
Dynamically Sharing Memory between Memcached Tenants
using Tingo

AmirHossein Seyri
University of Illinois at Chicago

aseyri2@uic.edu

Abhisek Pan
Microsoft

abpan@microsoft.com

Balajee Vamanan
University of Illinois at Chicago

bvamanan@uic.edu

ABSTRACT
Web applications utilize in-memory caching systems to reduce the
load on backend databases and improve the performance of the
system. These cache environments normally host multiple tenants
simultaneously, signifying the need to efficiently manage the under-
lying physical memory allocation in these environments. Off-the-
shelf caches statically divide the memory between tenants, which
often leads to poor utilization and low hit rates for some of these
tenants. In this work, we present Tingo, a multi-tenant cache envi-
ronment designed to adequately manage the memory allocation of
cache tenants to help them adapt to their workloads and optimize
their hit ratios, by dynamically reallocating memory pages among
them.

CCS CONCEPTS
• Computer systems organization → Distributed architectures;

KEYWORDS
Multi-tenancy, In-memory Key-value Stores, Shared-memory, Mem-
cached
ACM Reference Format:
AmirHossein Seyri, Abhisek Pan, and Balajee Vamanan. 2019. Dynamically
Sharing Memory between Memcached Tenants using Tingo. In The 15th
International Conference on emerging Networking EXperiments and Technolo-
gies (CoNEXT ’19 Companion), December 9–12, 2019, Orlando, FL, USA. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3360468.3366782

1 INTRODUCTION
In-memory key-value stores are a critical part of web services. In-
memory caching systems such as Memcached [7] are a popular
solution widely used by major web service providers such as Face-
book to reduce the load on backend databases and the web request
latency [1]. Memcached is an in-memory cache that receives the
data by a key-value API and stores them on DRAM using a hash
table. It uses slabs to store objects of varying sizes and prevent mem-
ory fragmentation. In slab allocation, the total memory allocated
to the cache is divided into small and fixed-size pieces. Objects
(items) are then categorized into slab classes depending on their
size, and those with similar sizes will be stored in the same class.
When the cache is empty, upon receiving new items, a newmemory

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’19 Companion, December 9–12,2019, Orlando, FL, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7006-6/19/12. . . $15.00
https://doi.org/10.1145/3360468.3366782

page (1MB) is allocated to the cache and assigned to this particular
slab class. Each class has a separate queue to keep track of the order
of items and runs LRU (Least Recently Used) as the eviction policy.

Major cloud providers such as Microsoft offer in-memory key-
value storage [6] as a service to thousands of customers. However,
multiple tenants1 must share underlying resources such as CPU,
memory, and I/O among them. Because of the deployment scale
of in-memory caches and their ability to cut latency by multiple
orders of magnitude compared to disks, minor improvements in
memory utilization and hit rate of them will lead to a significant
increase in performance of web applications [3] and will reduce
their operating costs. For example, consider a web application uti-
lizing a Memcached instance with a 97% hit ratio. If the average
cache latency was 100 µs and the access latency of the database
was 10 ms, then the total expected latency of the application will
be 397µs (= 0.97 × 100µs + 0.03 × 10ms). If the cache hit ratio gets
to increase by only 1%, the total latency will be reduced to 298µs (=
0.98 × 100µs + 0.02 × 10ms), which is a 25% improvement.

The most common approach of sharing the cache is by statically
partitioning the main memory among these tenants. This technique
is inefficient since most workloads are dynamic and differ in as-
pects such as working set size, access pattern, and the relationship
between hit rates and cache sizes (i.e., hit rate curves). There might
be a tenant needing more space while another tenant is not fully uti-
lizing its cache capacity. Because of the possibility of rapid changes
in the workloads, in order to keep the overall throughput of the
system high, memory allocation of the tenants should be adjusted
frequently and manually, making this approach expensive.

Recent work such as Cliffhanger [2] greedily optimizes the space,
but only within the tenant. Cliffhanger uses an algorithm that runs
in addition to the Memcached system and optimizes the memory
allocation by computing the gradients of hit rate curve for each
eviction queue. It is able to reallocate space from queues that least
benefit frommemory to queues that benefit the most. Memshare [3]
proposed a system by utilizing the Cliffhanger algorithm in a cache
that uses a log-structured memory instead of a slabbed memory. We
make the key insight that an ideal multi-tenant cache environment
should adapt to the working set size of tenants by reallocating
memory from tenants who do not need it at the moment, and
giving it to tenants that benefit the most.

In this work, we propose Tingo2, the first greedy algorithm that
optimizes the hit rate of all tenants while minimizing the impact on
fairness among tenants. Cliffhanger is limited to the slabs within
the tenant, whereas in our system, the slabs of other tenants are also
considered as a source of memory. Our proposal is based on using

1We use the words “tenants” and “applications” interchangeably throughout the paper.
2“Tingo” is a word from Easter Island, and it means to borrow objects from a friend’s
home one-by-one until there is nothing left.[5]

40

https://doi.org/10.1145/3360468.3366782
https://doi.org/10.1145/3360468.3366782

CoNEXT ’19 Companion, December 9–12,2019, Orlando, FL, USA AmirHossein Seyri, Abhisek Pan, and Balajee Vamanan

shared-memory for multiple Memcached instances. Shared-memory
allows the system to efficiently move memory pages between these
processes.

2 TINGO
In Tingo, a segment of memory is shared between different Mem-
cached tenants. This shared segment is initialized by setting up its
size. Every tenant requesting a page will be allocated space inside
the segment. A small piece of memory called Tracker will also be
shared between tenants and used as a central entity controlling
the use of the shared-memory and managing the allocation and
reallocation of the memory pages. The memory could be initially
allocated to the tenants either statically, that is the same as the
traditional cache sharing mechanism in which the system is not
able to reallocate the memory, or dynamically (greedy), in which
there is no memory limit for any of the Memcached instances and
each one can use the shared-memory as much as they have data to
store.

Tingo has the ability to move the memory pages by utilizing
shadow queues, similar to Cliffhanger [2]. However, unlike Cliffhanger,
Tingo moves memory, not only between slab classes within a ten-
ant, but also across tenants. Thus, Tingo adapts to the changes in
their workloads. Every queue of each slab class will have a shadow
queue as an extension that is used to keep the most recent evicted
items. By counting the hits on the shadow queue, it’s able to esti-
mate the hit rate on a virtually extended main queue. The queue
with higher hits would benefit more from extra memory and will
be granted a new page, at the expense of another queue losing one.
The important feature the distinguishes Tingo from previous work
is that, they are only able to resize a slab class by resizing another
slab class from the same tenant, whereas Tingo considers all slab
classes across all tenants.

This provides Tingo with greater flexibility for memory allo-
cation, in terms of both total allocated size and internal queue
sizes (memory allocated to a each slab class), meaning Tingo ten-
ants are not bound to their initial allocated memory limit. In other
words, they can grow their total size if they need to or resize the
space allocated to each slab class (queue sizes) according to the
workload they are receiving, or even give away their spare memory
pages to another tenant and reduce their size.

The shared-memory is carefully managed and distributed among
tenants, in such a way that no tenant is able to access the memory
pages allocated to other tenants. When a page is chosen to move
between tenants, all items stored in that page will be evicted from
the tenant’s queue, and the memory is fully cleared before getting
reallocated, preventing the new tenant from accessing the previous
owner’s items.

3 SYSTEM EVALUATION
We implemented Tingo on top of Memcached and evaluated it using
Cloudsuite [4] benchmark tool and a pre-built Twitter dataset. We
scaled the dataset to 10 different sizes (1 to 10GB), and ran 14 sets of
benchmarks for 4 tenants (total 56), each with a different workload
size. In all benchmarks, the shared-memory was 16GB in size and
equally divided among tenants (4GB each), which was equal to the
total size of workloads of the 4 tenants participating in the set.

Figure 1: Miss Ratio curves for a demanding tenant, compar-
ing the 3 models (Memcached, Cliffhanger and Tingo). Ini-
tial allocated memory is 4GB and the workload size is 8GB.

Wemeasured the hit ratio improvements andmemory allocations
of these 56 tenants over a 48-hour duration. In addition to Tingo,
we evaluated the base model of Memcached and base Cliffhanger
using the same settings and physical testbed and compared them
to Tingo. We ran these experiments on two machines: a 64-core
2.00GHz Intel(R) Xeon(R) CPU E7-4820, and a 64-core 2.4GHz AMD
Opteron(tm) Processor 6378, both with 256GB of DDR3 DRAM,
running Ubuntu Server 18.04 and Linux kernel version 4.15.0-58.

3.1 Results
The evaluation results show that, compared to Cliffhanger, Tingo
decreases the miss rates by an average of 49% and a maximum of
73% for the demanding tenants (tenants that are allocated smaller
space compared to their workload size). Figure 1 demonstrates the
miss ratio curves for one of these tenants that was initially allocated
memory half of its workload size. The memory size of this tenant
was initially 4GB, and its final allocated space after the duration of
benchmarks was 5.2GB.

Our preliminary algorithm does not take fairness into considera-
tion, but we plan to consider fairness in our future work.

REFERENCES
[1] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload analysis of a large-scale key-value store. In ACM SIGMETRICS
Performance Evaluation Review, Vol. 40. ACM, 53–64.

[2] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti. 2016.
Cliffhanger: Scaling performance cliffs in web memory caches. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 16). 379–392.

[3] Asaf Cidon, Daniel Rushton, Stephen M Rumble, and Ryan Stutsman. 2017.
Memshare: a dynamic multi-tenant key-value cache. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17). 321–334.

[4] Cloudsuite. 2019. Cloudsuite - A Benchmark Suite for Cloud Services. (2019).
http://cloudsuite.ch/ [Online; accessed 20-September-2019].

41

http://cloudsuite.ch/

Dynamically Sharing Memory between Memcached ... CoNEXT ’19 Companion, December 9–12,2019, Orlando, FL, USA

[5] A.J. de Boinod. 2006. The Meaning of Tingo: And Other Extraordinary Words
from Around the World. Penguin Adult. https://books.google.com/books?id=
pzrxvAFZsuEC

[6] Redis Labs. 2019. Redis. (2019). https://redislabs.com/ [Online; accessed 20-
September-2019].

[7] Memcached. 2019. memcached - a distribtued memory object caching system.
(2019). https://memcached.org [Online; accessed 20-September-2019].

42

https://books.google.com/books?id=pzrxvAFZsuEC
https://books.google.com/books?id=pzrxvAFZsuEC
https://redislabs.com/
https://memcached.org

	Abstract
	1 Introduction
	2 Tingo
	3 System Evaluation
	3.1 Results

	References

