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Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, Miguel Castro

Microsoft Research

Abstract
We describe the design and implementation of FaRM, a
new main memory distributed computing platform that
exploits RDMA to improve both latency and through-
put by an order of magnitude relative to state of the art
main memory systems that use TCP/IP. FaRM exposes
the memory of machines in the cluster as a shared ad-
dress space. Applications can use transactions to allo-
cate, read, write, and free objects in the address space
with location transparency. We expect this simple pro-
gramming model to be sufficient for most application
code. FaRM provides two mechanisms to improve per-
formance where required: lock-free reads over RDMA,
and support for collocating objects and function shipping
to enable the use of efficient single machine transactions.
FaRM uses RDMA both to directly access data in the
shared address space and for fast messaging and is care-
fully tuned for the best RDMA performance. We used
FaRM to build a key-value store and a graph store simi-
lar to Facebook’s. They both perform well, for example,
a 20-machine cluster can perform 167 million key-value
lookups per second with a latency of 31µs.

1 Introduction

Decreasing DRAM prices have made it cost effective to
build commodity servers with hundreds of gigabytes of
DRAM. A cluster with one hundred machines can hold
tens of terabytes of main memory, which is sufficient to
store all the data for many applications or at least to cache
the applications’ working sets [11, 38, 39]. This has the
potential to enable applications that perform small ran-
dom data accesses, because it removes the overhead of
disk or flash, but network communication remains a bot-
tleneck. Emerging fast networks are not going to solve
this problem while systems continue to use traditional
TCP/IP networking. For example, the results in [16]
show a state-of-the-art key-value store performing 7x

worse in a client-server setup using TCP/IP than in a
single-machine setup despite extensive request batching.

RDMA provides reliable user-level reads and writes
of remote memory. It achieves low latency and high
throughput because it bypasses the kernel, avoids the
overheads of complex protocol stacks, and performs re-
mote memory accesses using only the remote NIC with-
out involving the remote CPU. RDMA has long been
supported by Infiniband but it has not seen widespread
use in data centers because Infiniband has traditionally
been expensive and it is not compatible with Ethernet.
Today, RoCE [27] supports RDMA over Ethernet with
data center bridging [25, 26] at competitive prices.

FaRM uses RDMA writes to implement a fast message
passing primitive that achieves an order-of-magnitude
improvement in message rate and latency relative to
TCP/IP on the same Ethernet network (Figure 2). It
also uses one-sided RDMA reads to achieve an addi-
tional two-fold improvement for read-only operations
that dominate most workloads [9, 11]. We did not get
this performance out of the box. We improved perfor-
mance by up to a factor of eight with careful tuning and
changes to the operating system and the NIC driver.

FaRM machines store data in main memory and also
execute application threads. This enables locality-aware
optimizations which are important because accessing lo-
cal memory is still up to 23x faster than RDMA.

FaRM exposes the memory of all machines in the clus-
ter as a shared address space. Threads can use ACID
transactions with strict serializability to allocate, read,
write, and free objects in the address space without wor-
rying about the location of objects. FaRM provides
an efficient implementation of this simple programming
model that offers sufficient performance for most appli-
cation code. Transactions use optimistic concurrency
control with an optimized two-phase commit protocol
that takes advantage of RDMA. FaRM achieves avail-
ability and durability using replicated logging [39] to
SSDs, but it can also be deployed as a cache [11, 38].
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FaRM offers two mechanisms to improve performance
where required with only localized changes to the code:
lock-free reads that can be performed with a single
RDMA and are strictly serializable with transactions,
and support for collocating objects and function shipping
to allow applications to replace distributed transactions
by optimized single machine transactions.

We designed and implemented a new hashtable algo-
rithm on top of FaRM that combines hopscotch hash-
ing [21] with chaining and associativity to achieve high
space efficiency while requiring a small number of
RDMA reads for lookups: small object reads are per-
formed with only 1.04 RDMA reads at 90% occupancy.
We optimize inserts, updates, and removes by taking ad-
vantage of FaRM’s support for collocating related ob-
jects and shipping transactions.

We used YCSB [15] to evaluate the performance of
FaRM’s hashtable. We compared FaRM with a baseline
system that uses TCP/IP for messaging and performs bet-
ter than MemC3 [16] (which is the best main-memory
key-value store in the literature). Our evaluation on a
cluster of 20 servers connected by 40 Gbps Ethernet
demonstrates good scalability and performance: FaRM
provides an order-of-magnitude better throughput and la-
tency than the baseline across a wide range of settings.

We also implemented a version of Facebook’s Tao
graph store [11] using FaRM. Once more FaRM achieves
an order of magnitude better throughput and latency than
the numbers reported in [11].

2 Background on RDMA

RDMA requests are sent over reliable connections (also
called queue pairs) and network failures are exposed as
a terminated connection. Requests are sent directly to
the NIC without involving the kernel and are serviced by
the remote NIC without interrupting the CPU. A mem-
ory region must be registered with the NIC before it can
be made available for remote access. During registra-
tion the NIC driver pins the pages in physical memory,
stores the virtual to physical page mappings in a page ta-
ble in the NIC, and returns a region capability that the
clients can use to access the region. When the NIC re-
ceives an RDMA request, it obtains the page table for
the target region, maps the target offset and size into the
corresponding physical pages, and uses DMA to access
the memory. Many NICs (including the ones we are us-
ing) guarantee that RDMA writes (but not reads) are per-
formed in increasing address order. DMA operations are
cache coherent on our hardware platform.

NICs have limited memory for page tables and con-
nection data. Therefore, many NICs (including ours)
store this information in system memory and use NIC
memory as a cache. Accessing information that is not

cached requires issuing a DMA to fetch it from system
memory across the PCI bus. This is a common limitation
of offload technology and requires careful use of avail-
able memory to achieve good performance.

RDMA has long been supported by Infiniband net-
works which are widely used by the HPC community.
There have been deployments with thousands of nodes
and full bisection bandwidth (e.g., [45]). Today, Infini-
band has become cost competitive with Ethernet [37], but
Ethernet remains prevalent in data centers.

RoCE (RDMA over Converged Ethernet) hardware
supports RDMA over Ethernet with data center bridg-
ing extensions, which are already available in many
switches. These extensions add priority based flow con-
trol [26] and congestion notification [25]. They elimi-
nate losses due to congestion and allow segregation of
RDMA from other traffic. The hardware manages con-
nection state and acknowledgments eliminating the need
for a protocol stack like TCP to ensure reliable delivery.

RoCE is price competitive at the rack level: $19/Gbps
for 40 Gbps RoCE compared to $60/Gbps for 10 Gbps
Ethernet1, but there are some concerns about the scal-
ability of RoCE. We expect it to scale to hundreds of
nodes and there is ongoing work to improve scalability
to thousands of nodes. This paper presents results on
a 20-machine cluster using 40 Gbps RoCE but we have
also run FaRM on a 78-machine Infiniband cluster.

3 FaRM

This section describes the design and implementation of
FaRM. It starts by discussing FaRM’s communication
primitives and how their implementation is optimized
for RDMA. Then it describes how FaRM implements a
shared address space and how it ensures consistent ac-
cesses to the address space with good performance.

3.1 Communication primitives
FaRM uses one-sided RDMA reads to access data di-
rectly and it uses RDMA writes to implement a fast
message passing primitive. This primitive uses a circu-
lar buffer, as in Figure 1, to implement a unidirectional
channel. The buffer is stored on the receiver, and there is
one buffer for each sender/receiver pair. The unused por-
tions of the buffer (marked as “Processed” and “Free”)
are kept zeroed to allow the receiver to detect new mes-
sages. The receiver periodically polls the word at the
“Head” position to detect new messages. Any non-zero
value L in the head indicates a new message, of length
L. The receiver then polls the message trailer; when it

1Prices include NICs and switches as of October 2013. Ether-
net prices are for Intel X520-T2 NICs and Juniper EX4550 switches.
RoCE prices are for Mellanox ConnectX 3 NICs and SX1036 switches.
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Figure 1: Circular buffer for RDMA messaging

becomes non-zero, the entire message has been received
because RDMA writes are performed in increasing ad-
dress order. The message is delivered to the application
layer, and once it has been processed the receiver zeroes
the message buffer and advances the head pointer.

The sender uses RDMA to write messages to the
buffer tail and it advances the tail pointer on every send.
It maintains a local copy of the receiver’s head pointer
and never writes messages beyond that point. The re-
ceiver makes processed space available to the sender
lazily by writing the current value of the head to the
sender’s copy using RDMA. To reduce overhead, the re-
ceiver only updates the sender’s copy after processing at
least half of the buffer. The sender’s copy of the head al-
ways lags the receiver’s head pointer and thus the sender
is guaranteed never to overwrite unprocessed messages.

Polling overhead increases linearly with the number of
channels, so we establish a single channel from a thread
to a remote machine. We observed negligible polling
overhead with 78 machines. We also found that, at this
scale, RDMA writes and polling significantly outperform
the more complex Infiniband send and receive verbs. In
large clusters, it may be better to use RDMA write with
immediate and a shared receive queue [35], which would
make polling overhead constant.

FaRM messaging is similar to the one described
in [35] but our implementation uses a contiguous ring
buffer as opposed to a ring of buffers to provide better
memory utilization with variable-sized messages. Addi-
tionally, the receiver in [35] piggybacks updates to the
sender’s head pointer in messages.

We ran a micro-benchmark to compare the per-
formance of FaRM’s communication primitives with
TCP/IP on a cluster with 20 machines connected by a 40
Gbps RoCE network (more details in Section 4). Each
machine ran a number of threads that issued requests to
read a random block of memory from a random remote
machine in an all-to-all communication pattern. Figure 2
shows the average request rate per machine in a config-
uration optimized for peak throughput. Towards the left
of the graph, FaRM’s communication primitives are bot-
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Figure 2: Random reads: request rate per machine
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tlenecked on packet rate and, towards the right, on bit
rate. One-sided RDMA reads achieve a bit rate of nearly
33 Gbps with 2 KB request sizes and the bit rate saturates
around 35 Gbps for request sizes greater than 8 KB.

FaRM’s RDMA-based messaging achieves a request
rate between 11x and 9x higher than TCP/IP for request
sizes between 16 and 512 bytes, which are typical of data
center applications (e.g., [9]). One-sided RDMA reads
achieve an additional 2x improvement for sizes up to
256 bytes because they require half the network packets.
We expect this performance gap to increase with the next
generation of NICs that support 4x the message rate [36];
one-sided RDMA reads do not involve the remote CPU
and RDMA-based messaging will be CPU bound.

We also measured UDP throughput and observed it
is less than half the throughput of TCP configured for
maximum throughput (with Nagle on). So we decided to
compare against TCP in the rest of the paper.

Figure 3 shows average request latency both at peak
request rate and using only 2 machines configured for
minimum latency. The latency of TCP/IP at peak re-
quest rate is at least 145x higher than that of RDMA-
based messaging across all request sizes. Using one-
sided RDMA reads reduces latency by an extra factor of
two for sizes up to 256 bytes. In an unloaded system, the
latency of RDMA reads is at least 12x lower than TCP/IP
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Figure 4: Impact of physically contiguous regions

and 3x lower than RDMA-based messaging across all re-
quest sizes. The micro-benchmark shows that FaRM’s
communication primitives can achieve both low latency
and high message rates at the same time.

Achieving this level of performance for the two com-
munication primitives was non-trivial and it required
solving several problems. The first problem we ob-
served was that the performance of RDMA operations
decreased significantly as we increased the amount of
memory registered for remote access. The reason was
that the NIC was running out of space to cache all the
page tables. So it kept fetching page table entries from
system memory across the PCI bus.

We fixed this problem by using larger pages to reduce
the number of entries in NIC page tables. Unfortunately,
existing large page support in Windows and Linux was
not sufficient to eliminate all the fetches because of the
large amount of memory registered by FaRM. So we im-
plemented PhyCo, a kernel driver that allocates a large
number of physically-contiguous and naturally-aligned
2 GB memory regions at boot time (2 GB is the max-
imum page size supported by our NICs). PhyCo maps
the regions into the virtual address space of the FaRM
process aligned on a 2 GB boundary. This allowed us to
modify the NIC driver to use 2 GB pages, which reduced
the number of page table entries per region from more
than half a million to one.

We ran the random read benchmark to compare the
request rate of 64-byte RDMA reads when regions are
allocated with VirtualAlloc and with PhyCo. Figure 4
shows that with VirtualAlloc the request rate drops by a
factor of 4 when more than 16 MBs of memory is regis-
tered with the NIC. With PhyCo, the request rate remains
constant even when registering 100 GB of memory.

We also observed a significant decrease in request rate
when the cluster size increased because the NIC ran out
of space to cache queue pair data. Using a queue pair
between every pair of threads requires 2×m× t2 queue
pairs per machine (where m is the number of machines
and t is the number of threads per machine). We reduced
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Figure 5: Impact of connection multiplexing

this to 2×m× t using a single connection between a
thread and each remote machine. In addition, we intro-
duced queue pair sharing among q threads in a NUMA-
aware way, resulting in a total of 2×m× t/q queue pairs
per machine. This trades off parallelism for a reduction
in the amount of queue pair data on the NIC.

We ran the random read benchmark with 64-byte
transfers while varying the cluster size and the value of q.
Figure 5 shows that the optimal value of q depends on the
size of the cluster. Small values provide more parallelism
and lower sharing overhead, which results in better per-
formance in small clusters, but they also require more
queue pair data, which results in degraded performance
with larger clusters. In the remainder of the paper, we use
these results to select the best value of q for each cluster
size. We expect to solve this problem in the future by
using Dynamically Connected Transport [36], which im-
proves scalability by setting up connections on demand.

Early experiments showed that using interrupts and
blocking could increase RDMA latency by a factor of
four. Therefore, we use an event-based programming
model. Each FaRM machine runs a user-level process
and pins threads to hardware threads. Threads run an
event loop which executes application work items and
polls for the arrival of RDMA-based messages and the
completion of RDMA requests. This polling is done at
the user level without involving the OS.

3.2 Architecture and programming model
FaRM’s architecture is motivated by the performance re-
sults presented in the previous section. FaRM’s commu-
nication primitives are fast but accesses to main memory
still achieve up to 23x higher request rate. Therefore, we
designed FaRM to enable applications to improve perfor-
mance by collocating data and computation on the same
machine. FaRM machines store data in main memory
and they also execute application threads. The mem-
ory of all machines in the cluster is exposed as a shared
address space that can be read using one-sided RDMA.
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Tx* txCreate();
void txAlloc(Tx *t, int size, Addr a, Cont *c);
void txFree(Tx *t, Addr a, Cont *c);
void txRead(Tx *t, Addr a, int size, Cont *c);
void txWrite(Tx *t, ObjBuf *old, ObjBuf *new);
void txCommit(Tx *t, Cont *c);

Lf* lockFreeStart();
void lockFreeRead(Lf* op,Addr a,int size,Cont *c);
void lockFreeEnd(Lf *op);
Incarnation objGetIncarnation(ObjBuf *o);
void objIncrementIncarnation(ObjBuf *o);

void msgRegisterHandler(MsgId i, Cont *c);
void msgSend(Addr a, MsgId i, Msg *m, Cont *c);

Figure 6: FaRM’s API

Currently, we support a single FaRM protection domain
across the cluster.

Figure 6 shows the main operations in FaRM’s in-
terface. FaRM provides an event-based programming
model. Operations that require polling to complete take a
continuation argument, which consists of a continuation
function and a context pointer. The continuation function
is invoked when the operation completes and it is passed
the result of the operation and the context pointer. The
continuation is always invoked on the thread that initi-
ated the operation.

FaRM provides strictly serializable ACID transactions
as a general mechanism to ensure consistency. Applica-
tions start a transaction by creating a transaction context.
They can allocate and free objects using txAlloc and
txFree inside transactions. Allocations return opaque
64-bit pointers that can be used to access objects or
stored in object fields to build pointer linked data struc-
tures. Applications can request that the new object is
allocated close to an existing object by supplying the ex-
isting object’s address to txAlloc. FaRM attempts to
store the two objects in the same machine and keep them
on the same machine even after recovering from failures
or adding new machines. This allows applications to col-
locate data that is commonly accessed together.

The txRead operation can be used to read an object
given its address and size. It allocates an object buffer
and uses RDMA to read the object’s data and meta-data
into the buffer. When it completes, it passes the object
buffer to the continuation. To update an object, a trans-
action must first read the object and then call txWrite to
create a writable copy of the object buffer. Applications
commit transactions by calling txCommit, which returns
the outcome and frees any allocated buffers. Transac-
tions can abort due to conflicts or failures; otherwise, the
writes are committed.

General distributed transactions provide a simple pro-
gramming model but can be too expensive to imple-
ment performance critical operations. FaRM’s API al-
lows applications to implement efficient lock-free read-
only operations that are serializable with transactions.

lockFreeStart and lockFreeEnd are used to bracket
lock-free operations. lockFreeRead is similar to
txRead but any object buffers it allocates are freed by
lockFreeEnd. FaRM also exposes object incarnations,
which can be used to combine several lock-free reads
into more complex operations. Transactions and lock-
free operations are described in Sections 3.4 and 3.5.

The last two API operations are used to send RDMA-
based messages to a thread in the machine that stores an
object, which allows shipping transactions to the server
that stores the object. Together with the ability to collo-
cate related data on the same machine, this enables re-
placing distributed transactions by single machine trans-
actions, which are significantly less expensive.

FaRM also offers functions to allocate, read, and free
arrays of objects. This allows efficient reads of consecu-
tive elements in an array with a single RDMA.

FaRM uses replicated logging to provide ACID trans-
actions with strict serializability and high availability un-
der the following assumptions: crash failures, a bound
on the maximum number of failures per replica group, a
bound on clock drift in an otherwise asynchronous sys-
tem for safety, and eventual synchrony for liveness. We
do not describe or evaluate recovery from failures in this
paper but the common-case (non failure) performance re-
ported in this paper includes all the overheads of replica-
tion and logging.

We used this interface to implement a distributed
hashtable (Section 3.6) and a graph store similar to Face-
book’s Tao [11] (Section 4.4).

3.3 Distributed memory management
FaRM’s shared address space consists of many 2 GB
shared memory regions that are the unit of address map-
ping, the unit of recovery, and the unit of registration for
RDMA with the NIC. The address of an object in the
shared address space consists of the 32-bit region iden-
tifier and the 32-bit offset relative to the start of the re-
gion. To access an object, FaRM uses a form of con-
sistent hashing [31] to map the region identifier to the
machine that stores the object. If the region is stored lo-
cally, FaRM obtains the base address for the region and
uses local memory accesses. Otherwise, FaRM contacts
the remote machine to obtain a capability for the region,
and then uses the capability, the offset in the address and
the object size to build an RDMA request. Capabilities
for remote regions are cached to improve performance.

Consistent hashing is implemented using a one-hop
distributed hashtable [6]. Each machine is mapped into k
virtual rings by hashing its IP address with k hash func-
tions. FaRM uses multiple rings to allow multiple re-
gions to be recovered in parallel as in RAMCloud [39]
and also to improve load balancing [44]. We currently
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use k = 100. The 32-bit shared region identifier identi-
fies both a ring and a position in the ring. The primary
copy and replicas of the region are then stored at the r
machines immediately following the region’s position in
the ring. Figure 7 shows a simple example with k = 3
and r = 3. The mapping of the region to the machine
can be performed locally given the set of machines in the
cluster. Cluster membership can be maintained reliably
using Zookeeper [24].

Memory allocators are organized into a three-level hi-
erarchy — slabs, blocks, and regions — to reduce syn-
chronization overheads (as in parallel allocators [10]). At
the lowest level, threads have private slab allocators that
allocate small objects from large blocks. Each block is
used to allocate objects of the same size. FaRM supports
256 distinct sizes from 64 bytes to 1 MB. The sizes are
selected so the average fragmentation is 1.8% and the
maximum is 3.6%. An object is allocated in the smallest
size class that can fit it. Slab allocators use a single bit in
the header of each object to mark it allocated. This state
is replicated when a transaction that allocates or frees ob-
jects commits and it is scanned during recovery to recon-
struct allocator data structures.

The blocks are obtained from a machine-wide block
allocator that allocates blocks from shared memory re-
gions. It splits the regions into blocks whose size is a
multiple of 1 MB. Each region has a table with an 8-byte
allocation state per block. The regions are obtained from
a cluster-wide region allocator. The region allocator uses
PhyCo to allocate memory for the region and then it reg-
isters the region with the NIC to allow remote access (as
described in Section 2). It picks an identifier for the re-
gion by selecting a ring at random and a position in the
ring that ensures the local node stores the primary copy.
Information about region and block allocations is repli-
cated at allocation time.

FaRM allows applications to supply a location hint,
which is the address of an existing object, when allocat-
ing an object. FaRM attempts to allocate the object in

the following order: in the same block as the hint, in the
same region, or in a region with a nearby position in the
same virtual ring. This ensures that the allocated object
and the hint remain collocated both on the primary and
on the replicas with high probability even after failures
and reconfigurations. If the hint is an address stored at
another server, the allocation is performed using an RPC
to the remote server.

3.4 Transactions
FaRM supports distributed transactions as a general
mechanism to ensure consistency. Our implementation
uses optimistic concurrency control [32] and two-phase
commit [18] to ensure strict serializability [41]. A trans-
action context records the version numbers of objects
read by the transaction (the read set), the version num-
bers of objects written by the transaction (the write set),
and it buffers writes. At commit time, the machine run-
ning the transaction acts as the coordinator. It starts by
sending prepare messages to all participants, which are
the primaries and replicas of objects in the write set. The
primaries lock the modified objects and both primaries
and replicas log the message before sending replies back.
After receiving replies from all participants, the coordi-
nator sends validate messages to the primaries of objects
in the read set to check if the versions read by the trans-
action are up to date. If read set validation succeeds, the
coordinator sends commit messages first to the partici-
pant replicas and then to the participant primaries. The
primaries update the modified objects and unlock them,
and both primaries and replicas log the commit message.
The transaction aborts if any modified object is locked,
if read set validation fails, or if the coordinator fails to
receive replies for all the prepare and validate messages.

FaRM replicas keep the log on SSDs. To improve
logging performance, they use a few megabytes of non-
volatile RAM [2] to hold the circular message buffers
and to buffer log entries [39]. The entries are flushed
when the buffers fill up and log cleaning is invoked when
the log is half full. These logs are used to implement a
parallel recovery mechanism similar to RAMCloud [39].

The two-phase commit protocol is implemented using
RDMA-based messaging, which was shown to have very
low latency. This reduces conflicts and improves perfor-
mance by reducing the amount of time locks are held.
Despite these optimizations, two-phase commit may be
too expensive to implement common case operations.

FaRM provides two mechanisms to achieve good per-
formance in the common case: single machine transac-
tions and lock-free read-only operations. Applications
can use single machine transactions by collocating the
objects accessed by a transaction on the same primary
and on the same replicas, and by shipping the transaction
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Figure 8: Versioning for lock-free reads. A read is con-
sistent if the lock field L is zero and Vc1 and Vc2 match the
low-order bits of Vob j. The incarnation I is used to detect
if the object was freed concurrently with being read.

to the primary. In this case, write set locking and read
set validation are local. Therefore, the prepare and vali-
date messages are not needed and the primary only needs
to send a commit message with the buffered writes to
the replicas before unlocking the modified objects. Ad-
ditionally, we use two locking modes: objects are first
locked in a mode that allows lock-free reads and the pri-
mary locks objects in exclusive mode just before updat-
ing them (after the commit messages are delivered to the
replicas). Single machine transactions improve perfor-
mance by reducing the number of messages and by fur-
ther reducing delays due to locks.

3.5 Lock-free operations
FaRM provides lock-free reads that are serializable with
transactions and are performed using a single RDMA
read without involving the remote CPU. The application
is guaranteed to observe a consistent object state even if
it is concurrent with writes to the same object. FaRM re-
lies on cache coherent DMA: it stores an object’s version
number both in the first word of the object header and
at the start of each cache line (except the first). These
versions are not visible to the application; FaRM auto-
matically converts the object layout on reads and writes.

A lockFreeRead reads the object with RDMA and
checks if the header version is unlocked and matches all
the cache line versions. If the check succeeds, the read
is strictly serializable with transactions. Otherwise, the
RDMA is retried after a randomized backoff. Figure 8
shows the version fields for an object that spans three
cache lines.

An object is written during transaction commit using
local memory accesses. The header version is locked
with a compare-and-swap during the prepare phase. We
use the two least significant bits in the header version to
encode the lock mode. During the commit phase, an ob-
ject is updated by first writing a special lock value to the
cache line versions, then updating the data in each cache
line, and finally updating the cache line versions and the
header version. These steps are separated by memory
barriers. On x86 processors, compiler barriers are suf-
ficient to ensure the required ordering. Since DMA is
cache-coherent on x86, any RDMA read observes mem-
ory writes within each cache line in the order enforced

by the memory barriers. Therefore, matching versions
across all cache lines spanned by an object ensures strict
serializability for lock-free reads.

We use 64-bit header versions to prevent wrapping
around but cache line versions only keep the least signif-
icant l bits of the version to save space. We can do this
because there is a lower bound on the time it takes to per-
form a write and we abort RDMA reads that take longer
than an upper bound to ensure that a read can never over-
lap two successive writes that produce versions with the
same least significant l bits. This relies on a weak bound
on clock drift that we already required to maintain leases
with ZooKeeper. The results in this paper were obtained
with l = 16, but our measurements show that l = 8 is
sufficient in configurations with replication.

To provide consistency, FaRM must ensure that lock-
free reads do not access objects that have been freed by
concurrent transactions. FaRM uses type stability [19] to
ensure that object meta-data remains valid and incarna-
tion checks [46] to detect when objects are freed. Object
headers have a 64-bit incarnation that is initially zero and
is incremented when the object is freed. FaRM provides
128-bit fat pointers that include the object address, size,
and expected incarnation. Applications check that the in-
carnation in the object buffer returned by a lock-free read
matches the incarnation in the pointer, which guarantees
that the object has not been freed.

FaRM can reuse freed memory to allocate another ob-
ject of the same size because the incarnation in the ob-
ject header remains valid. Reusing memory for differ-
ent object sizes requires more work because the object
header may be overwritten with arbitrary data. FaRM
implements a distributed version of an epoch-based al-
locator [17] to do this. It sends an end of epoch request
to the threads on all machines (we aggregate messages
to/from the same machine). When a thread receives
this request, it clears any cached pointers, starts a new
epoch, and continues processing operations in the new
epoch. Once all transactions and read-only operations
that started in previous epochs complete, the thread sends
a reply to the request. FaRM’s API provides primitives
that bracket operations to enable detecting when ongoing
operations complete. Memory can be reused after receiv-
ing responses from all machines in the current config-
uration. This mechanism does not impact performance
significantly because it runs in the background and only
when available memory drops below a threshold.

3.6 Hashtable
FaRM also provides a general key-value store interface
that is implemented as a hashtable on top of the shared
address space. One important use of this interface is as a
root to obtain pointers to shared objects given keys.
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Designing a hashtable that performs well using
RDMA is similar to other forms of memory hierar-
chy aware data structure design: it is important to bal-
ance achieving good space efficiency with minimizing
the number and size of RDMAs required to perform
common operations. Ideally, we would like to perform
lookups, which are the most common operation, using
a single RDMA read. We identified hopscotch hash-
ing [21] as a promising approach to achieve this goal
because it guarantees that a key-value pair is located in
a small contiguous region of memory that may be read
with a single RDMA. This contrasts with popular ap-
proaches based on cuckoo hashing [40] where a key-
value pair is in one of several disjoint regions.

Each bucket in a hopscotch hashtable has a neighbour-
hood that includes the bucket and the H−1 buckets that
follow. Hopscotch hashing maintains the invariant that a
key-value pair is stored in the neighbourhood of the key’s
bucket (i.e., the bucket the key hashes to). To insert a
key-value pair, the algorithm looks for an empty bucket
close to the key’s bucket by doing a linear probe forward.
If the empty bucket is in the neighbourhood of the key’s
bucket, the key-value pair is stored there. Otherwise, the
algorithm attempts to move the empty bucket towards the
neighbourhood by repeatedly displacing key-value pairs
while preserving the invariant. If the algorithm does not
find an empty bucket or is unable to preserve the invari-
ant, the hashtable is resized.

The original algorithm outperforms chaining and
cuckoo hashtables at high occupancy using H = 32 [21]
(where occupancy is the ratio between the number of
key-value pairs inserted and the number of slots in the
table). Unfortunately, large neighbourhoods perform
poorly with RDMA because they result in large reads.
For example, using H = 32 with 64-byte key-value pairs
requires RDMA reads of at least 2 KB, which perform
significantly worse than smaller RDMAs (Figure 2).
Simply using small neighbourhoods does not work well
as it requires frequent resizes and results in poor space
efficiency. For example, the original algorithm achieves
an average occupancy of only 37% with H = 8.

We designed a new algorithm, chained associative
hopscotch hashing, that achieves a good balance between
space efficiency and the size and number of RDMAs
used to perform lookups by combining hopscotch hash-
ing with chaining and associativity. For example, on av-
erage it requires only 1.04 RDMA reads per lookup with
H = 8 at 90% occupancy. This is better than techniques
based on cuckoo hashing [40] that require 3.2 RDMA
reads at 75% occupancy (or 1.6 if key-value pairs were
inlined in the table) [37].

The new algorithm uses an overflow chain per bucket.
If an insert fails to move an empty bucket into the right
neighbourhood, it adds the key-value pair to the over-

bvb fvb bvb+1 fvb+1
Ob Ob+1

Figure 9: Joint versions for lock-free reads of adjacent
buckets. The two objects are consistent with each other
if they are individually consistent and f vb = bvb+1.

flow chain of the key’s bucket instead of resizing the ta-
ble. This also lets us limit the length of linear probing
during inserts. The algorithm uses associativity to amor-
tize the space overhead of chaining and of FaRM’s object
meta-data across several key-value pairs. Each bucket is
a FaRM object with H/2 slots to store key-value pairs.
The algorithm guarantees that a key-value pair is stored
in the key’s bucket or the next one. Overflow blocks also
store several key-value pairs (currently two) to improve
performance and space efficiency.

We implemented the new algorithm using FaRM’s
API. The hashtable is sharded across the machines in the
cluster. Each machine allocates shards, which are FaRM
arrays of buckets, and exchanges pointers to the shards
with the other machines. We use consistent hashing to
partition hash values across shards to enable elasticity.

Lookups are performed using lock-free read-only op-
erations. A lookup for a key k starts by issuing a sin-
gle RDMA to read both k’s bucket b and the next bucket
b+ 1. The lookup completes if it finds k in b or b+ 1.
Otherwise, it uses lock-free reads to search for k in b’s
chain of overflow blocks. The chain uses fat pointers to
link blocks and lookups check if the incarnation numbers
in a fat pointer and the next block match. If they do not,
the lookup is restarted. It is inefficient to store large key-
value pairs inline in buckets because it results in large
RDMAs. FaRM stores large or variable-sized key-value
pairs as separate objects and it stores a key (or a hash for
large keys) and a fat pointer to the object in the bucket. If
the incarnation numbers in the fat pointer and the object
do not match, the lookup is restarted.

The version checks in Section 3.5 guarantee that each
bucket is individually consistent when read. For hash ta-
ble lookups, however, we must also ensure that the two
buckets in the neighbourhood are consistent with each
other. To do this we add joint versions for adjacent pair
of buckets, meaning that each object bucket stores a for-
ward and a backward joint version (Figure 9). If the cor-
responding joint versions do not have the same value, the
read is restarted. Transactions that update adjacent buck-
ets increment the corresponding joint versions. We re-
duce the space overhead of joint versions using the same
technique we used to reduce the size of cache line ver-
sions for lock-free reads. The results in this paper use
16-bit joint versions.

We optimize inserts, updates, and removes by ship-
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ping transactions to the machine that store the relevant
shard. Using transactions simplifies the implementation,
which is significantly more complex than for lookups.
We use FaRM’s API to ensure that shards are collocated
with their overflow blocks so we can use more efficient
single machine transactions.

We implement inserts as described above. We use a
technique inspired by flat combining [20] to combine
concurrent inserts and updates to the same key into a sin-
gle transaction. This improves throughput by more than
4x in our experiments with skewed YCSB workload by
reducing the overheads of concurrency control and repli-
cation for hot keys. Removes attempt to collapse over-
flow chains to reduce the number of RDMAs for lookups.
They always move the last key-value pair in the chain to
the newly freed slot and free the last overflow block if it
becomes empty. Otherwise, they increment its incarna-
tion number to ensure lookups observe a consistent view.

FaRM’s hashtable guarantees linearizability and it per-
forms well. Figure 10 shows lookup throughput on a 20-
machine cluster (see Section 4) at 90% occupancy with
8-byte keys and different value sizes when keys are cho-
sen uniformly at random. It shows results when values
are inlined with different neighbourhood sizes and when
values are stored outside of the buckets (using H = 8).
Figure 11 shows the space utilization in the same exper-

iment: this is the ratio between the total number of bytes
in key-value pairs and the total amount of memory used
by the hashtable. The results show that inlining values
with H = 8 or H = 6 provides a good balance between
throughput and space utilization for objects up to 128
bytes. Applications that can tolerate low space utiliza-
tion to achieve better throughput can inline objects up
to 320 bytes with H = 2. Objects larger than 320 bytes
should be stored outside the table.

4 Evaluation

We evaluate FaRM’s performance and its ability to sup-
port applications with different data structures and access
patterns. We first compare the performance of FaRM’s
key-value store with a state-of-the art implementation
that uses TCP/IP. Then we evaluate FaRM’s ability to
serve a workload based on Facebook’s Tao [8, 11].

4.1 Experimental setup
We ran the experiments on an isolated cluster with 20
machines. Each machine had a 40 Gbps Mellanox
ConnectX-3 RoCE NIC connected to a single port of a
Mellanox SX-1036 switch. The machines ran Windows
Server 2012 R2 on two 2.4 GHz Intel Xeon E5-2665
CPUs with 8 cores and two hyper-threads per core (32
hardware threads per machine). Each machine had a 240
GB Intel 520 SSD for logging and 128 GBs of DRAM
(2.5 TB of DRAM across the cluster). We configured
machines with 28 GB of private memory and 100 GB of
shared memory. We used the results in Figure 5 to select
the best connection multiplexing factor q for the num-
ber of nodes in each experiment. We report the average
of three runs for each experiment. The standard devia-
tion was below 1% of the average except for a very small
number of points where it was below 10%.

To evaluate the performance of FaRM’s key-value
store, we compare it to a distributed hashtable that uses
the same chained associative hopscotch hashing algo-
rithm and most of the optimizations in MemC3 [16].
This hashtable uses a neighbourhood size of 12 with six
key-value pair slots per bucket. Each key-value pair slot
has a 1-byte hash tag [16] and a pointer to the key and
value (which are stored outside the table). Remote op-
erations are implemented over TCP/IP running natively
in the same RoCE network. We tuned TCP/IP carefully
for maximum performance, e.g., we enabled header pro-
cessing in the NIC and used 16 receiver side queues. We
labeled this baseline TCP in the experiments.

The key-value store experiments ran with 16-byte
keys and 32-byte values as in [16] to facilitate compar-
isons and because these are representative of real work-
loads [16, 38]. Our baseline achieves 40 million lookups
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Figure 12: Key-value store: lookup scalability

per second on a single machine which is comparable with
the 35 million reported by MemC3 [16] last year.

We loaded FaRM’s key-value store and the baseline
with 120 million key-value pairs per machine before tak-
ing measurements. We configured both stores for 90%
occupancy and used a neighbourhood of 6 for FaRM be-
cause it provides good throughput and 62% space uti-
lization (see Section 3.6). We used only 120 million key-
value pairs to keep experiment running times low but we
ran a control experiment with 20 machines and 1.3 bil-
lion key-value pairs per machine (58 GB of user data, 94
GB total per machine and 1.8 TB overall) and obtained
the same lookup performance.

Except where noted, we measured performance for
one minute after a 20 second warm-up. Keys were cho-
sen randomly either with a uniform distribution or with
the Zipf distribution prescribed by YCSB [15], which has
θ = 0.99. When using the Zipf distribution, the most
popular key is accessed by 4% of the operations.

4.2 Key-value store lookups
Figure 12 shows throughput and latency for key-value
store lookups as the number of machines increases. We
show lines for FaRM with the uniform and YCSB distri-
butions but only show baseline (TCP) performance with

2 3 4 5 8 12 16 20
0

50

100

150

Lo
ok

up
s /

 µ
s

Servers

Farm TCP m=1 TCP m=24
TCP m=50 TCP m=100
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the uniform distribution because it is not impacted by the
access distribution.

FaRM achieves 146 million lookups per second with a
latency of only 35µs with 20 machines and the uniform
distribution. This throughput is an order of magnitude
higher than the baseline and the latency is two orders of
magnitude lower. In fact, the latency of the baseline at
peak throughput is more than 8ms, which is unacceptable
for several applications (e.g., [38]). We decreased the
number of concurrent requests to achieve a latency of
1ms for the baseline which degraded throughput by 3.6x
as shown in Figure 12. Trading throughput for latency
was not necessary for FaRM as it can achieve both high
throughput and low latency at the same time.

The results also show that FaRM’s performance scales
well with the cluster size. The skew in the YCSB dis-
tribution impacts performance with more than 8 servers
because it overloads the NICs on the machines that hold
the hottest keys, but FaRM is able to achieve more than
100 million lookups per second with latency of 51µs.

Figure 12 also shows single-machine performance
for both systems: the baseline can achieve 40 million
lookups per second and FaRM achieves 26 million. This
is because the baseline uses lock-free reads that are care-
fully tuned for this particular application whereas FaRM
uses general support for lock-free reads, which involves
an extra object copy even for local objects. But FaRM
achieves 146 million lookups per second while provid-
ing 20 times more memory with 20 machines.

In the experiments so far, each lookup retrieves a sin-
gle item. Main memory key-value stores like Mem-
cached [1] provide a multi-get interface that allows appli-
cations to look up several keys. For example, Facebook
reports that their applications issue multi-gets for 24 keys
on average [38] to amortize communication overheads.
We implemented a multi-get interface in our baseline
key-value store but not in FaRM because current NICs
do not support batching of RDMA. We could implement
multi-get batching using FaRM’s RDMA-based messag-
ing but we have not yet done this.
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Figure 13 compares FaRM’s lookup throughput with
the baseline key-value store (TCP) using different multi-
get batch sizes. Multi-gets can improve the performance
of the baseline significantly but FaRM still achieves 8x
better throughput relative to multi-gets of 24 keys and 3x
better relative to multi-gets of 100 (which are larger than
the 95th percentile reported in [38]). However, multi-
gets increase the latency of the baseline, which was al-
ready high. With multi-gets of 100 and 20 machines,
lookup latency increases to 25ms. If we reduce the num-
ber of concurrent requests to achieve 10x lower latency,
the throughput drops to 10x lower than FaRM’s. An-
other limitation is that for a fixed multi-get size (which is
determined by available client parallelism), the benefits
of batching decrease with increasing cluster size because
the batch must be broken into a message for each ma-
chine. For example, multi-gets of 24 improve throughput
by 5.7x with 2 servers but only by 2x with 20.

The different mechanisms we discussed in the pa-
per all contribute to the good performance we observed.
The low level optimizations discussed in Section 2 im-
prove lookup throughput by 8x. Using lock-free one-
sided reads instead of RDMA-based messaging doubles
throughput, and our hashtable design reduces the number
of RDMAs per lookup by a factor of three when com-
pared to the RDMA-aware design in Pilaf [37].

4.3 Key-value store updates
We also ran experiments with a mix of lookups and up-
dates. We show results without replication (NoRep), with
logging to SSDs in two replicas (SSD), and with logging
to memory in two replicas (Mem). The first configuration
corresponds to using FaRM as a cache and the last allows
us to evaluate the overhead of the SSDs. We only show
baseline (TCP) results without replication and with the
uniform distribution. We set the log size to 32 GB and
ran the experiment for 5 minutes with a longer warm-up
period of 1 minute to allow the logger to reach a steady
state mix of foreground logging and cleaning.

Figure 14 shows scalability with 5% updates (which
corresponds to YCSB-B). This update rate is higher than
those reported recently for main-memory systems [9, 11,
37, 38]. FaRM scales and performs well: it has an order
of magnitude higher throughput than the non-replicated
baseline key-value store even when logging to SSDs in
two replicas. The throughput when logging to SSDs is
30% lower than without replication mostly due to the ad-
ditional replication messages. We use a small amount
of non-volatile RAM to remove the SSD latency from
the critical path and the SSDs have enough bandwidth to
cope with logging and cleaning with 5% updates.

The skewed access distribution in YCSB affects scala-
bility as it did with read-only workloads. We omit the

3 4 5 8 12 16 20
0

20
40
60
80

100
120
140
160

O
pe

ra
tio

ns
 / 

µs

Servers

NoRep NoRep YCSB Mem SSD TCP

Figure 14: Key-value store: scalability with updates

0.2 0.5 1 2 5 10 20 50
0

20
40
60
80

100
120
140
160

O
pe

ra
tio

ns
 / 

µs

Update percentage (log)

NoRep Unif Mem Unif SSD Unif
NoRep YCSB Mem YCSB SSD YCSB

(a) Throughput (YCSB and uniform)

0.2 0.5 1 2 5 10 20 50
0

100
200
300
400
500
600
700
800
900

La
te

nc
y 

µs

Update percentage (log)

NoRep Update Mem Update SSD Update
NoRep Read Mem Read SSD Read

(b) Latency for lookups and updates (uniform)
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lines for the replicated configurations with YCSB be-
cause they are similar to the non-replicated configura-
tion. Our measurements show that the update combin-
ing optimization in Section 3.6 improves throughput with
skew by roughly 4x. Similarly, the dual-mode locking
described in Section 3.4 improves the overall throughput
by around 25% because it reduces the restart rate of lock-
free reads. Both these optimizations have an even larger
impact with higher update rates.

We evaluate the performance of FaRM with higher up-
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date rates in Figure 15. The overhead of replication is
visible with more than 2% updates and SSDs become
the bottleneck with more than 5% because we saturate
the available I/O bandwidth. With 5% updates, there are
215 MB/s of log writes and 215 MB/s of log reads for
cleaning. Roughly half of the writes log new updates
and the other half are cleaning writes. The performance
with YCSB is slightly better than with the uniform dis-
tribution with high update rates because the update com-
bining optimization is able to combine more operations.

Figure 15(b) shows that FaRM’s lookup latency is in-
dependent of the update rate. Since lookups are imple-
mented using RDMA reads, they are not impacted (as up-
dates are) by increased CPU utilization and queuing de-
lays in FaRM’s messaging layer. With low update rates,
update operations have a latency of 60µs without repli-
cation and 120µs with replication. The latency increases
with the update rate because of longer queuing delays.

4.4 Tao
Facebook’s Tao [11] is an in-memory graph store. It
stores both nodes (e.g., users, comments) and edges (e.g.,
friend, author of). Both nodes and edges have types and
application-specific data. Tao’s workload is read domi-
nated (99.8%) with four main operation types. Clients
can read a node and its data (obj get), read the most
recent outbound edges of a given type from a given node
(assoc range), count the number of outbound edges of
a given type from a given node (assoc count), or find
all outbound edges of a given type from a given node to
a set of other nodes (assoc get).

We have implemented a version of Tao. Nodes are
FaRM objects with application data inlined and they are
uniquely named using fat pointers. Edges are stored as a
linked list per edge type in reverse timestamp order and
they are collocated with the source node. Each linked list
node stores multiple edges. The head pointers and counts
of the linked lists are stored in the source node.
obj get and assoc count are implemented with a

lock-free read of the node object. assoc range is im-
plemented with a lock-free read of the linked list head us-
ing a fat pointer cached by the client. When a new head
is inserted, the old head’s incarnation is incremented to
ensure that clients can detect this and re-fetch the head
pointer. These three operations account for 85% of the
Tao workload and they require a single RDMA read in
the common case. assoc get requires a scan of the edge
list. So it is implemented by function-shipping the opera-
tion to the machine storing the source node (and the edge
list). Update operations use distributed transactions but
they account for only 0.2% of the workload.

We evaluated the graph store using Facebook’s
LinkBench [8] with its default parameters for degree

and data size distributions. We used the recommended
“full” scale for LinkBench: a graph with 1 billion
nodes for which LinkBench generated 4.35 billion edges.
The workload was parametrized using the operation mix
in [11]. We measured a throughput of 126 million opera-
tions per second on our 20-machine cluster. FaRM’s per-
machine throughput of 6.3 million operations per second
is 10x that reported for Tao. FaRM’s average latency at
peak throughput was 41µs which is 40–50x lower than
reported Tao latencies. The three operation types that
use lock-free reads required only 1.02 RDMA reads per
operation on average. Note that our results were ob-
tained on hardware different from Facebook’s and using
LinkBench rather than the real workload. Nevertheless,
the order-of-magnitude improvements in throughput and
latency show that FaRM can implement graph stores ef-
ficiently when the graph fits in the cluster’s memory.

5 Related work

RDMA has been primarily used to improve message
passing performance, e.g., several MPI implementa-
tions [34, 35, 42] use RDMA. FaRM’s RDMA-based
messaging improves on the implementation in [35].

Several libraries (e.g., [22, 49]) and programming lan-
guages (e.g., [4, 13, 14, 47, 50]) provide a Partitioned
Global Address Space (PGAS) abstraction where pro-
cesses have both private memory and memory that can
be accessed remotely using one-sided operations. Some
of them use RDMA to implement one-sided operations
but unlike FaRM they do not support efficient lock-free
RDMA reads. Instead, they ensure consistency using
locks, barriers or messages. Additionally, they were de-
signed for batch computation and are not well suited to
building interactive online services, e.g., they lack sup-
port for persistence and either provide no fault tolerance
or create periodic checkpoints. Distributed shared mem-
ory systems (e.g., [5, 12, 43]) are similar to PGAS but
lack support for user controlled data placement. FaRM
provides a PGAS with ACID transactions.

Several projects have used Infiniband messaging prim-
itives and RDMA to improve the performance of dis-
tributed file systems [28, 33, 48], HBase [23], and Mem-
cached [7, 29, 30, 37]. These projects use RDMA to im-
prove performance of a specific service whereas FaRM
provides a general distributed computing platform. Ad-
ditionally, they use RDMA to optimize message passing
and do not support one-sided RDMA reads with the ex-
ception of [7, 37]. The work in [7] supports one-sided
RDMA reads but provides no consistency guarantees.

Pilaf [37] implements a key-value store that uses
send/receive verbs to ship update operations to the server
and one-sided RDMA reads to implement lookups. It
provides linearizability using 64-bit CRCs to detect in-
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consistent reads. FaRM’s technique to detect inconsis-
tent reads is more general. It provides serializability with
respect to general transactions. Additionally, FaRM’s
RDMA-aware hashtable design performs better because
it requires fewer RDMAs to perform lookups with higher
space utilization. It is hard to perform a direct perfor-
mance comparison because the evaluation in [37] uses a
single core in a single server and does not address the
scalability problems that we discuss in Section 2.

RAMCloud [39] describes techniques for logging and
recovery in a main memory key-value store but provides
little information about normal case operation. We use
similar techniques for logging and recovery but extend
them to deal with transactions on general data structures
in a shared address space. Unlike [39], we focus on tech-
niques to achieve good performance in the normal case.

Like FaRM, Sinfonia [3] offers a shared address space
with transactions. It introduces “mini-transactions” that
improve performance by piggybacking execution onto
the 2-phase commit protocol. FaRM offers general
distributed transactions optimized to take advantage of
RDMA together with lock-free reads that require a sin-
gle RDMA and locality optimizations that enable single
machine transactions.

6 Conclusion

We described the design and implementation of FaRM,
a new distributed computing platform that stores appli-
cation data in main memory and exploits RDMA com-
munication to achieve high throughput and low latency
at the same time. FaRM provides a shared address space
and general distributed transactions to simplify program-
ming. Since distributed transactions can be too expen-
sive for performance critical operations, FaRM also pro-
vides two mechanisms to improve performance where
needed: lock-free read-only operations and locality op-
timizations that enable single machine transactions. We
demonstrated the effectiveness of these techniques by
building RDMA-aware key value and graph stores. Our
results show that FaRM performs well: it consistently
achieves an order of magnitude better throughput and la-
tency than main memory systems that use TCP/IP on the
same physical network.
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