this interaction is a ready trigger that
enables the per-stage DS-SM to decide when (a collection
of) granules can be deemed ready for corresponding com-
putation. The trigger logic is based on statistics collected
by the data modules. An F 2 program can provide custom
ready triggers for each of its stages, which the F 2 client
transfers to the DS-SMs. F 2 implements a default ready
trigger which is otherwise applied.
Default ready trigger: Here, the DS-SM deems granules
ready when the computation generating them is done; this
is akin to a barrier in existing batch analytics and bulk
synchronous execution in graph analytics. For a stream-
ing job, the DS-SM deems a granule ready when it has
≥ X records (X is a system parameter that a user can
configure) from producer tasks, and sends a data ready
event to ES. On receiving this, ES executes a consumer
stage task on this granule. This is akin to micro-batching
in existing streaming systems [51], with the crucial dif-
ference that the micro-batch is not wall clock time-based,
but is based on the more natural intermediate data count.
Custom ready trigger: If available, the DS-SM deems
granules as ready using custom triggers. Programmers
define these triggers based on knowledge about the se-
mantics of the computation performed, and the type of
data properties sought.

E.g., consider the partial execution of a batch (graph)
analytics job, consisting of the first two logical stages
(first two iterations) v1 → v2. If the processing logic
in v2 contains commutative+associative operations (e.g.,
sum, min, max, count, etc..), it can start processing its
input before all of it is in place. For this, the user can
define a pipelining custom ready trigger, and instruct DS-
SM to consider a granule generated by v1 ready when-
ever the number of records in it reaches a threshold X .
This enables ES to overlap computation, i.e., execute
v2 as follows: upon receiving a data ready event from
the DS-SM, it launches tasks of v2; tasks read the cur-
rent data, compute the associative+commutative function
on the (k,v) data read, and push the result back to DS
(in the same granules advertised through the received

7

data ready event; note that the key remains the same).
The DS-SM waits for each granule to grow back be-
yond threshold X for generating subsequent data ready
events. Finally, when a data generated event is received
from v1, the DS-SM triggers a final data ready event
for all the granules generated by v1, and a subsequent
data ready all event, to enable v2’s final output to be
written in granules and fully consumed by a downstream
stage, say v3 (similar to Fig. 6). Such pipelining speeds
up jobs in batch and graph analytics (see. §8.1.2).

DS support for custom data modules enables defini-
tions of even broader custom triggers. E.g., in case of a
streaming job, v2 may (re)compute a weighted moving
average whenever 100 data points with distinct keys are
generated by v1. Here, the user would write a custom
monitoring module to enable the DS to collect statistics
regarding entries with distinct keys (across granules), and
a custom ready trigger executed at the DS-SM to mark all
granules of v1 as ready whenever 100 new entries with
distinct keys were generated across all of them. Such
data-driven stream analytics performs much faster and is
more efficient than today’s stream systems (§8.1.3).

6 Execution Service
The ES manages computation: given intermediate data
and available resources, it determines optimal parallelism
and deploys tasks to minimize skew and shuffle, and it
maps granules to tasks in a resource-aware fashion. The
ES design naturally mitigates stragglers, and facilitates
data-driven compute logic changes.

6.1 Task Parallelism, Placement, and Sizing

Given a set of ready granules (G) for a stage, V , the ES
maps subsets of granules to tasks, and determines the
location (across machines M) and the size of the corre-
sponding tasks based on available resources. This multi-
decision problem, which evens out data volume processed
by tasks in a stage, and minimizes shuffle subject to re-
source contraints on each machine, can be cast as a binary
ILP (omitted for brevity). However, the formulation is
non-linear; even a linear version (with many variables)
is slow to solve at scale. For tractability, we propose an
iterative procedure (below) that applies a set of heuristics
(Tab. 2) repeatedly until tasks for all ready granules are
allocated, and their locations and sizes determined.

In each iteration, we first group granules, G, into a
collection of subsets,

−→
G , using h7 ; the number of subsets,

|
−→
G |, is determined by the size of the largest granule (see

line (a)). Grouping minimizes data spread within each
subset (line (b)), and spreads total data evenly across
subsets (line (c)) making cross-task performance uniform.

h7

//
−→
G : subsets of unprocessed granules.

a. GrMax = 2× |g|, g is largest granule ∈G;
b. Group all granules ∈G into subsets in strict order:

i. data local granules together;
ii. each spread granule, along data-local granules together;
iii. any remaining granules together;

subject to:
iv. each subset size≤ GrMax;
v. conflicting granules don’t group together;
vi. troublesome granules always group together.

h8

//
−→
M : preferred machines to process each subset ∈

−→
G .

c. no machine preference for troublesome subsets ∈
−→
G

d. for every other subset ∈
−→
G pick machine m such that:

i. all granules in the subset are only materialized at m;
ii. otherwise m contains the largest materialization of the subset.

h9

Compute
−→
R : resources needed to execute each subset ∈

−→
G :

e.
−→
A = available resources for j on machines

−→
M ;

f. F = min (
−→
A [m]

total size of granules allocated to m , for all m ∈
−→
M);

g. for each subset i ∈
−→
G :

−→
R [i] = F × total size of granules allocated to

−→
G [i].

Table 2: Heuristics to group granules and assign them to tasks

Then, we determine a preferred machine to process
each subset; this is a machine where most if not all gran-
ules in the subset are materialized (h8). Choosing a pre-
ferred machine in this manner may cause starvation if the
subset of granules cannot be processed due to resource
unavailability at the machine. For the rest of the iteration,
we ignore granules in such subsets and re-consider them
with a different grouping in later iterations (line b.v, h7).

Next, we assign a task for each subset of granules which
can be processed, and allocate resources altruistically to
the tasks using heuristic h9 . Given available resources
across machines,

−→
A , we first compute the minimum re-

source available to process unit data (F ; line (f)). Then,
for each task, we assign F × |

−→
G [i]| resources (line (f)),

i.e., the resource allocated is F times the total data in the
subset of granules allocated to the task.

Allocating resources proportional to input size cou-
pled with roughly equal group sizes, ensures that tasks
have roughly equal finish times in processing their sub-
sets of granules. Furthermore, by allocating resources
corresponding to the minimum available, our approach
realizes altruism: if a job gets more resources than what is
available for the most constrained group, then it does not
help the job’s completion time (because completion time
depends on how fast the most constrained group is pro-
cessed). Altruistically “giving back” such resources helps
speed up other jobs or other stages in the same job [27].

The above steps repeat whenever new granules are
ready, or existing ones can’t be scheduled. Similar to
[49], we attempt several tries to execute a group, before
regrouping conflicting groups. Finally, if some granules
cannot be executed under any grouping, we mark them as
troublesome and process them on any machine (line (c)).

8

6.2 Handling Task Failures and Stragglers

Stragglers: Data organization into granules and late-
binding computation to data enables a natural, simple,
and effective straggler mitigation technique. If a task
struck by resource contention makes slower progress than
others in a stage, then the ES simply splits the task’s gran-
ule group into two, in proportion of the task’s processing
speed relative to average speed of other tasks in the stage.
It then assigns the larger-group granules to a new task, and
places it using the approach above. Thus, F 2 addresses
stragglers via natural work reallocation, as opposed to
using clone tasks [52, 17, 15, 34, 16] in compute-centric
frameworks which waste resources and duplicates work.
Task failures: Similar to existing frameworks, when an
F 2 task fails, only the failed tasks need to be re-executed.
However, this will result in duplicates data in all granules
for the stage leading to intermediate data inconsistencies.
To avoid duplicates, we use checksums at the consumer
task-side F 2 library to suppress duplicate spills.

6.3 Runtime DAG Changes

Events and visibility into data enable run-time logic
changes in F 2. We introduce status events to help the ES
query the F 2 client to check if the user program requires
alternate logic to be launched based on observed statistics.

Upon receiving data ready events from the DS-SM, ES
sends status events to the F 2 client to interrogate regard-
ing how to process each granule it received notification
for. Given the user-provided compute logic and gran-
ule statistics obtained through data ready events, the F 2

client then notifies the ES to take one the following ac-
tions: (1) no new action – assign computation as planned;
(2) ignore – don’t perform any computation9; (3) replace
computation with new logic supplied by the user. When
launching a task, the ES provides it with the updated
computation logic for each granule the task processes.

7 Implementation
We prototyped F 2 by modifying Tez [5] and leveraging
YARN [45]. F 2’s core components are application agnos-
tic and support diverse analytics as shown in §8.

The DS was implemented from scratch and consists
of three kinds of daemons - Data Service Workers (DS-
W), Data Service Master (DS-M) and Data Service Stage
Masters (DS-SM, §5.2). We leverage YARN to launch/ter-
minate them. The DS-M is a cluster-wide daemon that
manages data organization across DS-Ws, and manages
DS-SMs. The per-stage DS-SM collects and stores gran-
ule statistics from DS-Ws. The DS-W runs on clus-

9The user program may deem an entire granule to not have any
useful data to compute on

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

F
ra

c
ti
o
n
 o

f
J
o
b
s

Job Completion Time [Seconds]

F2

Hadoop

Spark

(a)

0

0.2

0.4

0.6

0.8

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

F
ra

c
ti
o
n
 o

f
J
o
b
s

Factor of Improvement

Hadoop

Spark

(b)

0

100

200

300

400

0 1500 3000 4500

R
u

n
n
in

g
 T

a
s
k
s

Time [Seconds]

F2

Hadoop

(c)

0

12

24

36

0 1500 3000 4500T
o

ta
l
in

te
rm

e
d
ia

te

d
a

ta
 p

e
r

m
a

c
h

in
e

 [
G

B
]

Time [Seconds]

F2

Hadoop

(d)
Figure 7: (a) CDF of JCT; (b) CDF of factors of improvement of indi-
vidual jobs using F 2 w.r.t. baselines [2, 50]; (c) Running tasks; (d) Per
machine average, min and max storage load.

ter machines and conducts node-level data management.
DS-W handles storing the data it receives from the ES
or from other DS-Ws in a local in-memory file system
(tmpfs [42]) and transfers data to other DS-Ws per DS-
M directives. It collects statistics and reports to the DS-M
and DS-SMs via heartbeats. Finally, it provides ACKs to
ES-tasks (described below) for the data they are pushing.

The ES was implemented by modifying components of
Tez to enable data-driven execution. It consists of a single
ES-Master (ES-M) responsible for launching ES-tasks
and determining parallelism, placement, and sizing. It
receives data ready events from DS-SMs and is respon-
sible for making run time logic changes via status events.
ES-tasks are modified Tez tasks that have an interface to
the local DS-W as opposed to local disk or cluster-wide
storage. The F 2 client is a standalone process per-job; it
interacts with the DS-SM and ES-M as shown in Fig. 3.

All communication (asynchronous) between DS, ES
and F 2 client is implemented through RPCs [12] in
YARN using Google Protobuf [11]. We also enhanced
the RPC protocol to enable communication between the
YARN Resource Manager (RM) and ES-M to propagate
resource allocation for a job as computed in the RM.

8 Evaluation
We evaluated F 2 on a 50-machine cluster deployed on the
Utah CloudLab [7] using publicly available benchmarks –
batch TPC-DS jobs, PageRank for graph analytics, and
synthetic streaming jobs. We set F 2 to use default ready
triggers, and equal storage quota (Qj = 2.5GB).

8.1 F 2 in Testbed Experiments

Workloads: We consider a mix of jobs, all from TPC-DS
(batch), or all from PageRank (graph). In each exper-
iment, jobs are randomly chosen and follow a Poisson
arrival distribution with average inter-arrival time of 20s.

9

Each job lasts up to 10s of minutes, and takes as input tens
of GBs of data. Since jobs arrive and finish arbitrarily,
the resource availability during the course of a job’s exe-
cution fluctuates. For streaming, we created a synthetic
workload from a job which periodically replays GBs of
text data from HDFS and returns top 5 most common
words for the first 100 distinct words found. We run each
experiment thrice and present the median.
Cluster, baseline, metrics: Our machines have 8 cores,
64GB of memory, 256GB storage, and a 10Gbps NIC.
The cluster network has a congestion-free core. We com-
pare F 2 as follows: (1) Batch frameworks: vs. Tez [5]
running atop YARN [45], for which we use the shorthand
“Hadoop” or “CC”; and vs. SparkSQL [18] atop Spark;
(2) Graph processing: vs. Giraph (i.e., open source
Pregel [35]); (3) Streaming: vs. SparkStreaming [51].
We study the relative improvement in the average job
completion time (JCT), or DurationCC /DurationF 2 . We
measure efficiency using makespan.

8.1.1 Batch Analytics

Performance and efficiency: Fig. 7a shows the JCT dis-
tributions of F 2, Hadoop, and Spark for the TPC-DS
workload. Only 0.4 (1.2) highest percentile jobs are worse
off by ≤ 1.06× (≤ 1.03×) than Hadoop (Spark). F 2

speeds up jobs by 1.4× (1.27×) on average, and 2.02×
(1.75×) at 95th percentile w.r.t. Hadoop (Spark). Also,
F 2 improves makespan by 1.32× (1.2×).

Fig. 7b presents improvement for individual jobs. For
more than 88% of the jobs, F 2 outperforms Hadoop and
Spark. Only 12% jobs slow down to ≤ 0.81× (0.63×)
using F 2. Gains are > 1.5× for > 35% of the jobs.
Sources of improvements: We now dig in to understand
the benefits. We observe more rapid processing, and
better data management are key underlying causes.

First, we snapshot the number of running tasks across
all the jobs in one of our experiments when running F 2

and Hadoop (Fig. 7c). F 2 has 1.45× more tasks sched-
uled over time which directly translates to jobs finishing
1.37× faster. It has 1.38× better cluster efficiency than
Hadoop. Similar observations hold for Spark (omitted).

The main reasons for rapid processing/high efficiency
are two-fold. (1) DS’s data organization (§4.3) naturally
ensures that most tasks are data local (76% in our expts).
This improves average consumer task completion time by
1.59×. Resources thus freed can be used by other jobs’
tasks. (2) Our ES can provide similar input sizes for tasks
in a stage (§6.1) – within 14.4% of the mean input size
per task. Thus, we see predictable per-stage performance
and better resource utilization (more in §8.3).

Second, Fig. 7d shows the size of the cross-job total
intermediate data per machine. We see that Hadoop gen-

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

F
ra

c
ti
o
n
 o

f
J
o
b
s

Job Completion Time [Seconds]

F2

Giraph

(a)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

F
ra

c
io

n
 o

f
J
o

b
s

Factor of Improvement

Giraph

(b)

0

0.2

0.4

0.6

0.8

1

0 1500 3000 4500

F
ra

c
ti
o
n
 o

f
J
o
b
s

Job Completion Time [Seconds]

F2

SparkStreaming

(c)

0

0.2

0.4

0.6

0.8

1

0.8 1 1.2 1.4 1.6 1.8

F
ra

c
ti
o
n
 o

f
J
o
b
s

Factor of Improvement

SparkStreaming

(d)
Figure 8: (a) CDF of JCT using F 2 and Giraph [1]; (b) CDF of factors
of improvement of individual jobs using F 2 w.r.t. Giraph; (c) CDF
of JCT using F 2 and SparkStreaming [51]; (d) CDF of factors of
improvement of individual jobs using F 2 w.r.t. SparkStreaming.

erates heavily imbalanced load spread across machines.
This creates many storage hotspots and slows down tasks
competing on those machines. Spark is similar. F 2 avoids
hotspots (§4.2) improving overall performance.
F 2 slowdown: We observe jobs generating less interme-
diate data are more prone to performance losses, espe-
cially under ample resource availability. One reason is
that F 2 strives for granule-local task execution (§6.1).
However, if resources are unavailable, F 2 will assign the
task to a data-remote node, or get penalized waiting for
a data-local placement. Also, F 2 gains are lower w.r.t.
Spark. This is mainly an artifact of our implementation
atop Hadoop, and a non-optimized in-memory store.

We found that only 18% of granules across all jobs are
spread across machines. > 25% of the jobs whose perfor-
mance improves processed “spread-out” granules. Only
≤ 14% of the slowed jobs processed spread granules.

8.1.2 Graph Processing

We run multiple PageRank (40 iters.) jobs on the Twitter
Graph [21, 20]. F 2 groups data (messages exchanged
over algorithm iterations) into granules based on vertex
ID. We use a custom ready trigger (§5.2) so that a granule
is processed only when ≥ 1000 entries are present.

Fig. 8a shows the JCT distribution of F 2 and Giraph.
Only 0.6%-ile of jobs are worse off by ≤ 1.35× than
Giraph. F 2 speeds up jobs by 1.57× on average and
2.24× at the 95th percentile (Fig. 8b). Only 16% of the
jobs slow down. Gains are > 2× for > 20% of the jobs.

Improvements arise for two reasons. First, F 2 is able
to deploy appropriate number of tasks only when needed:
custom ready triggers immediately indicate data availabil-
ity, and runtime parallelism (§6.1) allows messages to
dense vertices [26] to be processed by more than one task.
In our experiments, F 2 has 1.53× more tasks (each runs

10

multiple vertex programs) scheduled over time; rapid pro-
cessing and runtime adaptation to data directly translates
to jobs finishing faster. Second, because of triggered com-
pute, F 2 does not necessarily hold resources for a task if
not needed, resulting in 1.25× better cluster efficiency.

As before, ES stickiness to achieve data-locality can
slow down completion times in some cases.

8.1.3 Stream Processing

Here, we configure the Spark Streaming batch interval
to 1 minute; the F 2 ES repeats job logic execution at the
same time interval. Also, we implemented a custom ready
trigger to enable computation whenever ≥ 100 distinct
entries are present in intermediate data. Figures 8c, 8d
show our results. F 2 speeds up jobs by 1.33× on average
and 1.55× at the 95th %-ile. Also, 15% of the jobs are
slowed down to around 0.8×.

The main reason for gains is F 2’s ability to trigger
computation based on data properties through custom
ready triggers; F 2 does not have to delay execution till
the next time interval if data can be processed now. A
SparkStreaming task has to wait as it has no data visibility.
In our experiments, more than 73% of the executions
happens at less than 40s time intervals with F 2.

F 2 suffers somewhat due to an implementation artifact
atop a non-optimized stack for streaming: launching tasks
in YARN is significantly slower than acquiring tasks in
Spark. This can be exacerbated by ES stickiness. How-
ever, such effects are mitigated over long job run times.

8.1.4 F 2 Overheads

CPU, memory overhead: We find that DS-W (§7) pro-
cesses inflate the memory and CPU usage by a negligible
amount even when managing data in close to storage ca-
pacity. DS-M and DS-SM have similar resource profiles.
Latency overhead: DS-M interacts with various system
components. We compute the average time to process
heartbeats from ES, DS-SM, DS-W and F 2 client. For
5000 heartbeats, the time to process each is 2− 5ms. We
implemented the F 2 client and ES logic atop Tez AM.
Our changes inflate AM decision logic by ≤ 14ms per
request with a negligible increase in AM memory/CPU.
Network overhead from events/heartbeats is negligible.

8.2 Contention and Isolation

We vary storage load, and hence resource contention,
by changing the number of machines while keeping the
workload constant; half as many servers lead to twice as
much load. We see that at 1× cluster load, F 2 improves
over CC by 1.39× (1.32×) on average in terms of JCT
(makespan). Even at high contention (up to 4×), F 2’s
gains keep increasing (1.83× and 1.42×, resply.). This

0

2

4

6

8

0 200 400 600 800

R
un

ni
ng

 T
as

ks

Time [Seconds]

CC - v1 CC - v2 CC - v3
F2 - v1 F2 - v2 F2 - v3

(a)

0 50 100 150 200 250 300 350
Time [Seconds]

F2

CC

Straggler
Task

F2 Slowdown
Notification

F2 Speculative
Task

Terminate
Straggler Task

CC
Speculative

Taskv1

v1

v2

v2

v2’

v2’

(b)
Figure 9: (a) Controlling task parallelism significantly improves F 2’s
performance over CC. (b) Straggler mitigation with F 2 and CC.

is expected because: (1) F 2 minimizes resource wastage
and the time spent in shuffling the data, due to its ability
to execute on local, ready data; (2) data is load balanced
leading to few storage hotspots, and isolation is better.

8.3 Data-driven Computation Benefits

The overall benefits of F 2 above also included the effects
of dynamic parallelism/placement/sizing (§6.1) and strag-
gler mitigation (§6.2). We did not fully delineate these
effects to simplify explanation. We now delve deeper into
them to shed more light on data-driven computation bene-
fits. We run microbenchmarks on a 5 machine cluster and
a mix of toy jobs J1 (v1 → v2) and J2 (v1 → v2 → v3).
Skew and parallelism: Fig. 9a shows the execution of
one of the J2 jobs from our workload when running F 2

and CC. F 2 improves JCT by 2.67× over CC. CC decides
stage parallelism tied to the number of data partitions.
That means stage v1 generates 2 intermediate partitions
as configured by the user and 2 tasks of v2 will process
them. However, execution of v1 leads to data skew among
the 2 partitions (1GB and 4GB).On the other hand, F 2

partitions intermediate data in granules of 0.5GB each
and decides at runtime a max. input size per task of 1GB.
This leads to running 5 tasks of v2 with equal input size
and 2.1× faster completion time of v2 than CC.

Over-parallelizing execution does not help. With CC,
v2 generates 12 partitions processed by 12 v3 tasks. Under
resource crunch, tasks get scheduled in multiple waves
(at 570s in Fig. 9a) and completion time for v3 suffers
(85s). In contrast, F 2 assigns at runtime only 5 tasks of v3
which can run in a single wave; v3 finishes 1.23× faster.
Straggler mitigation: We run an instance of J1 with 1
task of v1 and 1 task of v2 with an input size of 1GB.
A slowdown happens at the v2 task. F 2 generates gran-
ules of 0.5GB each and max. input size is 1GB. This
translates to 2 granules assigned to a v2 task.

In CC (Fig. 9b), once a straggler is detected (v2 task
at 203s), it is allowed to continue, and a speculative task
v′2 is launched that duplicates v2’s work. The work com-
pletes when v2 or v′2 finishes (at 326s). In F 2, upon
straggler detection, the straggler (v2) is notified to finish
processing the current granule; a task v′2 is launched and
assigned data from v2’s unprocessed granule. v2 finishes

11

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100

Number of machines

DL
FT

F
ra

c
ti
o

n
 o

f
g

ra
n

u
le

s
 p

e
r

jo
b

(a)

0

0.05

0.1

0.15

10 25 50 75 100

Number of machines

LB Ideal

F
ra

c
ti
o

n
 o

f
to

ta
l
s
to

ra
g

e

lo
a

d
 p

e
r

m
a

c
h

in
e

(b)
Figure 10: (a) Average, min and max fraction of granules which are
data local (DL) respectively fault tolerant (FT) across all the jobs for
different cluster load; (b) Max, min and ideal storage load balance (LB)
on every machine for different cluster load.

processing the first granule at 202s; v′2 processes the other
granule and finishes 1.7× faster than v′2 in CC.
Runtime logic changes: We consider a job which pro-
cesses words and, for words with < 100 occurrences,
sorts them by frequency. The program structure is
v1 → v2 → v3, where v1 processes input words, v2
computes word occurrences, and v3 sorts the ones with
< 100 occurrences. In CC, v1 generates 17GB of data
organized in 17 partitions; v2 generates 8GB organized
in 8 partitions. Given this, 17 v2 tasks and 8 v3 tasks exe-
cute, leading to a CC JCT of 220s. Here, the entire data
generated by v2 has to be analyzed by v3. In contrast, F 2

registers a custom DS module to monitor #occurrences
of all the words in the 8 granules generated by v2. We
implement actions to ignore v2 granules that don’t satisfy
the processing criteria of v3 (§6.3). At runtime, 2 data
events are triggered by the DS module, and 6 tasks of v3
(instead of 8) are executed; JCT is 165s (1.4× better).

8.4 LB vs. DL vs. FT

To evaluate DS load balancing (LB), data locality (DL
- each granule consolidated on one machine) and fault
tolerance (FT - current stage co-locates no granule with
ancestor stages), we stressed the data organization under
different cluster load (§4.3). We used job arrivals and all
stages’ granule sizes from one of our TPC-DS runs.

The main takeaways are (Fig. 10): (1) F 2 prioritizes
DL and LB over FT across cluster loads (§4.3); (2) when
the available resources are scarce (5× higher than initial),
all three metrics suffer. However, the maximum load
imbalance per machine is < 1.5× than the ideal, while for
any job, ≥ 47% of the granules are DL. Also, on average
16% of the granules per job are FT; (3) less cluster load
(0.6× lower than initial) enables more opportunities for
DS to maximize all of the objectives: ≥ 84% of the per-
job granules are DL, 71% are FT, with at most 1.17×
load imbalance per machine than the ideal.
Failures: We study failure impact using 5 machines and
a toy J2 job from above, under two cases: (1) the input for
v3 is on a separate machine m, and (2) input for v2 and v3
are located on m. In (1), when only the immediate input

(i.e., v2’s output) has to be regenerated, job performance
is up to 0.76× worse w.r.t. m not failing. However, in (2)
when input dependency chains (i.e., both v1 and v2) need
regeneration (§4.2), performance degrades significantly
(0.58× for 20GB input data).

8.5 Altruism

We also quantified how much F 2’s logic to altruistically
decide task sizing (§2) impacts job performance. We com-
pare F 2’s approach with a greedy task sizing approach,
where each task gets 1

#jobs resource share and uses all of
it. For the same workload as 8.4, F 2 speeds up jobs by
1.48× on average, and 3.12× (4.8×) at 75th percentile
(95th percentile) w.r.t. greedy approach. Only 16% of
the jobs are slow down by no more than 0.6×.

9 Related Work
Decoupling: For batch analytics, PyWren [29] stores
intermediate data in an externally managed storage (Ama-
zon S3) and uses stateless functions to read, process, and
write data back to S3. Since intermediate data is still
opaque, and compute and storage are isolated, PyWren
cannot support data-driven computation or achieve data
locality. Hurricane [19] decouples to mitigate skew by
cloning slow tasks and partitioning work dynamically.
However, it also has no data visibility. Its data organiza-
tion does not consider data locality and fault tolerance.

Naiad [38] and StreamScope [46] also adopt decou-
pling. They tag intermediate data with vector clocks
which are used to trigger compute in the correct order
under failures. Thus, both support ordering driven compu-
tation, orthogonal to data value-driven computation in F 2.
Naiad assumes entire data fits in memory. StreamScope
is not applicable to batch/graph analytics.
Skew, logic changes: Many works target data skew in
parallel databases [31, 28, 47] and big data systems [34].
F 2 goes beyond them and provides isolation across jobs,
supports data-driven computation, mitigates skew, and
ensure data locality. Optimus [30] allows changing appli-
cation logic based on approximate statistics operators that
are deployed alongside tasks. However, the system targets
just computation rewriting, and cannot enable other data-
driven benefits of F 2, e.g., adapting parallelism, straggler
mitigation, and scheduling when data is ready.

10 Summary
The compute-centric nature of existing analytics frame-
works hurts flexibility, efficiency, isolation, and perfor-
mance. F 2 reenvisions analytics frameworks, and is in-
spired by programmable network measurements, server-
less platforms, and multi-tenant K-V stores. F 2 cleanly
separates computation from intermediate data. Via pro-

12

grammable monitoring of data properties and a rich event
abstraction, F 2 enables data-driven decisions for what
computation to launch, where to launch it, and how
many parallel instances to use, while ensuring isolation.
Our evaluation using batch, stream and graph workloads
shows that F 2 outperforms state-of-the-art frameworks.

References
[1] Apache Giraph.

http://giraph.apache.org.

[2] Apache Hadoop.
http://hadoop.apache.org.

[3] Apache Hive. http://hive.apache.org.

[4] Apache Samza.
http://samza.apache.org.

[5] Apache Tez. http://tez.apache.org.

[6] AWS Lambda.
https://aws.amazon.com/lambda/.

[7] Cloudlab. https://cloudlab.us.

[8] Hadoop Capacity Scheduler.
https://bit.ly/2HKKbMm.

[9] Multi-Tenant Storage with Amazon DynamoDB.
https://amzn.to/2jsCXOH.

[10] Presto — Distributed SQL Query Engine for Big
Data. prestodb.io.

[11] Protocol Buffers.
https://bit.ly/1mISy49.

[12] Remote Procedure Call.
https://bit.ly/2rjaUVo.

[13] Spark SQL.
https://spark.apache.org/sql.

[14] Storm: Distributed and fault-tolerant realtime
computation. http://storm-project.net.

[15] S. Agarwal, S. Kandula, N. Burno, M.-C. Wu,
I. Stoica, and J. Zhou. Re-optimizing data parallel
computing. In NSDI, 2012.

[16] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Effective Straggler Mitigation: Attack of
the Clones. In NSDI, 2013.

[17] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in mapreduce clusters using Mantri. In
OSDI, 2010.

[18] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: Relational
data processing in Spark. In SIGMOD, 2015.

[19] L. Bindschaedler, J. Malicevic, N. Schiper, A. Goel,
and W. Zwaenepoel. Rock you like a hurricane:
Taming skew in large scale analytics. In EuroSys,
2018.

[20] P. Boldi, M. Rosa, M. Santini, and S. Vigna.
Layered label propagation: A multiresolution
coordinate-free ordering for compressing social
networks. In WWW, 2011.

[21] P. Boldi and S. Vigna. The webgraph framework i:
Compression techniques. In WWW, 2004.

[22] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan,
and I. Stoica. Managing data transfers in computer
clusters with Orchestra. In SIGCOMM, 2011.

[23] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[24] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant Resource
Fairness: Fair allocation of multiple resource types.
In NSDI, 2011.

[25] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In
OSDI, 2012.

[26] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. GraphX: Graph
processing in a distributed dataflow framework. In
OSDI, 2014.

[27] R. Grandl, M. Chowdhury, A. Akella, and
G. Ananthanarayanan. Altruistic scheduling in
multi-resource clusters. In OSDI, 2016.

[28] K. A. Hua and C. Lee. Handling data skew in
multiprocessor database computers using partition
tuning. In VLDB, 1991.

[29] E. Jonas, Q. Pu, S. Venkataraman, I. Stoice, and
B. Recht. Occupy the cloud: Distributed computing
for the 99%. In SOCC, 2017.

13

http://giraph.apache.org
http://hadoop.apache.org
http://hive.apache.org
http://samza.apache.org
http://tez.apache.org
https://aws.amazon.com/lambda/
https://cloudlab.us
https://bit.ly/2HKKbMm
https://amzn.to/2jsCXOH
prestodb.io
https://bit.ly/1mISy49
https://bit.ly/2rjaUVo
https://spark.apache.org/sql
http://storm-project.net

[30] Q. Ke, M. Isard, and Y. Yu. Optimus: A dynamic
rewriting framework for data-parallel execution
plans. In EuroSys, 2013.

[31] M. Kitsuregawa and Y. Ogawa. Bucket spreading
parallel hash: A new, robust, parallel hash join
method for data skew in the super database
computer (sdc). In VLDB, 1990.

[32] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang,
N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus,
J. Russell, D. Tsirogiannis, S. Wanderman-Milne,
and M. Yoder. Impala: A modern, open-source
SQL engine for Hadoop. In CIDR, 2015.

[33] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli,
C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy,
and S. Taneja. Twitter heron: Stream processing at
scale. In SIGMOD, 2015.

[34] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia.
Skewtune: Mitigating skew in mapreduce
applications. In SIGMOD, 2012.

[35] G. Malewicz, M. H. Austern, A. J. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: A system for large-scale graph processing.
In SIGMOD, 2010.

[36] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. B. Tsai,
M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar. MLlib:
Machine learning in Apache Spark. CoRR,
abs/1505.06807, 2015.

[37] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
Trumpet: Timely and precise triggers in data
centers. In SIGCOMM, 2016.

[38] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely
dataflow system. In SOSP, 2013.

[39] D. G. Murray, M. Schwarzkopf, C. Smowton,
S. Smith, A. Madhavapeddy, and S. Hand. Ciel: A
Universal Execution Engine for Distributed
Data-Flow Computing. In NSDI, 2011.

[40] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan,
A. Murthy, and C. Curino. Apache tez: A unifying
framework for modeling and building data
processing applications. In SIGMOD, 2015.

[41] D. Shue, M. J. Freedman, and A. Shaikh.
Performance isolation and fairness for multi-tenant
cloud storage. In OSDI, 2012.

[42] P. Snyder. tmpfs: A virtual memory file system. In
European UNIX Users’ Group Conference, 1990.

[43] A. Thusoo, R. Murthy, J. S. Sarma, Z. Shao,
N. Jain, P. Chakka, S. Anthony, H. Liu, and
N. Zhang. Hive – a petabyte scale data warehouse
using Hadoop. In ICDE, 2010.

[44] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.
Storm@twitter. In SIGMOD, 2014.

[45] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache Hadoop YARN: Yet
another resource negotiator. In SoCC, 2013.

[46] L. Wei, Q. Zhengping, X. Junwei, Y. Sen,
Z. Jingren, and Z. Lidong. Streamscope:
Continuous reliable distributed processing of big
data streams. In NSDI, 2016.

[47] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen.
Handling data skew in parallel joins in
shared-nothing systems. In SIGMOD, 2008.

[48] L. Yuan, C.-N. Chuah, and P. Mohapatra. Progme:
Towards programmable network measurement.
IEEE/ACM Trans. Netw., 19(1):115–128, Feb. 2011.

[49] M. Zaharia, D. Borthakur, J. Sen Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: A simple technique for achieving
locality and fairness in cluster scheduling. In
EuroSys, 2010.

[50] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and
I. Stoica. Resilient Distributed Datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[51] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant stream
computation at scale. In SOSP, 2013.

[52] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica. Improving MapReduce performance
in heterogeneous environments. In OSDI, 2008.

14

	Introduction
	On Eschewing Compute Centricity
	Issues with Compute-centricity

	Data-driven Design in F2
	Data Store
	Granule: A Unit of Data in F2
	Allocating Granules to Machines
	Fast Granule Allocation

	Data Visibility
	Data Monitoring
	Acting on Monitored Data Properties

	Execution Service
	Task Parallelism, Placement, and Sizing
	Handling Task Failures and Stragglers
	Runtime DAG Changes

	Implementation
	Evaluation
	F2 in Testbed Experiments
	Batch Analytics
	Graph Processing
	Stream Processing
	F2 Overheads

	Contention and Isolation
	Data-driven Computation Benefits
	LB vs. DL vs. FT
	Altruism

	Related Work
	Summary

