Ward: Implementing Arbitrary Hierarchical Policies using
Packet Resubmit in Programmable Switches

Mojtaba Malekpourshahraki

University of Illinois at Chicago
mmalek3@uic.edu

ABSTRACT

Datacenters in major cloud providers host thousands of compet-
ing tenants and applications. Network operators must ensure that
available resources are fairly shared and isolated among tenants to
meet Service Level Agreements (SLA). Moreover, operators must
be able to meet application requirements inside each tenant to pro-
vide end-user satisfaction. Providing isolation among tenants, and
enforcing application policies require deep, hierarchical policies to
isolate tenants and applications separately. Current state of the art
approaches cannot enforce deep, hierarchical policies due to the
switches’ resource limitations. In this paper, we propose Ward, a
practical approach to enforce deep hierarchical network policies
using packet resubmit in programmable switches. Packet resubmit
allows switches to reuse network resources in enforcing complex
traffic policies. Our empirical results in a sample hierarchical policy
with two levels show that Ward could enforce tenant isolation and
strict priority.

CCS CONCEPTS

« Networks — Packet scheduling; Data center networks; Packet
classification.

ACM Reference Format:

Mojtaba Malekpourshahraki, Brent Stephens, and Balajee Vamanan. 2019.
Ward: Implementing Arbitrary Hierarchical Policies using Packet Resubmit
in Programmable Switches. In The 15th International Conference on emerging
Networking EXperiments and Technologies (CONEXT ’19 Companion), De-
cember 9-12, 2019, Orlando, FL, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3360468.3366780

1 INTRODUCTION

Today’s production datacenters host a large number of compet-
ing tenants and applications. Network operators in major cloud
providers must ensure that network resources (e.g., bandwidth)
are fairly shared among tenants. Similarly, tenants must share the
assigned resources among applications to optimize intra-tenant
policies such as tail FCT. As such, today’s networks incorporate
rich policies in both control [5] and data planes [15].

Providing fine-grain traffic isolation in multi-tenant dataceters
requires a complex hierarchical policies as the number of compari-
son increases with the number of flows and tenants. Figure 1 shows
an example of a hierarchical policy using restricted directed acyclic

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CoNEXT ’19 Companion, December 9-12,2019, Orlando, FL, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7006-6/19/12.

https://doi.org/10.1145/3360468.3366780

Brent Stephens
University of Illinois at Chicago
brents@uic.edu

34

Balajee Vamanan
University of Illinois at Chicago
bvamanan@uic.edu

e

Spark

Hadoop Memcached

Tenant 1 Tenant 2

Figure 1: Sample of DAG policy

graph (DAG) [15]. A DAG determines how to share the bandwidth
among tenants and applications. The Network must ensure that two
tenants fairly share bottleneck capacity (WFQ), and Memchached
traffic is prioritized over Hadoop traffic in tenant 2 (Pri).
Unfortunately, enforcing a nested, deep policy graph with differ-
ent scheduling algorithm is challenging due to the limited resource
in tracking the large number of flows and tenants separately. Re-
cent proposals either provide an approximation of the policies [12]
or they provide a single or limited number of scheduling policies
[6, 8, 10-12] to tackle the limitation in network resources. PIFO
[14] and PIEO [13] can implement any complex hierarchical pro-
grammable scheduling policy; however, they need a large number
of queues or new hardware design for a policy graph with too
many vertices. Ether [7] provides a hierarchical policy using multi-
sided queues, but the accuracy of the Ether in policy enforcement
depends on the policy graph, and the number of queues. In this
paper, we present Ward, a practical approach to enforce complex
network policies in programmable switches. Each packet follows
the vertices in policy graph from the root to the corresponding
leaf. If the number of stages is not enough to traverse the policy
graph, Ward leverages packet resubmit [3] to tackle the resource
limitation. In the worst case, each vertex in the policy graph re-
quires at least one packet submission to the switch pipeline. When
a packet leaves the switch pipeline, it carries rate control metadata
for the processed policy. If the packet still needs to be considered
for a sub-policy, it enters to the switch pipeline for the second time
(resubmit), and merges metadata rate control decisions to the re-
sult of the current processing policy. For instance, in Figure 1, first
packet submission decides on whether the packet is violating the
WEFQ, and it applies some rate-limiting policy if needed. In the sec-
ond submission, the switch decides if the packet is violating strict
priority among the flows inside tenant 2. Note that there are only
32 stages in programmable switches [4] which that could handle
more than one policy in each submission. Thus, packet resubmit is
needed to enforce deep policy graphs. As a proof-of-concept, we
evaluate Ward on BMv2 target [2] and ns3 [1], for a simple scenario
shown in Figure 1 and a simple rate limitation policy (ECN mark).


https://doi.org/10.1145/3360468.3366780
https://doi.org/10.1145/3360468.3366780

CoNEXT *19 Companion, December 9-12,2019, Orlando, FL, USA

Policy
Enforcement

Ingress
Parser

Comparison .
Engine

N Egress »a
ueues
Parser

‘ Counters
P

Update

Figure 2: Packet resubmit in Ward

We observe that Ward could provide isolation among two tenants
with the strict priority in Tenant 2.

2 DESIGN

Ward has three main components (see Figure 2): (i) counter update,
(ii) comparison engine, and (iii) policy enforcement. When a packet
arrives, the switch traverses all vertices of the policy tree, from the
root to the leaf that represents the current processing packet. In
each step, the comparison engine compares all traffic classes that
are included in the current policy vertex, and decides if the packet’s
traffic violates the processing vertex policy or not. It also determines
the rate-limiting mechanism (e.g., ECN mark or drop) based on the
severity of the violation, and send it to the policy enforcement via
metadata. Policy enforcement decides how to merge the information
from the previous step with the policy from the last submit, and it
enforces the final decision.

Table 1 shows an example of Ward procedure. Assume that Ward
is processing a packet from Hadoop in Tenant 2 that violate both
WFQ and Pri. Since the packet belongs to Hadoop, Ward needs
to traverse WFQ and Pri in the policy graph. In first submit, as
packet violates WFQ (comparison), then Ward marks the packet
(enforcement) and resubmit the packet for Pri. If the link is fully
utilized, the comparison step marks the packet as drop as the other
flow in the policy can saturate the link. Finally, the packet is sent
to the last step, and it drops the packet. We explain each step as
follow:

Counter Update. Switches must track the sending rate of ten-
ants and flows to guarantee network isolation. Programmable switches
provide counters and sketches to count the number of packets that
each flow or tenant sends. Ward bypasses this step for resubmitted
packets.

Comparison Engine: In this step, Ward looks up the counters
and decides what kind of rate limitation is required for the packet to
meet the policy, and it sends it to the next step as packet metadata.
Table 2 shows rate-limiting approaches that are used for comparison
engine. Shortest Job First (SJF) scheduler is possible in Ward. We
plan to study SJF in our future extended version of the paper.

Policy Enforcement: This module decides how to combine the
results of the policies in previous vertices in the policy tree (e.g.,
from the root) with the current processing policy. If rate control
decision from previous submits does not match with the current
decision, the most strict policy will be applied to the packet. For
instance, the dominant policy between drop and ECN mark is drop.

3 EVALUATION AND FUTURE WORK

We evaluate the performance of Ward in Mininet/BMv2 [2] and ns3
[1]. We set up a leaf-spine topology with four servers, two leaves,
and a spine switch. We ran three different types of flows from two
tenants, and we consider a simple DAG policy in Figure 1. For sim-
plicity, we uses ECN mark as rate control mechanism. Logical AND

35

M. Malekpoursharaki, et al.

08
w06 ]l ——————————————————————————————————————
&

”””” ©o4

7777777 02

—Fri (Ward

2 3 4
90th Percentile Latency (ms)

(a) Jain’s fairness index (b) 90 percentile FCT

Figure 3: Ward performance evaluation

operation is used on ECN values in compare engine to aggregate
previous values.

Table 1: Example of policy enforcement in Ward

H Policy l Counters l Comparison l Enforce
Submit WFQ | Update ECN (ECN,¢)=ECN
Resubmit Pri - Drop (ECN,Drop)=Drop

Table 2: Summary of policies and rate control mechanisms

H Rate Control Policy

WFQ ECN, Drop
Pri Drop
SJF ECN, Priority Queue,Drop

Figure 3 shows the bottom-line performance evaluation in terms
of both fairness and tail FCT. To evaluate the performance of Ward
in enforcing WFQ, we used an ideal fair queuing (FQ) as our com-
pared scheme. Figure 3a shows the Jain’s fairness index of overall
throughput in both tenants in BMv2. This figure shows that Ward
can provide fairness among different tenants with only 6% lower
fairness index compared to the ideal fair queuing. Note that in the
experiment, the only traffic control mechanism is ECN mark and
other traffic control mechanisms such as packet drop could improve
the fairness as senders react faster to it. Unfortunately, Mininet
does not support realistic bandwidth; thus, we run the same experi-
ment in ns3 to evaluate second level of hierarchy (Pri). Figure 3b
shows results of the scenario with higher bandwidth. This figure
shows the CDF of the 90 percentile of the short flows in tenant 2
(Memcashed). Ward achieves a shorter 99 percentile for the short
flow in tenant 2, compared to the case where no strict policy is
considered.

Authors in [9] show that the total throughput of the switch
slightly reduces when packet resubmit is used; however, the pro-
posed approach in this paper requires more number of packet resub-
mit. As future work, we plan to study the effect of packet resubmit
in the performance of the Ward, and the overall throughput of the
switch, since ns3 and BMV2 cannot measure the performance of
the switch when packet resubmit is used. Moreover, we plan to
optimize the design of the Ward by using a parallel architecture in
each packet submit. Since Ward stages are simple, Ward can repeat
the stages in the same pipeline without resubmit, which remove or
reduce the number of required packet resubmit.



Ward: Implementing Arbitrary Hierarchical Policies using Packet Resubmit in Programmable Switches

REFERENCES

[n.d.]. NS-3 network simulator. http://www.nsnam.org/.

[n.d.]. P4 Language Consortium. 2018. P4-BMv2. https://github.com/p4lang/
behavioral-model.

[n.d.]. Portable Switch Architecture (PSA). https://p4.org/specs/.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review 43, 4 (2013), 99-110.

Y. Chang, A. Rezaei, B. Vamanan, J. Hasan, S. Rao, and T. N. Vijaykumar. 2017.
Hydra: Leveraging functional slicing for efficient distributed SDN controllers.
In 2017 9th International Conference on Communication Systems and Networks
(COMSNETS). 251-258. https://doi.org/10.1109/COMSNETS.2017.7945384
Vimalkumar Jeyakumar, Mohammad Alizadeh, David Maziéres, Balaji Prabhakar,
Albert Greenberg, and Changhoon Kim. 2013. EyeQ: Practical network perfor-
mance isolation at the edge. In Presented as part of the 10th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 13). 297-311.
Mojtaba Malekpourshahraki, Brent Stephens, and Balajee Vamanan. 2019. Ether:
Providing both Interactive Service and Fairness in Multi-Tenant Datacenters. In
Proceedings of the 3rd Asia-Pacific Workshop on Networking 2019. ACM, 50-56.
Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C Mogul, Yoshio
Turner, and Jose Renato Santos. 2013. Elasticswitch: Practical work-conserving
bandwidth guarantees for cloud computing. In ACM SIGCOMM Computer Com-
munication Review, Vol. 43. ACM, 351-362.

36

[o

[10

[11

[13

(14

[15

]

]

CoNEXT ’19 Companion, December 9-12,2019, Orlando, FL, USA

Ting Qu, Raj Joshi, Mun Choon Chan, Ben Leong, Deke Guo, and Zhong Liu. 2019.
SQR: In-network Packet Loss Recovery from Link Failures for Highly Reliable
Datacenter Networks. In 2019 IEEE 27th International Conference on Network
Protocols (ICNP). IEEE.

Hamed Rezaei, Muhammad Usama Chaudhry, Hamidreza Almasi, and Balajee
Vamanan. 2019. ICON: Incast Congestion Control using Packet Pacing in Data-
center Networks. In 2019 11th International Conference on Communication Systems
& Networks (COMSNETS). IEEE, 125-132.

Hamed Rezaei, Mojtaba Malekpourshahraki, and Balajee Vamanan. 2018.
Slytherin: Dynamic, network-assisted prioritization of tail packets in datacenter
networks. In 2018 27th International Conference on Computer Communication and
Networks (ICCCN). IEEE, 1-9.

Naveen Kr Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.
Approximating fair queueing on reconfigurable switches. In 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 18). 1-16.

Vishal Shrivastav. 2019. Fast, scalable, and programmable packet scheduler in
hardware. In Proceedings of the ACM Special Interest Group on Data Communica-
tion. ACM, 367-379.

Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin
Katti, and Nick McKeown. 2016. Programmable packet scheduling at line rate. In
Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 44-57.

Brent Stephens, Aditya Akella, and Michael Swift. 2019. Loom: Flexible and
Efficient {NIC} Packet Scheduling. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19). 33-46.


http://www.nsnam.org/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://p4.org/specs/
https://doi.org/10.1109/COMSNETS.2017.7945384

	Abstract
	1 Introduction
	2 Design
	3 Evaluation and Future Work
	References

