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ABSTRACT
The increasing use of statistical data analysis in enterprise
applications has created an arms race among database ven-
dors to offer ever more sophisticated in-database analytics.
One challenge in this race is that each new statistical tech-
nique must be implemented from scratch in the RDBMS,
which leads to a lengthy and complex development process.
We argue that the root cause for this overhead is the lack of
a unified architecture for in-database analytics. Our main
contribution in this work is to take a step towards such a uni-
fied architecture. A key benefit of our unified architecture is
that performance optimizations for analytics techniques can
be studied generically instead of an ad hoc, per-technique
fashion. In particular, our technical contributions are the-
oretical and empirical studies of two key factors that we
found impact performance: the order data is stored, and
parallelization of computations on a single-node multicore
RDBMS. We demonstrate the feasibility of our architecture
by integrating several popular analytics techniques into two
commercial and one open-source RDBMS. Our architecture
requires changes to only a few dozen lines of code to integrate
a new statistical technique. We then compare our approach
with the native analytics tools offered by the commercial
RDBMSes on various analytics tasks, and validate that our
approach achieves competitive or higher performance, while
still achieving the same quality.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous

Keywords
Analytics, Convex Programming, Incremental Gradient De-
scent, User-Defined Aggregate

1. INTRODUCTION
There is an escalating arms race to bring sophisticated

data analysis techniques into enterprise applications. In the
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late 1990s and early 2000s, this brought a wave of data min-
ing toolkits into the RDBMS. Several major vendors are
again making an effort toward sophisticated in-database an-
alytics with both open source efforts, e.g., the MADlib plat-
form [17], and several projects at major database vendors.
In our conversations with engineers from Oracle [38] and
EMC Greenplum [21], we learned that a key bottleneck in
this arms race is that each new data analytics technique re-
quires several ad hoc steps: a new solver is employed that
has new memory requirements, new data access methods,
etc. As a result, there is little code reuse across different al-
gorithms, slowing the development effort. Thus, it would be
a boon to the database industry if one could devise a single
architecture that was capable of processing many data an-
alytics techniques. An ideal architecture would leverage as
many of the existing code paths in the database as possible
as such code paths are likely to be maintained and optimized
as the RDBMS code evolves to new platforms.

To find this common architecture, we begin with an ob-
servation from the mathematical programming community
that has been exploited in recent years by both the statis-
tics and machine learning communities: many common data
analytics tasks can be framed as convex programming prob-
lems [16, 26]. Examples of such convex programming prob-
lems include support vector machines, least squares and lo-
gistic regression, conditional random fields, graphical mod-
els, control theoretic models, and many more. It is hard
to overstate the impact of this observation on data analysis
theory: rather than studying properties of each new model,
researchers in this area are able to unify their algorithmic
and theoretical studies. In particular, convex programming
problems are attractive as local solutions are always globally
optimal, and one can find local solutions via a standard suite
of well-established and analyzed algorithms. Thus, convex
programming is a natural starting point for a unified ana-
lytics architecture.

The mathematical programming literature is filled with
algorithms to solve convex programming problems. Our
first goal is to find an algorithm in that literature whose
data access properties are amenable to implementation in-
side an RDBMS. We observe that a classical algorithm from
the mathematical programming cannon, called incremental
gradient descent (IGD), has a data-access pattern that is
essentially identical to the data access pattern of any SQL
aggregation function, e.g., an SQL AVG. As we explain in
Section 2, IGD can be viewed as examining the data one
tuple at time and then performing a (non-commutative) ag-
gregation of the results. Our first contribution is an archi-



Analytics Task Objective

Logistic Regression (LR)
∑
i log(1 + exp(−yiwTxi)) + µ‖~w‖1

Classification (SVM)
∑
i(1− yiw

Txi)+ + µ‖~w‖1
Recommendation (LMF)

∑
(i,j)∈Ω(LTi Rj −Mij)

2 + µ‖L,R‖2F
Labeling (CRF) [48]

∑
k

[∑
j wjFj(yk, xk)− logZ(xk)

]
Kalman Filters

∑T
t=1 ||Cwt − f(yt)||22 + ||wt −Awt−1||22

Portfolio Optimization pTw + wTΣw s.t. w ∈ ∆

Figure 1: Bismarck in an RDBMS: (A) In contrast to existing in-RDBMS analytics tools that have separate code paths for
different analytics tasks, Bismarck provides a single framework to implement them, while possibly retaining similar interfaces.
(B) Example tasks handled by Bismarck. In Logistic Regression and Classification, we minimize the error of a predictor
plus a regularization term. In Recommendation, we find a low-rank approximation to a matrix M which is only observed on
a sparse sampling of its entries. This problem is not convex, but it can still be solved via IGD. In Labeling with Conditional
Random Fields, we maximize the weights associated with features (Fj) in the text to predict the labels. In Kalman Filters,
we fit noisy time series data. In quantitative finance, portfolios are optimized balancing risk (pTw) with expected returns
(wTΣw); the allocations must lie in a simplex, ∆, i.e., ∆ = {w ∈ Rn |

∑n
i=1 wi = 1} and wi ≥ 0 for i = 1, . . . , n.

tecture that leverages this observation: we show that we can
implement these methods using the user-defined aggregate
features that are available inside every major RDBMS. To
support our point, we implement our architecture over Post-
greSQL and two commercial database systems. In turn, this
allows us to implement all convex data analysis techniques
that are available in current RDBMSes – and many next
generation techniques (see Figure 1). The code to add in a
new model can be as little as ten lines of C code, e.g., for
logistic regression.1

As with any generic architectural abstraction, a key ques-
tion is to understand how much performance overhead our
approach would incur. In the two commercial systems that
we investigate, we show that compared to a strawman user-
defined aggregate that computes no value, our approach has
between 5% (for simple tasks like regression) to 100% over-
head (for complex tasks like matrix factorization). What is
perhaps more surprising is that our approach is often much
faster than existing in-database analytic tools from commer-
cial vendors: our prototype implementations are in many
cases 2− 4x faster than existing approaches for simple tasks
– and for some newly added tasks such as matrix factoriza-
tion, orders of magnitude faster.

A second benefit of a unified in-database architecture is
that we can study the factors that impact performance and
optimize them in a way that applies across several analyt-
ics tasks. Our preliminary investigation revealed many such
optimization opportunities including data layout, compres-
sion, data ordering, and parallelism. Here, we focus on two
such factors that we discovered were important in our ini-
tial prototype: data clustering, i.e., how the data is ordered
on-disk, and parallelism on a single-node multicore system.

Although IGD will converge to an optimal solution on con-
vex programming problems no matter how the underlying
data is ordered, empirically some orders allow us to termi-
nate more quickly than others. We observe that inside an
RDBMS, data is often clustered for reasons unrelated to the
analysis task (e.g., to support efficient query performance),
and running IGD through the data in the order that is stored

1
Not all data analysis problems are convex. Notable exceptions are

Apriori [9] and graph mining algorithms.

on disk can lead to considerable degradation in performance.
With this in mind, we describe a theoretical example that
characterizes some “bad” orders for IGDs and shows that
they are indeed likely inside an RDBMS. For example, if
one clusters the data for a classification task such that all
of the positive examples come before the negative examples,
the resulting convergence rate may be much slower than if
the data were randomly ordered, i.e., to reach the same dis-
tance to the optimal solution, more passes over the data are
needed if the data is examined by IGD in the clustered order
versus a random order. Our second technical contribution is
to describe the clustering phenomenon theoretically, and use
this insight to develop a simple approach to combat this. A
common approach in machine learning randomly permutes
the data with each pass. However, such random shuffling
may incur substantial computational overhead. Our method
obviates this overhead by shuffling the data only once before
the first pass. We implement and benchmark this approach
on all three RDBMSes that we study: empirically, we find
that across a broad range of models, while shuffling once
has a slightly slower convergence rate than shuffling on each
pass, the lack of expensive reshuffling allows us to simply run
more epochs in the same amount of time. Thus, shuffling
once has better overall performance than shuffling always.

We then study how to parallelize IGD in an RDBMS.
We first observe that recent work in the machine learn-
ing community allows us to parallelize IGD [52] in a way
that leverages the standard user-defined aggregation fea-
tures available in every RDBMS to do shared-nothing par-
allelism. We leverage this parallelization feature in a com-
mercial database and show that we can get almost linear
speed-ups. However, recent results in the machine learning
community have shown that these approaches may yield sub-
optimal runtime performance compared to approaches that
exploit shared-memory parallelism [29, 37]. This motivates
us to adapt approaches that exploit shared memory for use
inside an RDBMS. We focus on single-node multicore par-
allelism where shared memory is available. Although not in
the textbook description of an RDBMS, all three RDBMSes
we inspected allow us to allocate and manage some shared
memory (even providing interfaces to help manage the nec-



essary data structures). We show that the shared-memory
version converges faster than the shared-nothing version.

In some cases, a single shuffle of the data may be too
expensive (e.g., for data sets that do not fit in available
memory). To cope with such large data sets, users often
perform a subsampling of the data (e.g., using a reservoir
sample [46]). Subsampling is not always desirable, as it in-
troduces an additional error (increasing the variance of the
estimate). Thus, for such large data sets, we would like to
avoid the costly shuffle of the data to achieve better perfor-
mance than subsampling. Our final technical contribution
combines the parallelization scheme and reservoir sampling
to get our highest performance results for datasets that do
not fit in available RAM. On simple tasks like logistic regres-
sion, we are 4X faster than state-of-the-art in-RDBMS tools.
On more complex tasks like matrix factorization, these ap-
proaches allow us to converge in a few hours, while existing
tools do not finish even after several days.

In summary, our work makes the following contributions:

• We describe a novel unified architecture, Bismarck,
for integrating many data analytics tasks formulated
as Incremental Gradient Descent into an RDBMS us-
ing features available in almost every commercial and
open-source system. We give evidence that our ar-
chitecture is widely applicable by implementing Bis-
marck in three RDBMS engines: PostgreSQL and two
commercial engines.

• We study the effect of data clustering on performance.
We identify a theoretical example that shows that bad
orderings not typically considered in machine learning
do occur in databases and we develop a novel strategy
to improve performance.

• We study how to adapt existing approaches to make
Bismarck run in parallel. We verify that this allows
us to achieve large speed-ups on a wide range of tasks
using features in existing RDBMSes. We combine our
solution for clustering with the above parallelization
schemes to attack the problem of bad data ordering.

We validate our work by implementing Bismarck on three
RDBMS engines: PostgreSQL, and two commercial engines,
DBMS A and DBMS B. We perform an extensive exper-
imental validation. We see that we are competitive, and
often better than state-of-the-art in-database tools for stan-
dard tasks like regression and classification. We also show
that for next generation tasks like conditional random fields,
we have competitive performance against state-of-the-art
special-purpose tools.

Related Work. Every major database vendor has data min-
ing tools associated with their RDBMS offering. Recently,
there has been an escalating arms race to add sophisticated
analytics into the RDBMS with each iteration bringing more
sophisticated tools into the RDBMS. So far, this arms race
has centered around bringing individual statistical data min-
ing techniques into an RDBMS, notably Support Vector
Machines [35], Monte Carlo sampling [27, 51], Conditional
Random Fields [25, 49], and Graphical Models [43, 50]. Our
effort is inspired by these approaches, but the goal of this
work is to understand the extent to which we can handle
these analytics tasks with a single unified architecture. Of
these approaches, MCDB [27] and Wick et al. [51] are the
most related in that they propose a single unified interface

for uncertain data based on sampling and graphical models
respectively. In contrast, we consider data analytics tech-
niques that are modeled as convex programming problems.

A related (but orthogonal issue) is how statistical models
should be integrated into the RDBMS to facilitate ease of
use, notably model-based views pioneered in MauveDB [19].
The idea is to give users a unified abstraction that hides from
the user (but not the tool developer) the details of statistical
processing. In contrast, our goal is a lower level abstraction:
we want to unify at the implementation of many different
data analysis tasks.

Using incremental gradient algorithms for convex program-
ming problems is a classical idea, going back to the semi-
nal work in the 1950s of Robbins and Monro [40]. Recent
years have seen a resurgence of interest in these algorithms
due to their ability to tolerate noise, converge rapidly, and
achieve high runtime performance. In fact, sometimes an
IGD method can converge before examining all of the data;
in contrast, a traditional gradient method would need to
touch all of the data items to take even a single step. These
properties have made IGD an algorithm of choice in the Web
community. Notable implementations include Vowpal Wab-
bit at Yahoo! [7], and in large-scale learning [14]. IGD has
also been employed for specific algorithms, notably Gemulla
et al recently used it for matrix factorization [23]. What
distinguishes our work is that we have observed that IGD
forms the basis of a systems abstraction that is well suited
for in-RDBMS processing. As a result, our technical focus
is on optimizations that are implementable in an RDBMS
and span many different models.

Our techniques to study the impact of sorting is inspired
by the work of Bottou and LeCun [15], who empirically stud-
ied the related problem of different sampling strategies for
stochastic gradient algorithms. There has been a good deal
of work in the machine learning community to create sev-
eral clever parallelization schemes for IGD [12,18,20,29,53].
Our work builds on this work to study those methods that
are ideally suited for an RDBMS. For convex programming
problems, we find that the model averaging techniques of
Zinkevich et al [53] fit well with user-defined aggregates.
Recently, work on using shared memory without locking has
been shown to converge more rapidly in some settings [37].
We borrow from both approaches.

Finally, the area of convex programming problems is a
hot topic in data analysis [12, 16], e.g., the support vector
machine [32], Lasso [44], and logistic regression [47] were all
designed and analyzed in a convex programming framework.
Convex analysis also plays a pivotal role in approximation
algorithms, e.g., the celebrated MAX-CUT relaxation [24]
shows that the optimal approximation to this classical NP-
hard problem is achieved by solving a convex program. In
fact a recent result in the Theory community shows that
there is reason to believe that almost all combinatorial op-
timization problems have optimal approximations given by
solving convex programs [39]. Thus, we argue that these
techniques may enable a number of sophisticated data pro-
cessing algorithms in the RDBMS.

Outline. The rest of the paper is organized as follows: In
Section 2, we explain how Bismarck interacts with the
RDBMS, and give the necessary mathematical programming
background on gradient methods. In Section 3, we discuss
the architecture of Bismarck, and how data ordering and



parallelism impact performance. In Section 4, we validate
that Bismarck is able to integrate analytics techniques into
an RDBMS with low overhead and high performance.

2. PRELIMINARIES
We start with a description of how Bismarck fits into an

RDBMS, and then give a simple example of how an end-user
interacts with Bismarck in an RDBMS. We then discuss the
necessary mathematical programming background on gradi-
ent methods.

2.1 Bismarck in an RDBMS
We start by contrasting the high level architecture of most

existing in-RDBMS analytics tools with how Bismarck in-
tegrates analytics into an RDBMS, and explain how Bis-
marck is largely orthogonal to the end-user interfaces. Ex-
isting tools like MADlib [17], Oracle Data Mining [4], and
Microsoft SQL Server Data Mining [1] provide SQL-like in-
terfaces for the end-user to specify tasks like Logistic Regres-
sion, Support Vector Machine, etc. Declarative interface-
level abstractions like model-based views [19] help in creat-
ing such user-friendly interfaces. However, the underlying
implementations of these tasks do not have a unified archi-
tecture, increasing the overhead for the developer. In con-
trast, Bismarck provides a single architectural abstraction
for the developer to unify the in-RDBMS implementations of
these analytics techniques, as illustrated in Figure 1. Thus,
Bismarck is orthogonal to the end-user interface, and the
developer has the freedom to provide any existing or new
interfaces. In fact, in our implementation of Bismarck in
each RDBMS, Bismarck’s user-interface mimics the inter-
face of that RDBMS’ native analytics tool.

For example, consider the interface provided by the open-
source MADlib [17] used over PostgreSQL and Greenplum
databases. Consider the task of classifying papers using a
support vector machine (SVM). The data is in a table La-

beledPapers(id, vec, label), where id is the key, vec is
the feature values (say as an array of floats) and label is the
class label. In MADlib, the user can train an SVM model by
simply issuing a SQL query with some pre-defined functions
that take in the data table details, parameters for the model,
etc. [17] In Bismarck, we mimic this familiar interface for
users to do in-RDBMS analytics. For example, the query
(similar to MADlib’s) to train an SVM is as follows:

SELECT SVMTrain (‘myModel’, ‘LabeledPapers’,

‘vec’, ‘label’);

SVMTrain is a function that passes the user inputs to Bis-
marck, which then performs the gradient computations for
SVM and returns the model. The model, which is basically
a vector of coefficients for an SVM, is then persisted as a
user table ‘myModel’. The model can be applied to new
unlabeled data to make predictions by using a similar SQL
query.

2.2 Background: Gradient Methods
We provide a brief introduction to gradient methods. For

a thorough introduction to gradient methods and their pro-
jected, incremental variants, we direct the interested reader
to the many surveys of the subject [13, 36]. We focus on
a particular class of problems that have linearly separable
objective functions. Formally, our goal is to find a vector

w ∈ Rd for some d ≥ 1 that minimizes the following objec-
tive:2

min
w∈Rd

N∑
i=1

f(w, zi) + P (w) (1)

Here, the objective function decomposes into a sum of func-
tions f(w, zi) for i = 1, . . . , N where each zi is an item of
(training) data. In Bismarck, the zi are represented by
tuples in the database, e.g., a pair (paper,area) for paper
classification. We abbreviate f(w, zi) = fi(w). For exam-
ple, in SVM classification, the function fi(w) could be the
hinge loss of the model w on the ith data element and P (w)
enforces the smoothness of the classifier (preventing overfit-
ting). Eq. 1 is general: Figure 1(B) gives an incomplete list
of examples that can be handled by Bismarck.

A gradient is a generalization of a derivative that tells us
if the function is increasing or decreasing as we move in a
particular direction. Formally, a gradient of a function h :
Rd → R is a function ∇h : Rd → Rd such that (∇h(w))i =
∂
∂wi

h(w) [16]. Linearity of the gradient implies the equation:

∇
N∑
i=1

fi(w) =

N∑
i=1

∇fi(w) .

For our purpose, the importance of this equation is that
to compute the gradient of the objective function, we can
compute the gradient of each fi individually.

Gradient methods are algorithms that solve (1). These
methods are defined by an iterative rule that describes how
one produces the (k+1)-st iterate, w(k+1), given the previous

iterate, w(k). For simplicity, we assume that P = 0. Then,
we are minimizing a function f(w) =

∑N
i=1 fi(w), our goal is

to produce a new point w(k+1) where f(w(k)) > f(w(k+1)).
In 1-D, we need to move in the direction opposite the deriva-
tive (gradient). A gradient method is defined by the rule:

w(k+1) = w(k) − αk∇f(w(k))

here αk ≥ 0 is a positive parameter called step-size that
determines how far to follow the current search direction.
Typically, αk → 0 as k →∞.

The twist for incremental gradient methods is to approxi-
mate the full gradient using a single terms of the sum. That
is, let η(k) ∈ {1, . . . , N}, chosen at iteration k. Intuitively,
we approximate the gradient∇f(w) with∇fη(k)(w).3 Then,

w(k+1) = w(k) − αk∇fη(k)(w
(k)) (2)

This is a key connection: each fi can be represented as a
single tuple. We illustrate this rule with a simple example:

Example 2.1. Consider a simple least-squares problem
with 2n (n ≥ 1) data points (x1, y1), . . . , (x2n, y2n). The
feature values are xi = 1 for i = 1, . . . , 2n and the labels are
yi = 1 for i ≤ n, and yi = −1, otherwise. The resulting
mathematical programming problem is:

min
w

1

2

2n∑
i=1

(wxi − yi)2

2
In Appendix A, we generalize to include constraints via proximal

point methods. One can also generalize to both matrix valued w and
non-differentiable functions [42].
3
Observe that minimizing f and g(w) = 1

N f(w), means correcting
by the factor N is not necessary and not done by convention.



Figure 2: High-level Architecture of Bismarck.

Since xi = 1 for all i, the optimal solution to the problem is
the mean w = 0, but we choose this to illustrate the mechan-
ics of the method. We begin with some point w(0) chosen
arbitrarily. We choose i ∈ {1, . . . , 2n} at random. Fix some
α ≥ 0 and for k ≥ 0, set αk = α for simplicity. Then, our
approximation to the gradient is ∇fi(w(0)) = (w(0) − yi).
And so, our first step is:

w(1) = w(0) − α(w(0) − yi)

We then repeat the process with w(2), etc. One can check
that after k + 1 steps, we will have:

w(k+1) = (1− α)k+1w0 + α

k∑
j=0

(1− α)k−iyη(j)

Since the expectation of yη(j) equals 0, we can see that we
converge exponentially quickly to 0 under this scheme – even
before we see all 2n points. This serves to illustrate why
an IGD scheme may converge much faster than traditional
gradient methods, where one must touch every data item at
least once just to compute the first step.

Remarkably, when both the functions
∑n
i=1 fi(w) and P (w)

are both convex, the incremental gradient method is guaran-
teed to converge to a globally optimal solution [36] at known
rates. Also, IGD converges (perhaps at a slower rate) even if
η(k) is a sequence in a fixed, arbitrary order [11,30,31,33,45].
We explore this issue in more detail in Example 3.1.

3. BISMARCK ARCHITECTURE
We first describe the high-level architecture of Bismarck,

and then explain how we implement IGD in an RDBMS.
Then, we drill down into two aspects of our architecture
that impact performance - data ordering and parallelism.

3.1 High-Level Architecture
The high-level architecture of Bismarck is presented in

Figure 2. Bismarck takes in the specifications for an an-
alytics task (e.g., data details, parameters, etc.) and runs
the task using Incremental Gradient Descent (IGD). As ex-
plained before, IGD allows us to solve a number of ana-
lytics tasks in one unified way. The main component of
Bismarck is the in-RDBMS implementation of IGD with a
data access pattern similar to a SQL aggregate query. For
this purpose, we leverage the mechanism of User-Defined
Aggregate (UDA), a standard feature available in almost all
RDBMSes [2, 3, 5]. The UDA mechanism is used to run the
IGD computation, but also to test for convergence and com-
pute information, e.g., error rates. Bismarck also needs to

Figure 3: The Standard Three Phases of a UDA.

provide a simple iteration to test for convergence. We will
explain more about these two aspects shortly, but first we
describe the architecture of a UDA, and how we can handle
IGD in this framework.

IGD as a User-Defined Aggregate. As shown in Figure
3, a developer implements a UDA by writing three standard
functions: initialize(state), transition(state, data)

and terminate(state). Almost all RDBMSes provide the
abstraction of a UDA, albeit with different names or inter-
faces for these three steps, e.g., PostgreSQL names them
‘initcond’, ‘sfunc’ and ‘finalfunc’ [5].

The state is basically the context of aggregation (e.g.,
the running total and count for an AVG query). The data is
a tuple in the table. In our case, the state is essentially the
model (e.g., the coefficients of a logistic regressor) and per-
haps some meta data (e.g., number of gradient steps taken).
In our current implementation, we assume that the state

fits in memory (models are typically orders of magnitude
smaller than the data, which is not required to fit in mem-
ory). The data is again an example from the data table,
which includes the attribute values and the label (for super-
vised schemes). We now explain the role of each function:

• The initialize(state) function initializes the model
with user-given values (e.g., a vector of zeros), or a
model returned by a previous run.

• In transition(state, data), we first compute the
(incremental) gradient value of the objective function
on the given data example, and then update the cur-
rent model (Equation 2 from Section 2.2). This func-
tion is where one puts the logic of the the various ana-
lytics techniques – each technique has its own objective
function and gradient (Figure 1(B)). Thus, the main
differences in the implementations of the various an-
alytics techniques occur mainly in a few lines of code
within this function, while the rest of our architec-
ture is reused across techniques. Figure 4 illustrates
the claim with actual code snippets for two tasks (LR
and SVM). This simplifies the development of sophis-
ticated in-database analytics, in contrast to existing
systems that usually have different code paths for dif-
ferent techniques (Figure 1(A)).

• In terminate(state), we finish the gradient compu-
tations and return the model, possibly persisting it.

A key implementation detail is that Bismarck may re-
order the data to improve the convergence rate of IGD or
to sample from the data. This feature is supported in all
major RDBMSes, e.g., in PostgreSQL using the ORDER BY

RANDOM() construct.

Key Differences: Epochs and Convergence. A key dif-
ference from traditional aggregations, like SUM, AVG, or
MAX, is that to reach the optimal objective function value,
IGD may need to do more than one pass over the dataset.



LR_Transition(ModelCoef *w, Example e) { ...

wx = Dot_Product(w, e.x);

sig = Sigmoid(-wx * e.y);

c = stepsize * e.y * sig;

Scale_And_Add(w, e.x, c); ... }

SVM_Transition(ModelCoef *w, Example e) { ...

wx = Dot_Product(w, e.x);

c = stepsize * e.y;

if(1 - wx * e.y > 0) {

Scale_And_Add(w, e.x, c); } ... }

Figure 4: Snippets of the C-code implementations of the transition step for Logistic Regression (LR) and Support Vector
Machine (SVM). Here, w is the coefficient vector, and e is a training example with feature vector x and label y. Scale_And_Add
updates w by adding to it x multiplied by the scalar c. Note the minimal differences between the two implementations.

Following the machine learning literature, we call each pass
an epoch [15]. Thus, the aggregate may need to be executed
more than once, with the output model of one run being in-
put to the next (shown in Figure 2 as a loop). To determine
how many epochs to run, Bismarck supports an arbitrary
Boolean function to be called (which may itself involve ag-
gregation). This supports both what we observed in practice
as common heuristic convergence tests, e.g., run for a fixed
number of iterations, and more rigorous conditions based on
the norm of the gradient common in machine learning [10].

A second difference is that the we may need to compute
the actual value of the objective function (also known as
the loss) using the model after each epoch. The loss value
may be needed by the stopping condition, e.g., a common
convergence test is based on the relative drop in the loss
value. This loss computation can also be implemented as a
UDA (or piggybacked onto the IGD UDA).

Technical Opportunities. A key conceptual benefit of Bis-
marck’s approach is that one can study generic performance
optimizations (i.e., optimizations that apply to many analyt-
ics techniques) rather than ad hoc, per-technique ones. The
remainder of the technical sections are devoted to examin-
ing two such generic optimizations. First, the conventional
wisdom is that for IGD to converge more rapidly, each data
point should be sampled in random (without-replacement)
order [15]. This can be achieved by randomly reordering,
or shuffling, the dataset before running the aggregate for
gradient computation at each epoch. The goal of course is
to converge faster in wall-clock time, not per epoch. Thus,
we study when the increased speed in convergence rate per
epoch outweighs the additional cost of reordering the data
at each epoch. The second optimization we describe is how
to leverage multicore parallelism to speed-up the IGD ag-
gregate computation.

3.2 Impact of Data Ordering
On convex programming problems, IGD is known to con-

verge to the optimal value irrespective of how the underlying
data is ordered. But empirically some data orderings allow
us to converge in fewer epochs than others. However, our ex-
periments suggest that the sensitivity is not as great as one
might think. In other words, presenting the data in a ran-
dom order gets essentially optimal run-time behavior. This
begs the question as to whether we should even reorder the
data randomly at each epoch. In fact, some machine learn-
ing tools do not even bother to randomly reorder the data.
However, we observe that inside an RDBMS, data is often
clustered for reasons unrelated to the analysis task (e.g., for
efficient join query performance). For example, the data for
a classification task might be clustered by the class label.
We now analyze this issue by providing a theoretical exam-

ple that characterizes pathological orders for IGD. We chose
this example to illustrate the important points with respect
to clustering and be as theoretically simple as possible.

Example 3.1 (1-D CA-TX). Suppose that our data is
clustered geographically, e.g., sales data from California, fol-
lowed by Texas, and the attributes of the sales in the two
states cause the data to be in two different classes. With this
in mind, recall Example 2.1. We are given a simple least-
squares problem with 2n (n ≥ 1) data points (x1, y1), . . . ,
(x2n, y2n). The feature values are xi = 1 for i = 1, . . . , 2n
and the labels are yi = 1 for i ≤ n, and yi = −1, otherwise.
The resulting mathematical programming problem is:

min
w

1

2

2n∑
i=1

(wxi − yi)2

Since xi = 1 for all i, the optimal solution is the mean,
w = 0. But our goal here is to analyze the behavior of IGD
on this problem under various orders. Due to this prob-
lem’s simplicity, we can solve the behavior of the resulting
dynamical system in closed form under a variety of order-
ing schemes. Consider two schemes to illustrate our point:
(1) data points seen are randomly sampled from the dataset,
and (2) data points seen in ascending index order, (x1, y1),
(x2, y2), . . . . Scheme (2) simulates operating on data that is
clustered by class.

Figure 5 plots the value of w during the course of the IGD
under the above two sampling schemes (using diminishing
step-size rule). We see that both approaches do indeed con-
verge to the optimal value, but approach (1), which uses ran-
dom sampling, converges more rapidly. In contrast, in ap-
proach (2), w oscillates between 1 and −1, until converging
eventually. Intuitively, this is so because the IGD initially
takes steps influenced by the positive examples, and is later
influenced by the negative examples (within one epoch). In
other words, convergence can be much slower on clustered
data. In the extended version of the paper [22], we present
calculations to precisely explain this behavior. We conclude
the example by noting that almost all permutations of the
data will behave similar to (1), and not (2). In other words,
(2) is a pathological ordering, but one which is indeed possi-
ble for data stored in an RDBMS.

Shuffling the data at each epoch is expensive and incurs
a high overhead. In fact, for simple tasks like LR and SVM,
the shuffling time dominates the gradient computation time
by a factor of 5. To remove the overhead of shuffling the
data at every epoch, while still avoiding the pathological or-
dering, we propose a simple solution – shuffle the data only
once. By randomly reordering the data once, we avoid the
pathological ordering that might be present in data stored
in a database. We implemented and benchmarked this ap-
proach on all three RDBMSes that we study. As explained
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Figure 5: 1-D CA-TX Example: Plot of w against number
of gradient steps on (1) Random, and (2) Clustered data
orderings for a dataset with 1000 examples (i.e., n = 500).
The number of epochs is shown in parentheses on the x-axis.
Random takes 18 epochs to converge (convergence defined
here as w2 < 0.001), while Clustered takes 48 epochs.

later in Section 4.3, empirically, we find that shuffling once
suffices across a broad range of models. Shuffling once does
have a slightly lower convergence rate than shuffling always.
However, since we need not shuffle at every epoch, we signif-
icantly reduce the runtime per epoch, which means we can
simply run more epochs within the same wall-clock time so
as to reach the optimal value. As we show later in Section
4.3, this allows shuffle-once to converge faster than shuffle-
always (between 2X-6X faster on the tasks we studied).

3.3 Parallelizing Gradient Computations
We now study how we can parallelize the IGD aggregate

computation to achieve performance speed-ups on a single-
node multicore system. We explain two mechanisms for
achieving this parallelism – one based on standard UDA fea-
tures, and another based on shared-memory features. We
emphasize that both features are available in almost all
RDBMSes.

Pure UDA Version. The UDA infrastructure offered by
most RDBMSes (including the commercial DBMS A and
DBMS B) include an built-in mechanism for ‘shared-nothing’
parallelism. The RDBMS requires that the developer pro-
vide a function merge(state, state), along with the 3 func-
tions discussed in Section 3.1. The merge function specifies
how two aggregation contexts that were computed indepen-
dently in parallel can be combined. For example, for an
AVG query, two individual averages with sufficient statistics
(total count) can be combined to obtain a new average. Gen-
erally, only aggregates that are commutative and algebraic
can be parallelized in the above manner [8]. Although the
IGD is not commutative, we observe that it is essentially
commutative, in that it eventually converges to the optimal
value regardless the data order (Section 3.2). And although
the IGD is not algebraic, recent results from the machine
learning community suggest that one can achieve rapid con-
vergence by averaging models (trained on different portions
of the data) [53]. Thus, the IGD is essentially algebraic
as well. In turn, this implies that we can use the parallel
UDA approach to achieve near-linear speed-ups on the IGD
aggregate computations.

Shared-Memory UDA. Shared-memory management is pro-
vided by most RDBMSes [6], and it enables us to implement

the IGD aggregate completely in the user space with no
changes needed to the RDBMS code. This allows us to pre-
serve the 3-function abstraction from Section 3.1, and also
reuse most of the code from the UDA-based implementation.
The model to be learned is maintained in shared memory
and is concurrently updated by parallel threads operating on
different segments of the data. Concurrent updates suggest
that we need locking on the shared model. Nevertheless,
recent results from the machine learning community show
that IGD can be parallelized in a shared-memory environ-
ment with no locking at all [37]. We adopt this technique
into Bismarck. Light-weight locking schemes often have
stronger theoretical properties for convergence, and so we
consider one such scheme called Atomic Incremental Gradi-
ent (AIG) that uses only CompareAndExchange instructions
to effectively perform per-component locking [37].

As shown later in Section 4, we empirically observe that
the model-averaging approach (pure UDA) has a worse con-
vergence rate than the shared-memory UDA, and so worse
overall performance. This led us to consider the shared-
memory UDA for Bismarck.

3.4 Avoiding Shuffling Overhead
From the CA-TX example in Section 3.2, we saw that bad

data orderings can impact convergence, and that shuffling
once suffices in some instances to achieve good convergence
rate. However, shuffling even once could be expensive for
very large datasets. We verified this on a scalability dataset,
and it did not finish shuffling even in one day. Thus, we in-
vestigate if it is possible to achieve good convergence rate
even on bad data orderings without any shuffling. A clas-
sical technique to cope with this situation is to subsample
the data using reservoir sampling (in fact, some vendors
do implement subsampling); in this technique, given an in-
memory buffer size B, we can obtain a without-replacement
sample of size B in just one pass over the dataset, without
shuffling the dataset [46]. The main idea of reservoir sam-
pling is straightforward: suppose that our reservoir (array)
can hold m items and our goal is to sample from N (≥ m)
items. Read the first m items and fill the reservoir. Then,
when we read the kth additional item (m + k overall), we
randomly select an integer s in [0,m + k). If s < m, then
we put the item at slot s; otherwise we drop the item.

Empirically, we observe that the subsampling may have
slow convergence. Our intuition is that the reservoir dis-
cards valuable data items that could be used to help the
model converge faster. To address this issue, we propose
a simple scheme that we call multiplexed reservoir sampling
(MRS), which combines the reservoir sampling idea with the
concurrent model updates idea from Section 3.3.

Multiplexed Reservoir Sampling. The multiplexed reser-
voir sampling (MRS) idea is to combine, or multiplex, gradi-
ent steps over both the reservoir sample and the data that is
not put in the reservoir buffer. By using the reservoir sam-
ple, which is a valuable without-replacement sample, and
the rest of the data in conjunction, our scheme can achieve
faster convergence than subsampling.

As Figure 6 illustrates, in MRS, there are two threads
that update the shared model concurrently, called the I/O
Worker and the Memory Worker. The I/O Worker has two
tasks: (1) it performs a standard gradient step (exactly as
the previous code), and (2) it places tuples into a reservoir.



Figure 6: Multiplexed Reservoir Sampling (MRS): The I/O
Worker reads example tuple e from the database, and uses
buffer A to do reservoir sampling. The dropped example d is
used for the gradient step, with updates to a shared model.
The Memory Worker iterates over buffer B, and performs
gradient steps on each example b in B concurrently.

Both of these functions are performed within the previously
discussed UDA framework. The Memory Worker takes a
buffer as input, and it loops over that buffer updating the
model using the gradient rule. After the I/O Worker finishes
one pass over the data, the buffers are swapped. That is,
the I/O Worker begins filling the buffer that the Memory
Worker is using, while the Memory Worker works on the
buffer that has just been filled by the I/O Worker. The
Memory Worker is signaled by polling a common integer
indicating which buffer it should run over and whether it
should continue running. In Section 4, we show that even
with a buffer size that is an order of magnitude smaller than
the dataset, MRS can achieve better convergence rates than
both no-shuffling and subsampling.

4. EXPERIMENTS
We first show that our architecture, Bismarck, incurs lit-

tle overhead, in terms of both development effort to add new
analytics tasks, and runtime overhead inside an RDBMS. We
then validate that Bismarck, implemented over two com-
mercial RDBMSes and PostgreSQL, provides competitive or
better performance than the native analytics tools offered
by these RDBMSes on popular in-database analytics tasks.
Finally, we evaluate how the generic optimizations that we
described in Section 3 impact Bismarck’s performance.

Dataset Dimension # Examples Size

Forest 54 581k 77M
DBLife 41k 16k 2.7M

MovieLens 6k x 4k 1M 24M
CoNLL 7.4M 9K 20M

Classify300M 50 300M 135G
Matrix5B 706k x 706k 5B 190G

DBLP 600M 2.3M 7.2G

Table 1: Dataset Statistics. DBLife, CoNLL and DBLP are
in sparse-vector format. MovieLens and Matrix5B are in
sparse-matrix format.

Tasks and Datasets. We study 4 popular analytics tasks:
Logistic Regression (LR), Support Vector Machine classifi-
cation (SVM), Low-rank Matrix Factorization (LMF) and
Conditional Random Fields labeling (CRF). We use 4 pub-

licly available real-world datasets. For LR and SVM, we
use two datasets – one dense (Forest, a standard benchmark
dataset from the UCI repository) and one sparse (DBLife,
which classifies papers by research areas). We binarized
these datasets for the standard binary LR and SVM tasks.
For LMF, we use MovieLens, which is a movie recommen-
dation dataset, and for CRF, we use the CoNLL dataset,
which is for text chunking. We also perform a scalability
study with much larger datasets – two synthetic datasets
Classify300M (for LR and SVM) and Matrix5B (for LMF),
as well as DBLP (another real-world dataset) for CRF. The
relevant statistics for all datasets are presented in Table 1.

Experimental Setup. All experiments are run on an iden-
tical configuration: a dual Xeon X5650 CPUs (6 cores each
x 2 hyper-threading) machine with 128GB of RAM and a
1TB dedicated disk. The kernel is Linux 2.6.32-131. Each
reported runtime is the average of three warm-cache runs.
Completion time for gradient schemes here means achiev-
ing 0.1% tolerance in the objective function value, unless
specified otherwise.

4.1 Overhead of Our Architecture
We first validate that Bismarck incurs little development

overhead to add new analytics tasks. We then empirically
verify that the runtime overhead of the tasks in Bismarck
is low compared to a strawman aggregate.

Development Overhead. We implemented the 4 analytics
tasks in Bismarck over three RDBMSes (PostgreSQL, com-
mercial DBMS A and DBMS B). Bismarck enables rapid
addition of a new analytics task since a large fraction of
the code is shared across all the techniques implemented
(on a given RDBMS). For example, starting with an end-to-
end implementation of LR in Bismarck (in C, over Post-
greSQL), we need to modify fewer than two dozen lines of
code in order to add the SVM module.4 Similarly, we can
easily add in a more sophisticated task like LMF with only
five dozen new lines of code. We believe that this is possi-
ble because our unified architecture based on IGD abstracts
out the logic of the various tasks into a small number of
generic functions. This is in contrast to existing systems,
where there is usually a dedicated code stack for each task.

Runtime Overhead. We next verify that the tasks imple-
mented in Bismarck have low runtime overhead. To do
this, we compared our implementation to a strawman ag-
gregate that sees the same data, but computes no values.
We call this a NULL aggregate. We run three tasks – LR,
SVM and LMF in Bismarck over all the 3 RDBMSes, using
both the pure UDA infrastructure (shared-nothing) and the
shared-memory variant described in Section 3. We compare
the single-iteration runtime of each task against the NULL
aggregate for both implementations of Bismarck over the
same datasets. The results are presented in Tables 2 and 3.

We see that the overhead compared to the NULL aggregate
can be as low as 4.6%, and is rarely more than 2X runtime
for simple tasks like LR and SVM. The overhead is higher
for the more computation-intensive task LMF, but is still
less than 2.5X runtime of the NULL aggregate. We also see

4
Both our code and the data used in our experiments are available

at: http://research.cs.wisc.edu/hazy/victor/bismarck-download/



PostgreSQL DBMS A DBMS B (8 segments)
Dataset

Tasks
Run- Over- Dataset

Tasks
Run- Over- Dataset

Tasks
Run- Over-

(NULL time) -time -head (NULL time) -time -head (NULL time) -time -head

Forest LR 0.57s 90% Forest LR 24.1s 15.3% Forest LR 0.17s 21.4%
(0.3s) SVM 0.56s 83.3% (20.9s) SVM 22.0s 5.26% (0.14s) SVM 0.16s 14.3%

DBLife LR 0.035s 192% DBLife LR 1.1s 86.4% DBLife LR 0.1 17.6%
(0.012s) SVM 0.03s 150% (0.59) SVM 0.8s 35.6% (0.085s) SVM 0.096s 12.9%

MovieLens
LMF 0.86s 244%

MovieLens
LMF 45.8s 29.4%

MovieLens
LMF 0.32s 100%

(0.25s) (35.4s) (0.16s)

Table 2: Pure UDA implementation overheads: single-iteration runtime of each task implemented in Bismarck against the
strawman NULL aggregate. The parallel database DBMS B was run with 8 segments.

PostgreSQL DBMS A DBMS B (8 segments)
Dataset

Tasks
Run- Over- Dataset

Tasks
Run- Over- Dataset

Tasks
Run- Over-

(NULL time) -time -head (NULL time) -time -head (NULL time) -time -head

Forest LR 0.56s 86.7% Forest LR 5.1s 54.5% Forest LR 0.25s 150%
(0.3s) SVM 0.55s 83.3% (3.3s) SVM 4.0s 21.2% (0.1s) SVM 0.21s 110%

DBLife LR 0.017s 41.7% DBLife LR 0.2s 81.8% DBLife LR 0.045s 4.6%
(0.012s) SVM 0.016s 33.3% (0.11s) SVM 0.3s 172% (0.043s) SVM 0.045s 4.6%

MovieLens
LMF 0.85s 193%

MovieLens
LMF 10.3s 102%

MovieLens
LMF 0.26s 160%

(0.29s) (5.1s) (0.1s)

Table 3: Shared-memory UDA implementation overheads: single-iteration runtime of each task implemented in Bismarck
against the strawman NULL aggregate. The parallel database DBMS B was run with 8 segments.

Dataset Task
PostgreSQL DBMS A DBMS B (8 segments)

Bismarck MADlib Bismarck Native Bismarck Native

Forest LR 8.0 43.5 40.2 489.0 3.7 17.0
(Dense) SVM 7.5 140.2 32.7 66.7 3.3 19.2
DBLife LR 0.8 N/A 9.8 20.6 2.3 N/A
(Sparse) SVM 1.2 N/A 11.6 4.8 4.1 N/A

MovieLens LMF 36.0 29325.7 394.7 N/A 11.9 17431.3
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Figure 7: Benchmark Comparison: (A) Runtimes (in sec) for convergence (0.1% tolerance) or completion on 3 in-RDBMS
analytics tasks. We compare Bismarck implemented over each RDBMS against the analytics tool native to that RDBMS.
N/A means the task is not supported on that RDBMS’ native tool (B) For the CRF task, we compare Bismarck (over
PostgreSQL) against custom tools by plotting the objective function value against time. Completion times (in sec) are shown
in parentheses.

that the shared-memory variant is several times faster than
the UDA implementation over DBMS A, since DBMS A has
extra overheads (e.g., model passing, serializations, etc.) to
run the pure UDA. It was this observation that prompted
us to use the shared-memory UDA to implement Bismarck
even for a single-thread RDBMS.

4.2 Benchmark Comparison
We now validate that Bismarck implemented over two

commercial RDBMSes and PostgreSQL provides competi-
tive or better performance than the native analytics tools
offered by these RDBMSes on three existing in-database an-
alytics tasks – LR, SVM and LMF. For the comparison, we
use the shared-memory UDA implementation of Bismarck
along with the shuffle-once approach described in Section
3.2. For the parallel version of Bismarck, we use the no-
lock shared-memory parallelism described in Section 3.3.

Competitor Analytics Tools. We compare Bismarck against
three existing in-RDBMS tools – MADlib (an open-source

collection of in-RDBMS statistical techniques [17]), which
is run over PostgreSQL (single-threaded), and the native
analytics tools provided by the two commercial engines –
DBMS A (single-threaded), and the parallel DBMS B (with
8 segments). We tuned the parameters for each tool, includ-
ing Bismarck, on each task based on an extensive search
in the parameter space. The data was preprocessed appro-
priately for all tools. Some of the tasks we study are not
currently supported in the above tools. In particular, the
CRF task is not available in any of the existing in-RDBMS
analytics tools we considered, and so we compare Bismarck
(over PostgreSQL) against the custom tools CRF++ [28]
and Mallet [34].

Existing In-RDBMS Analytics Tasks. We first compare
the end-to-end runtimes of the various tools on LR, SVM
and LMF. The results are summarized in Figure 7 (A). Over-
all, we see that Bismarck implemented over each RDBMS
has competitive or faster performance on all these tasks
against the native tool of the respective RDBMS. On sim-



ple tasks like LR and SVM, we see that Bismarck is often
several times faster than existing tools. That is, on the
dense LR task, Bismarck is about 12X faster than DBMS
A’s tool, and about 5X faster than MADlib over both Post-
greSQL and the native tool in DBMS B. In some cases, e.g.,
DBMS A for sparse SVM, Bismarck is slightly slower due to
the function call overheads in DBMS A. On a more complex
task like LMF, we see that Bismarck is about 3 orders-of-
magnitude faster than MADlib and DBMS B’s native tool.
This validates that Bismarck is able to efficiently handle
several in-RDBMS analytics tasks, while offering a unified
architecture. We also verified that all the tools compared
achieved similar training quality on a given task and dataset
(recall that IGD converges to the optimal objective value on
convex programs), but do not present details here due to
space constraints.

To understand why Bismarck performs faster, we looked
into the MADlib source code. While the reasons vary across
tasks, Bismarck is faster generally because IGD has lower
time complexity than the algorithms in MADlib. IGD, across
all tasks, is linear in the number of examples (fixing the di-
mension) and linear in the dimension of the model (fixing
the number of examples). But the algorithms in MADlib
for LR, for instance, are super-linear in the dimension, while
that for LMF is super-linear in the number of examples.

To get a sense of the performance compared to other tools,
a comparison with the popular in-memory tool Weka shows
that Bismarck (over PostgreSQL) is faster on all these tasks
– from 4X faster on dense LR to over 4000X faster on dense
SVM. We also validated that our runtimes on SVM are
within a factor of 3X to the special-purpose SVM in-memory
tool, SVMPerf. This is not surprising as SVMPerf is highly
optimized for the SVM computation, but presents an avenue
for future work.

Next Generation Tasks. Existing in-RDBMS analytics tools
do not support emerging advanced analytics tasks like CRF.
But Bismarck is able to efficiently support even such next
generation tasks within the same architecture. To validate
this, we plot the convergence over time for Bismarck (over
PostgreSQL) against in-memory tools. The results are shown
in Figure 7(B). We see that Bismarck is able to achieve sim-
ilar convergence, and runtime as the hand-coded and opti-
mized in-memory tools, even though Bismarck is a more
generic in-RDBMS tool.

Task
Bismarck DBMS A DBMS B Others

PostgreSQL (Native) (Native) (In-mem.)

LR
√ √ √

X
SVM

√ √
X X

LMF
√

N/A X X
CRF

√
N/A N/A X

Table 4: Scalability :
√

means the task completes, and X
means that the approach either crashes or takes longer than
48 hours. N/A means the task is not supported. The in-
memory tools (Weka, SVMPerf, CRF++, Mallet) all either
crash or take too long.

Scalability. We now study the scalability of the various
tools to much larger datasets (Classify300M, Matrix5B and

DBLP). Since Bismarck is not tied to any RDBMS, we run
it over PostgreSQL for this study. We compare against the
native analytics tools of both commercial engines, DBMS A
and DBMS B, as well as the task-specific in-memory tools
mentioned before. The results are summarized in Table 4.2.
We see that almost all of the in-RDBMS tools scale on the
simple tasks LR and SVM (less than an hour per epoch
for Bismarck), except DBMS B on SVM, which did not
terminate even after 48 hours. Again, on the more complex
tasks LMF and CRF, only Bismarck scales to the large
datasets. We also tried several custom in-memory tools – all
crashed either due to insufficient memory (Weka, SVMPerf,
CRF++) or did not terminate even after 48 hours (Mallet).

4.3 Impact of Data Ordering
We now empirically verify how the order the data is stored

affects the performance of our IGD schemes. We first study
the objective function value against epochs for data being
shuffled before each epoch (ShuffleAlways). We repeat the
study for data seen in clustered order (Clustered), without
any shuffling. Finally, we shuffle the data only once, before
the first epoch (ShuffleOnce). We present the results for the
LR task on DBLife in Figure 8. We observed similar results
on other datasets and tasks, but skip them here due to space
constraints.
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Figure 8: Impact of Data Ordering on Sparse LR over
DBLife: (A) Objective value over epochs, till convergence.
The number of epochs for convergence are shown in paren-
theses. (B) Objective value over time, till convergence. The
time to converge (in sec) are shown in parentheses.

Figure 8(A) shows that ShuffleAlways converges in the
fewest epochs, as is expected for IGD. Clustered yields the
poorest convergence rate, as explained in Section 3.2. In
fact, Clustered takes over 1000 epochs to reach the same
objective value as ShuffleAlways. However, we see that Shuf-
fleOnce achieves very similar convergence rate to ShuffleAl-
ways, and reaches the same objective value as ShuffleAlways
in 12 extra epochs. Figure 8(B) shows why the extra epochs
are acceptable – ShuffleAlways takes several times longer to
finish than ShuffleOnce. This is because the shuffling over-
head is significantly high. In fact, for simple tasks like LR,
shuffling dominates the runtime – e.g., for LR on DBLife,
shuffling takes nearly 5X the time for gradient computation
per epoch. Even on more complex tasks, the overhead is sig-
nificant, e.g., it is 3X for LMF on MovieLens. By avoiding
this overhead, ShuffleOnce finishes much faster than Shuf-
fleAlways, while still achieving the same quality.

4.4 Parallelizing IGD in an RDBMS
We now verify that both the parallelism schemes (pure

UDA and shared-memory UDA) are able to achieve near-
linear speed-ups but the pure UDA has a worse convergence
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Figure 9: Parallelizing IGD: (A) Plot of objective value over
epochs for the pure UDA version and the shared-memory
UDA variants (Lock, AIG, NoLock) for CRF over CoNLL
on 8 threads (segments). (B) Speed-up of the per-epoch
gradient computation times against the number of threads.
The per-epoch time of the single-threaded run is 20.6s.

rate than the shared-memory UDA. We first study the objec-
tive value over epochs for both the implementations. We use
the three concurrency schemes for the shared-memory UDA
– lock the model (Lock), AIG, and no locking (NoLock).
We present the results for CRF on CoNLL in Figure 9(A)
(similar results on other tasks skipped here for brevity).

Figure 9(A) shows that the pure UDA implementation has
poorer convergence rate compared to the shared-memory
UDA with Lock, since the model averaging in the former
yields poorer quality [52]. The figure also shows that AIG
and NoLock have similar convergence rate to the Lock ap-
proach. This is in line with recent results from the machine
learning literature [37]. By adopting the NoLock shared-
memory UDA parallelism into Bismarck, we achieve signif-
icant speed-ups in a generic way across all the analytics tasks
we handle. Figure 9(B) shows the speed-ups (over a single-
threaded run) achieved by the four parallelism schemes in
DBMS B. As expected, the Lock approach has no speed-up,
while the speed-up of the pure UDA approach is sub-optimal
due to model passing overheads. NoLock and AIG achieve
linear speed-ups, with NoLock having the highest speed-ups.

4.5 Multiplexed Reservoir Sampling
We verify that our Multiplexed Reservoir Sampling (MRS)

scheme has faster convergence rate compared to both Sub-
sampling and operating over clustered data (Clustered).
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Figure 10: Multiplexed Reservoir Sampling: (A) Objective
value against epochs for LR on DBLife. The buffer size for
Subsampling and MRS is 1600 tuples (10% of the dataset).
(B) Runtime (in sec) to reach 2X the optimal objective value
for different buffer sizes, B. The numbers in parentheses in-
dicate the respective number of epochs. The same values for
Clustered are 1.03s (19).

Figure 10(A) plots the objective value against epochs for
the three schemes. For Subsampling and MRS, we choose
a buffer size that is about 10% the dataset size (for LR on
DBLife). We see from the figure that MRS has faster con-

vergence rate than both Subsampling and Clustered, and
reaches an objective value that is 20% lower than both. Fig-
ure 10(B) shows the sensitivity to the buffer size for the
Subsampling and MRS schemes. We see that the runtime
to reach 2X of the optimal objective value is lower for MRS.
This is as expected since MRS has faster convergence rate
than Subsampling. Finally, we verify that Bismarck with
the MRS scheme provides better performance than existing
in-RDBMS tools on large datasets (that do not fit in avail-
able RAM). For a simple task like LR on the Classify300M
dataset over PostgreSQL, with a buffer that is just 1% of
the dataset size, Bismarck with the MRS scheme achieves
the same objective value as MADlib in 45 minutes, while
MADlib takes over 3 hours. On a more complex task like
LMF on the Matrix5B dataset, Bismarck with MRS scheme
finishes in a few hours, while MADlib did not terminate even
after one week.

5. CONCLUSIONS AND FUTURE WORK
We present Bismarck, a novel architecture that takes a

step towards unifying in-RDBMS analytics. Using insights
from the mathematical programming literature, Bismarck
provides a single systems-level abstraction to implement a
large class of existing and next-generation analytics tech-
niques. In providing a unified architecture, we argue that
Bismarck may reduce the development overhead for intro-
ducing and maintaining sophisticated analytics code in an
RDBMS. Bismarck also achieves high performance on these
techniques by effectively utilizing standard features available
inside every RDBMS. We implemented Bismarck over two
commercial RDBMSes and PostgreSQL, and verified that
Bismarck achieves competitive, and often superior, per-
formance than the state-of-the-art analytics tools natively
offered by these RDBMSes.

While Bismarck can handle many analytics techniques
in the current framework, it is interesting future work to
integrate more sophisticated models, e.g., simulation mod-
els, into our architecture. Another direction is to handle
large-scale combinatorial optimization problems inside the
RDBMS, including tasks like linear programming and fun-
damental NP-hard problems like MAX-CUT.

One area to improve Bismarck is to match the perfor-
mance of some specialized tools for tasks like support vector
machines by using more optimizations, e.g. model or feature
compression. There are also possibilities to improve perfor-
mance by modifying the DBMS engine, e.g., exploiting bet-
ter mechanisms for model passing and storage, concurrency
control, etc. Another direction is to examine more fully how
to utilize features that are available in parallel RDBMSes.
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APPENDIX
A. PROXIMAL POINT METHODS

To handle regularization and constraints, we need an addi-
tional concept called proximal point methods. These do not
change the data access patterns, but do enable us to han-
dle constraints. We state the complete step rule including a
projection that allows us to handle constraints:

w(k+1) = ΠαP

(
w(k) − αk∇fη(k)(w

(k))
)

(3)

Where the function ΠαP is called a proximal point oper-
ator and is defined by the expression:

ΠαP (x) = arg min
w

1
2
‖x− w‖22 + αP (w)

In the case where P is the indicator function of a set C, ΠαP

is simply the Euclidean projection onto C [41]. Thus, these
constraints can be used to ensure that the model stays in
some convex set of constraints. An example proximal-point
operator ensures that the model has unit Euclidean norm
by projecting the model on to the the unit ball. P (w) might
also be a regularization penalty such as total-variation or
negative entropy. These are very commonly used in statis-
tics to improve the generalization of the model or to take
advantage of properties that are known about the model to
reduce the number of needed measurements.


