
Superways: A Datacenter Topology for Incast-heavy workloads

Hamed Rezaei
hrezae2@uic.edu

University of Illinois at Chicago

Balajee Vamanan
bvamanan@uic.edu

University of Illinois at Chicago

ABSTRACT
Several important datacenter applications cause incast congestion,
which severely degrades flow completion times of short flows and
throughput of long flows. Further, because most flows are short
and the incast duration is shorter than typical round-trip times,
reactive mechanisms that rely on congestion control are not effec-
tive. While modern datacenter topologies provide high bisection
bandwidth to support all-to-all traffic, incast is fundamentally a
many-to-one traffic pattern, and therefore, requires deep buffers or
high bandwidth at the network edge.

We propose Superways, a heterogeneous datacenter topology
that provides higher bandwidth for some servers to absorb incasts,
as incasts occur only at a small number of servers that aggregate
responses from other senders. Our design is based on the key ob-
servation that a small subset of servers which aggregate responses
are likely to be network bound, whereas most other servers that
communicate only with random servers are not. Superways can be
implemented over many of the existing datacenter topologies and
can be expanded flexibly without incurring high cost and cabling
complexity. We also provide a heuristic for scheduling jobs in our
topology to fully utilize the extra capacity. Using a real CloudLab im-
plementation and using ns-3 simulations, we show that Superways
significantly improves flow completion times and throughput over
existing datacenter topologies. We also analyze cost and cabling
complexity, and discuss how to expand our topology.

CCS CONCEPTS
•Networks→Layering;Networkmanagement;Networkpro-
tocol design.

KEYWORDS
datacenter networks, incast control, network topology

ACM Reference Format:

Hamed Rezaei and Balajee Vamanan. 2021. Superways: A Data-
center Topology for Incast-heavy workloads. In
Proceedings of theWebConference 2021 (WWW’21),
April 19–23, 2021, Ljubljana, Slovenia. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/
3442381.3449966

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449966

1 INTRODUCTION
Datacenters provide on-demand access to vast amounts of Internet
data. The applications that run in datacenters can be broadly classi-
fied as foreground applications, which perform distributed lookups
to service user queries, and background applications, which pe-
riodically reorganize, backup, and replicate data. For each query,
foreground applications fetch data from a large number of servers.
The queries, therefore, cannot complete before receiving replies
from most of the servers. Consequently, their response time is
determined by the tail (e.g., 99%-ile) of network flow completion
times (FCT) [31]. Further, it is well known that foreground applica-
tions generate mostly short flows (e.g., 1KB to 10KB) [52, 64] and
background applications generate mostly long flows (e.g., 1MB to
100MB) that are sensitive to network throughput [17, 18].

Because foreground applications concurrently fetch data from
a set of servers, they cause synchronized responses from servers
that cause severe queue buildup at the switch port connected to
receiver server. This phenomenon, called incast, is known to dilate
tail FCTs (i.e., degrade response times) and cause packet drops (i.e.,
reduce goodput) [18, 28]. Because datacenter switches use shallow
buffers [23, 25, 63], it is likely that short, incast flows overrun the
port buffer. Our experiments (Section 5) confirm this behavior.

Incasts are synchronized bursts of many-to-one short flows that
fundamentally cause an over-subscription of the receiver (aggre-
gator) link. Recent measurements on datacenters show that the
duration of most incasts (i.e., <50`𝑠) is shorter than typical round-
trip times (RTT) (i.e., 100 `𝑠) [64]. Most congestion control ap-
proaches [18, 21, 29, 35, 60] require at least a one RTT to react,
which is absolutely late. Packet scheduling approaches prioritize
short flows [20], or flows with near deadlines [44], but do not help
when short, incast flows that have similar sizes (or deadlines) con-
tend for limited buffer capacity, which is the common case.

Today’s incast-heavy applications (e.g., Web search, social net-
works) and high-bandwidth network topologies (e.g., fat-trees [40])
imply that receiver congestion is more severe than congestion
in the network core, as reported by Facebook [52], Google [55],
and Microsoft [38]. While existing datacenter topologies improve
all-to-all throughput by providing high bisection bandwidth (e.g.,
[17, 58]), which helps applications such as those applications that
perform data-mining tasks, these topologies do not alleviate incast.
Our insight is that effectively handling incasts, which are short-lived
many-to-one traffic bursts, require either deep buffers or high band-
width at the network edge, to absorb these bursts. Designing large
buffers that operate at high speed is hard [22, 37] and the associated
silicon-level changes would likely impede early deployment [19].
Further, large buffers cause high latency and could even render
some congestion control algorithms unstable [42]. Recent works
such as [18], [20], and [29] show that using large buffers exacerbates
tail flow completion times as it increases waiting time of packets
by queuing them behind large flows.

https://doi.org/10.1145/3442381.3449966
https://doi.org/10.1145/3442381.3449966
https://doi.org/10.1145/3442381.3449966

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Rezaei and Vamanan

Wemake the key insight that Online Data-Intensive (OLDI) appli-
cations (i.e., foreground applications) partition work such that a few
aggregator processes gather data from a large number ofworker pro-
cesses. A direct implication of this behavior is that the aggregators
tend to be network bound while they are not CPU bound at all. Our
analysis of CPU and network utilizations of aggregator and worker
processes using the open source Apache Solr search engine [59]
confirms this assumption (see Figure 13 and Figure 14). Motivated
by this insight, we propose Superways, a heterogeneous network
topology optimized for incast-heavy applications. Superways is a
datacenter topology that provides additional links only for those
servers that act as incast aggregators (i.e., the server that receives
synchronized responses). Because increasing the bandwidth of all
edge links is expensive and not all edge links are equally likely to
experience incast, our proposal provides additional bandwidth only
for incast aggregators.

Unlike existing homogeneous topologies where jobs can be
scheduled on any random server, our heterogeneous design has
a direct implication for the cluster scheduler. Toward that end,
we propose a greedy heuristic that maps incast aggregators to the
topology using their incast degrees (i.e., the number of concurrent
connections), whichmay be obtained using offline profiling or using
domain knowledge of applications. Our heuristic simply attempts
to map the most incast-heavy job first and proceeds in the order of
decreasing marginal utility (i.e., an application that stands to gain
the most with an additional link gets picked first). We elaborate on
this heuristic in Section 3.

While there are some existing topologies that provide additional
links for servers (e.g., Subways [41], Bcube [33]), their homogeneous
design is a serious limitation when you consider the heterogeneity
in the link congestion; only a small fraction of incast aggregators
need more receive bandwidth yet these proposals provision expen-
sive receive bandwidth equally in all nodes. In other words, for
a given cost, these schemes are not as effective as Superways be-
cause they do not exploit the inherent heterogeneity in the network
traffic and the mismatch between CPU and network utilizations
between incast aggregators and worker servers. We summarize our
contributions as follows:
• We propose Superways, a heterogeneous datacenter topology
that is optimized for incast-heavy workloads, which cause
receiver congestion in the common case.
• We present a greedy heuristic for placement of applications
with varying incast degrees in our heterogeneous topology.
• We implemented Superways on a real testbed (CloudLab [50])
and show that our proposal improves tail FCT and through-
put by factors of 1.83x and 1.38x over a leaf-spine topology.
• Our large-scale simulations show that Superways achieves
substantial improvements in both tail FCT and throughput
over existing proposals (leaf-spine, Bcube [33], Jellyfish [58],
and Subways [41] topologies): Superways improves tail FCT
by a factor of 1.8x (reduce by 45%) and throughput by a factor
of 1.2x, over BCube, Jellyfish, Leaf-spine, and Subways, on
average.

Figure 1: Homa’s performance with and without incast of
extremely short flows

2 MOTIVATION
There has been a renewed interest in congestion control for data-
centers over the last few years. Recent studies [52] on datacenter
traffic reveal that most flows are extremely small. Because most
congestion control schemes require multiple round trips to adjust
rates, they are not effective when flows are very small. Recently,
a receiver-driven congestion control called Homa [45] has been
proposed, which improves the tail latency compared to its predeces-
sors. Homa approximates SRPT by scheduling packet transmissions
from the receivers. In fact, Homa divides each flow to unscheduled
and scheduled parts, and sends the scheduled part if and only if
the receiver asks to do so when it receives the unscheduled part.
However, since datacenter flows are extremely small, it is difficult to
divide them and almost all the data will be transmitted as a unsched-
uled (i.e., no grant needed) data portion. Therefore, many packets
will be dropped when incast of short flows happens. We simulated
a small scale datacenter in OMNET++ [61] to check performance of
Homa when incasts of extremely short flows exist. Figure 1 shows
the result of this experiment at 60% load. The left hand side figure
shows Homa’s performance when incast does not exist and the
figure on the right shows its performance when incast of short
flows exists. X-axis shows the total delay in milliseconds. We see
from the figure that some packets that fall in tail are dropped even
more than twice (RTO=3). Thus, receiver-driven methods such as
Homa can help but only after the first RTT, which is late in such
networks that require very low latency (i.e., zero packet drop).

The current trend of increasing intensity of short flows and in-
cast imply that congestion control schemes are unlikely to solve this
problem. Therefore, modern datacenters must resort to other solu-
tions such as large (shared) buffers or use higher capacity topologies
such as Subways [41] that provides higher bandwidth for endhosts.
Modern shared-buffer switches are equipped with dynamic sharing
technologies such as Dynamic Threshold (DT) [30] or Enhanced
Dynamic Threshold (EDT) [53]. Although these methods perform
well in case of mild congestions, they face various issues when
incast congestion happens. For example, DT always keeps a specific
amounts of buffer reserved for other inactive ports, while a port that
experiences incast might need it. To further evaluate DT’s perfor-
mance, we simulated a datacenter network using reported numbers
in previous studies (e.g., [52] and [64]) to measure the performance
of DT in case of incast. we explain the workload details later in
section 5. Figure 2 shows the performance of DT in terms of tail FCT.
We set the Retransmission timeout to 3 seconds. Figure 2 shows

Superways: A Datacenter Topology for Incast-heavy workloads WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Figure 2: DT’s performance in shared buffers

(a) Over-subscription
factor of 1

(b) Over-subscription
factor of 2

Figure 3: Fat-tree with and without over subscription

that DT suffers from excessive packet drops at high loads (60% to
80%) due to its design that keeps the buffer underutilized. Therefore,
while DT is a great solution for mildly congested networks, it will
not help in busty environments such as datacenter networks. EDT,
however, performs better; but it may hurt fairness as it assigns the
whole buffer to a single port when a burst of packets arrives at that
port. In such cases that more than one server is experiencing incast,
EDT performs even worse.

We argued that neither congestion control methods nor exist-
ing dynamic buffer management schemes are able to solve incast
problem. But what about datacenter topologies?

Many topologies have been proposed for datacenter networks
[17, 57, 58] in past few years; most are designed to improve through-
put by increasing the network bisection bandwidth. One of the
popular designs is the hierarchical design, which uses multiple
levels of switches to increase bandwidth between a pair of racks.
Hierarchical design increases the available bandwidth between
server pairs by providing multiple paths from source to destination.
The exact number of paths between racks depends on the over-
subscription ratio of the topology. Higher over-subscription ratio
means the network has less uplink capacity compared to downlink
capacity and there is more chance for forwarding multiple flows
over the same path. Figure 3 shows two fat-tree topologies; one
with over-subscription ratio of one (Figure 3 (a)) and the other one
with over-subscription ratio of two (Figure 3 (b)). As we see in
Figure 3, flows are more likely to share the same path in Figure 3
(b) compared to Figure 3 (a).

High bisection bandwidth is not a solution for incast problem.
Consider an incast scenario in which 4 servers (S1, S2, S3, and
S4) are sending data to a single receiver (R), simultaneously. Since
the bottleneck is the last hop switch that connects to the receiver

(shown in red), although chance of core layer congestion is much
less in the non-blocking topology (i.e., Figure 3 (a)), both non-
blocking and oversubscribed topologies perform poorly when incast
happens. On the other hand, topologies such as Bcube and Subways
that provide high bandwidth at the network edge are prohibitively
expensive, which makes them almost impossible to implement.

Hierarchical topologies come with some issues (e.g., cost ineffi-
ciencies, low throughput, etc) that motivated researchers to work
on topologies such as Jellyfish [58], Proteus [56], and [57] that use
random graphs rather than trees. Jellyfish [58] uses random graphs
to connect servers and switches. Jellyfish’s design is unstructured,
which improves throughput of long flows. However, in case of in-
cast, it will not help as incast happens at the network edge rather
than network core.

3 SUPERWAYS
The high-level idea of Superways is to provision more bandwidth
for incast aggregators. We argue that providing more bandwidth
for incast aggregators is achievable because incast aggregators con-
tribute to small fraction of total number of servers in a datacenter
network. Our analysis on publicly available Facebook datacenter
traffic dataset shows that around 3% of servers are likely incast
applications, as they receive a large number of flows in a short
period of time. These servers receive 18 times more flows compared
to the rest of servers (i.e., 97% of servers), on average.

Above analysis shows that the number of incast applications in
a real datacenter is reasonably small so that providing additional
links only for incast applications is feasible. A naive approach is
to provision one link from leaf switch to incast aggregator for
each worker server, so that all worker servers can send at full rate.
However, this would be prohibitively expensive. Further, incast
degree would vary drastically across applications, and perhaps may
even vary with time. To tackle this problem, we leverage the key
observation that most incast flows tend to be short, and are unlikely
to utilize the full line rate. Therefore, we propose provisioning
receive bandwidth based on a number of factors, including the
number of links, average size of flows, and buffer sizes of routers.
We discuss the details of our link provisioning method later in
Section 3.1.

Although providing additional links for servers is not a new
idea, Superways brings two novelties: (1) it selectively provides
additional links only for those servers that require more bandwidth
(i.e., those servers that host incast applications), and (2) it greedily
finds the optimal number of additional links proportional to incast
degrees of incast applications. At its core, Superways co-locates
incast applications on certain physical servers (e.g., multiple virtual
machines each of which holds one or more incast applications) and
then greedily finds the optimal number of additional links that are
required to absorb all those incast applications’ packets combined.
For example, we select a physical server in one of the racks to move
a certain number of incast applications to this server, and then we
calculate the number of additional links required for serving all the
incast applications’ traffic combined.

The question is: is this feasible to relocate applications in the
network? Fortunately, due to rapidly growing use of containerized
applications in datacenters, incast applications can be deployed in
containers, and therefore, managing these applications (e.g., moving

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Rezaei and Vamanan

them to another cluster) is easy to do using application container
management tools such as Kubernetes [26]. Nowadays, almost all
modern datacenters use containerized applications, which is a great
advantage for topologies such as Superways that require freedom in
server placement. Moreover, recent studies such as [39] show that
although traffic characteristics such as load and packet sizes change
frequently, large scale network characteristics such as workload
changes infrequently. Thus, there is no need to constantly relocate
the incast applications when Superways is implemented.

In contrast to other datacenter topologies that provide additional
links between servers and leaf switches, Superways connects in-
cast applications directly to spine switches (or inner switches in
random graph topologies) to make a trade-off between cost and
performance. By connecting to spine switches, Superways does not
saturate uplink capacity (i.e., links from leaf to spine switches),
which improves throughput and tail latency of the flows. This is
critically important because provisioning additional links between
servers and leaf switches will increase the over-subscription ratio
of the network, which increases the number of in-network packets.
Note that the network capacity remains unchanged. This issue leads
to unpredictable consequences such as excessive packet drops and
high queuing delays. That is why previous studies that provision
additional links from servers to leaf switches require more leaf
switches to absorb the extra packets. Also, providing additional
links from servers to spine switches may seem more expensive
compared to other methods that connect to leaf switches; however,
since spine switches are more powerful in terms of link speed and
number of links, Superways cuts the overall cost by decreasing the
number of required cables, number of server NICs, and number
of additional switches. Note that link speed directly affects the
number of required links. For example, a zero-buffer switch port
that operates at 40 Gbps, supports 4 senders that are sending at 10
Gbps, without loss of throughput and without any packet drops.
We will further discuss the reasons for connecting to spine switches
in section 5.

3.1 Placement heuristic
Knowing the incast degree of each of incast applications is key
in finding the number of additional links. This could be achieved
through monitoring the network traffic or previous knowledge
about the number of machines that each incast application will
query. Although each incast application is expected to query a fixed
number of servers, it may query a different number of servers in
some cases, depending on the task that is requested by the end
user. We argue for considering average incast degree of each of
incast applications. We will discuss our decision in details later in
section 5. Once we measured the average incast degree of each
incast application, we sort them in a descending order to see which
of incast applications needs more additional link(s) (i.e., more band-
width+buffer space) and which ones require less or even no extra
links.

We start assigning the incast application with highest average
incast degree to a physical server. This can be done through moving
the VM that hosts this incast application to an elected physical
server, or installing the incast application on the elected server in
a containerized environment. The physical server that hosts one
or more incast applications is called incast server throughout this

paper. We start from one of the racks that is closest to the rack of
spine switches, and then we pick one of the servers in this rack as
our elected server, which will be hosting the first incast application.
In random graph topologies, we use the same approach as we need
to keep the wiring lengths as short as possible.

Once we placed the first incast application with highest incast
degree on the designated incast server, we have multiple rounds of
calculations to find the minimum number of additional links. Table
1 shows the parameters that we use in these calculations. Below
we will explain some of these parameters.

Due to various delays at kernels (e.g., handling interrupts, etc),
all incast senders do not start sending their data at the same time.
Therefore, we consider a jitter factor in our formulas (shown by
𝛼). 𝛼 should be set to a value close to 1 (e.g., 0.8 - 0.9). In our
experiments, we observed that about 80% of the sender servers
send their messages at the same time.

We know from previous studies that incast senders of a particular
incast application can be anywhere in the network. We call those
incast servers that reside on a different rack remote incast senders
(e.g., S3 through S6 in Figure 4). We need to differentiate remote
and local incast senders because local incast senders could be able
to use the current link (i.e., leaf switch to server) without requiring
any extra links. Also, even remote incast senders might be able to
use the current link without any packet drops. This will definitely
change Superways’ design. Therefore, we use 𝛽 to show the ratio
of local incast senders to the total number of incast senders (𝛽 =
1/3 in Figure 4).

Average flow size varies depending on the workload in different
datacenter networks. However, as shown in figure 6 of [52], about
60% of the flows are 1 KB or below in Web search workloads. Our
analysis on Facebook datacenter traffic confirms that flows in Web
search workloads are mostly small so that the average flow size for
all flows is close to 1500 bytes. Although this number may vary
among different datacenters and different workloads, the nature
of current datacenter workloads implies that most flows are in the
range of 1 KB to 10 KB in size. Similar numbers have been reported
in previous studies such as [32].

In the first round of calculations, we use formula 1 to check if
incast senders that reside on the same rack (i.e., local incast senders:
S1 and S2 in Figure 4) exceed the buffer capacity of the existing
link from leaf switch to incast server. Since buffer size of each port
plays a key role in handling incast (i.e., reduces packet drops by
storing packets in a queue), we consider both bandwidth and buffer
size in our calculations.

𝑈𝑙 =
𝛼 × (𝛽 × 𝑑) × 𝑠

𝐵𝑙
(1)

𝑈𝑙 is the ratio of used buffer to the total buffer capacity of the link
that connects the leaf switch to an incast server, and therefore,
could be either less or greater than one. We analyze both cases in
the following sections.

3.1.1 𝑈𝑙 is greater than one. If𝑈𝑙 is greater than one, then it means
local incast senders of that particular incast application will over-
flow the leaf switch’s buffer. For example, although incast degree of
R in Figure 4b is 6, if S1 and S2 (local incast senders) start sending
their data at the same time, they will overflow the leaf switch’s

Superways: A Datacenter Topology for Incast-heavy workloads WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 1: Parameters and descriptions

Parameter Description
𝛼 Jitter factor
𝛽 Ratio of local incast senders to all senders
\ Ratio of spine link speed to leaf link speed
𝐵𝑠 Spine switch per-port buffer
𝐵𝑙 Leaf switch per-port buffer
d Incast degree
s Average flow size in Bytes
𝑈𝑙 Fraction of occupied buffer - leaf switch
𝑟𝑠 Per-port residual buffer - spine switch
𝑟𝑙 Per-port residual buffer - leaf switch
𝑁 Maximum number of parallel senders
𝐿 Number of additional links

(a) Superways/leaf-spine (b) Leaf-spine

Figure 4: Superways/leaf-spine and regular leaf-spine

buffer assigned to the port that connects to incast server. There-
fore, we use formula 2 to calculate the maximum number of flows
(shown by N) that can pass through the leaf switch towards the
incast server without any packet drops.

𝛼 × 𝑁 × 𝑠
𝐵𝑙

= 1 (2)

Because local incast senders already exceed the leaf switch’s port
buffer, some of them should use the additional link(s) that we will
provide for the remote incast senders. Therefore, we need to update
the ratio of local incast senders to the incast degree in order to
consider some of them as remote incast senders. We use formula
3, to calculate the updated number of local incast senders that can
use the current leaf switch’s link capacity:

𝛽 =
⌊𝑁 ⌋
𝑑

(3)

We use flooring to provide a safe margin for our calculations. At
this point, we have the updated number of remote incast senders
that should use the additional link(s). Next, we calculate the num-
ber of additional links (from incast server to spine switch) that is
required by the remote incast senders (1-𝛽):

𝐿 =
𝛼 × ((1 − 𝛽) × 𝑑) × 𝑠

\ × 𝐵𝑠
(4)

We consider the value of ⌈𝐿⌉ as the minimum number of additional
links that is sufficient to avoid packet drops. We do not consider
the existing link (i.e., from spine switch to leaf switch) as a usable
link for incast senders. Instead, we leave this link for other servers
that are located in the same rack. Note that due to different link
speeds at spine and leaf switches, we need to add another factor (\)

to our formula. This factor is always equal or greater than one, as
spine switches are equipped with faster NICs. The larger the \ the
better because that particular spine port can support more incast
applications.

Depending on the value of 𝐿, we might have a large value of
residual buffer that could be used by other incast applications. For
example, If 𝐿 = 1.2, then we need to provide 2 additional links
to absorb all incast packets; but, 80% of the second link’s buffer
capacity is still available for other incast applications. Therefore,
we calculate the residual buffer of the spine link as follows:

𝑟𝑠 ← 𝐵𝑠 × (⌈𝐿⌉ − 𝐿) (5)

At this point, we need to find an incast application that is able to
use this residual buffer. This is the classic Knapsack problem: we
pick the incast application with highest incast degree that fits in
the residual buffer. We start from the top of the sorted list of incast
degrees and calculate the value of 𝛼×𝑑×𝑠

\×𝑟𝑠 for each incast application.
Once this value becomes less than one, we assign the corresponding
incast application to the current incast server. Note that all local
and remote senders of the recently added incast application should
use the additional link(s); because there is no more available buffer
in the link from leaf switch to incast server.

We update the value of 𝑟𝑠 after assigning the second incast ap-
plication to the incast server (using formulas 4 and 5). If still any of
incast applications can use the updated residual buffer, we use the
same approach to install it on this incast server. On the other hand,
if the residual buffer is not enough for any of incast applications,
we move forward to the next server in this rack and repeat the
whole process on a new incast server.

3.1.2 𝑈𝑙 is less than one. If𝑈𝑙 is less than one, then it means current
local senders do not overflow the leaf switch’s buffer. In other words,
depending on the size of residual buffer, one (or even more) of the
remote incast senders might be able to use the leaf switch’s port.
We continue our calculations by measuring this residual buffer:

𝑟𝑙 = 𝐵𝑙 × (1 −𝑈𝑙) (6)
Now we check if all the remote incast senders fit in the residual

buffer or not:
𝑈𝑙 =

𝛼 × ((1 − 𝛽) × 𝑑) × 𝑠
𝑟𝑙

(7)

There are two possibilities depending on the value of𝑈𝑙 :
• 𝑈𝑙 is still less than one: This means all local and remote incast
senders can use the existing link connected from leaf switch
to server, without any packet drops. Next, we calculate the
residual buffer as follows:

𝑟𝑙 = ⌈𝑈𝑙 ⌉ −𝑈𝑙 (8)

Lastly, we check the sorted list of incast degrees to find the
incast application that can use the residual buffer. Again,
we greedily pick the application with highest incast degree
that fits in the residual buffer. Once found, we co-locate it
with existing incast application on the current incast server.
If the residual buffer is not enough for any of those incast
applications, we leave it unassigned. This helps in having
extra capacity when a burst of packets arrives at the switch
port.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Rezaei and Vamanan

• 𝑈𝑙 is larger than one: We need to provide additional links
from incast server to a spine switch to absorb remote incast
senders’ packets. However, we should fully utilize the leaf
switch’s residual buffer first. Therefore, we repeat the pre-
vious calculations (formulas 2 and 3) to see how many of
remote incast senders can use the link from leaf switch to in-
cast server, and how many of them should use the additional
links. Next, we use formulas 4 and 5 to find the optimal num-
ber of additional links, and then we calculate the residual
buffer of these additional links that can be used by other
incast applications:

If the residual buffer is enough to absorb incast packets of any
of the incast applications (depending on their incast degree), we
bin-pack it on the current incast server. However, if there is no
more residual buffer, we move to the next server in the current
rack and select it as our new incast server. Above calculations will
continue until all incast applications are assigned to their incast
servers.

If the number of incast applications is very large, we may need
to proceed to the next rack (which is the second closest to spines
rack) and pick a server as the new incast server.

3.2 Routing and load balancing
Superways creates a heterogeneous topology, and therefore, re-
quires a load balancingmethod other than equal-cost load balancing
schemes such as Equal Cost Multi Paths (ECMP). This is because
there will be at least one shortcut route between an incast server
and its senders (i.e., workers), which means the final cost of all pos-
sible routes is no longer the same. However, the routing mechanism
will not change as we need incast senders to use the shortcut routes,
which will be picked by existing routing protocols such as OSPF,
by default (due to their lower cost compared to regular routes).
Nevertheless, this holds for remote incast senders only and routing
for local incast senders could be different. Below we provide the
details of routing and load balancing for local and remote incast
senders.

3.2.1 Load balancing for remote incast senders. Assuming a cost
based routing protocol, packets originated from remote incast senders
are always forwarded through the additional link(s) due to their
lower cost compared to other paths. As an example, in Figure 4a,
imagine S5 is sending a message to R1. S5’s packets will be for-
warded through the red link because of its lower cost compared to
the normal paths (black links). If more than one additional link is
provided, all the additional links can be bundled to a fat link, and
therefore, still no further actions are required for load balancing
remote senders’ packets. In this case, an equal-cost load balancing
method such as ECMP (or any forms of packet spraying) would
work as well.
If our calculations require some of the remote servers to use the
leftover bandwidth of the initial link (i.e., existing link between
server and leaf switch), the network operator needs to set a static
route on the spine switch to route the flows accordingly. However,
the leftover capacity of the initial link is likely very limited (due to
high incast degrees in modern datacenters) so that we do not expect
that many remote incast senders use the initial link’s capacity.

3.2.2 Load balancing for local incast senders. New studies on mod-
ern datacenters’ traffic reveal that datacenter traffic is no longer
rack local (i.e., only 13% of flows remain in the rack [52]). Thus,
packets originated from local incast senders may or may not need
further load balancing actions as it is unlikely to have too many
local incast senders. In other words, if some of the local senders
must use the additional link(s) (i.e., initial link’s capacity is not
enough even for absorbing local senders’ packets - see section 3),
we need to change the normal route to incast applications only for
these servers. There are two solutions for this issue:
• Source routing: Incast senders can explicitly inform the
switches about each packet’s route. While source routing
is easy to implement, it may increase latency (by adding
processing delay), which is critical in datacenter networks.
• Static routing:Wemay need to add a couple of static routes
to leaf switches to re-route the flows that must use the addi-
tional link(s). The static route should match the source and
destination of each packet. Note that we need to check both
the source and destination because the static route should
affect incast senders only. Since most existing switches sup-
port OpenFlow, we can apply these simple configurations
remotely on the SDN controller. As we mentioned earlier,
we do not expect to have many local incast senders, and
therefore, we may need to add only a handful of routes into
the routing table of switches.

In the case that local incast senders do not need to use the extra
capacity, no further action is required as existing link from leaf
switch to server is perfectly handling the incoming traffic.

3.3 Topology management
In this section, we address physical considerations of implementing
Superways, such as topology upgrade and wiring complexities.

3.3.1 Topology upgrades. Superways’ upgrading complexity is very
similar to that of the underlying topology. The reason is Superways
only targets a small number of servers in the topology, which does
not lead to huge complexity in topology upgrades. In Superways,
some specific servers are chosen to host bandwidth hungry ap-
plications, and then more links are provisioned for these servers
proportional to their load and their fan-in degree. Thus, it would
be a good idea to have a designated area (e.g., some racks or some
pods in extreme cases) in the datacenter network, and place incast
applications on servers of this area. As a result of this isolation,
whenever a new incast application is placed in a datacenter network,
it will be installed on one of these servers based on the calculations
described in section 3.1.
There are two main reasons for colonizing incast applications: (1)
incast applications will be able to use the potential extra capac-
ity left by other incast applications, and (2) simplifying topology
management. The latter is crucial as more incast applications may
be added to the datacenter network over the course of time, and
colonizing incast applications helps us in lowering the degree of
heterogeneity of the topology. In other words, if there are many
incast servers spread across the topology, while they have extra
connections to spine switches, there will be many small islands
in the topology that further complicates routing and load balanc-
ing, requires longer cables, and complicates topology management.

Superways: A Datacenter Topology for Incast-heavy workloads WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Therefore, we suggest to focus on one area of the topology and
move every incast aggregator to this area. To see a clear picture of
this process, refer to Figure 5a. This figure shows a schematic view
of a typical tree topology deployed in Facebook [9]. We can pick as
many racks as we need and then connect the servers inside those
racks to the spine switches in one of the spine planes (e.g., spine
plane 1). For wiring simplicity, we always pick closest racks to one
of the spine planes. In Figure 5a, as an instance, servers in rack 1
of pod 1 and switches in spine plane 1 are good candidates to host
incast applications as they are the closest to the spine plane 1.

Someone may note that colonizing some servers on a specific
rack (or some racks) may not always be doable as there are some
services that have placement restrictions. However, recent studies
on datacenter networks show that servers do not tend to host rack
local services [52], and therefore, most of them are not location
sensitive. Other studies such as [35] confirm this fact that incast
degrees can be much higher than number of ports in a leaf switch,
and therefore, there must be many more worker servers outside of
this rack.

Due to high growth rate of using online services (e.g., social
networks), more incast applications are expected in modern data-
centers. Therefore, if incast servers in the current designated rack
cannot handle new incast applications, the datacenter operator
can select another rack as the n-th designated rack and repeat the
above-mentioned process for application placement. Since there are
more than one spine switch in a spine plane, there is no problem
with connecting to the next spine in the same plane, if there are
no more available ports in the current spine switch. Note that the
next spine switch should be the second closest spine switch to our
designated rack. In some rare cases, spine switches in the closest
spine plane may not have any available ports to connect to incast
servers. In this case, we need to place extra spine switches with
higher number of ports in that plane (i.e., spine rack) to connect to
incast servers. Note that this spine switch should be connected to
all leaf switches in that pod (see Figure 5a). Due to high number
of ports in spine switches (i.e., 128 - 256), however, we expect to
have enough free ports at spine switches given that there are small
number of incast applications in a datacenter network.

3.3.2 Wiring length. Superways does not require long wires if clos-
est racks to spine switches are selected to host incast applications.
Figure 5b shows an example of Superways’ architecture. Closest
racks to spine switches are shown by dotted lines, which are the
best candidates for hosting incast servers. Assuming a rack height
of 6.5 ft and cold aisle width of 4 ft [24], the length of a wire that
connects an incast server in a leaf rack to a spine switch in the
spine rack is less than 15 ft, on average. The red link in Figure 5
shows this extra link. In the extreme case (i.e., providing an extra
link from a server at the bottom of leaves’ rack to spine switch at
the top of spines’ rack), we need a wire that is between 20 to 25 ft
long, which is not a long cable given that it is still less than average
cable length in production datacenter networks [5]. If we need to
move to another rack due to increased number of incast servers,
we still connect these servers to a new spine switch in the closest
spine rack (e.g., second spine rack in Figure 5), and therefore, the
average cable length in Superways will not increase.

(a) A schematic view of Facebook
datacenter

(b) Wire length in a Superways
datacenter

Figure 5: Superways vs a typical datacenter topology

3.3.3 Link aggregation. If incast degrees are high, more additional
links are required to absorb the burst of packets. Thus, we suggest
to use a link aggregation protocol to create a fat link out of the
additional links, and create a high bandwidth link that is able to pro-
cess more packets at a given time. Link aggregation simplifies load
balancing decisions and increases bandwidth. The latter is critically
important because all co-located incast applications are not likely
to receive their incast replies at the same time, and therefore, an
incast aggregator can aggregate responses much faster due to high
bandwidth at the spine switch. In other words, if multiple bursts
arrive at a single incast application, while other incast applications
installed on the same server are not active at this moment (i.e.,
they are not receiving a burst of packets), the overloaded incast
application can use a big fraction of the fat link’s capacity that
was provisioned for all incast applications installed on that server.
Therefore, extra capacity will be available for those incast applica-
tions that are actively receiving back-to-back incasts or experience
higher incast degrees than usual. Having back-to-back bursts is
quite likely as reported in [64]. This study reveals that incast inter-
arrival time could be extremely short so that many of bursts arrive
only 50 microseconds after the previous burst.

In summary, since not all incast applications receive their packets
at the same time (i.e., all extra links are not 100% utilized at all
times), considering average incast degree of each incast application
would be sufficient to ensure that our calculations guarantee the
enough number of additional links. Our simulation and testbed
results confirm this assumption.

4 EXPERIMENTAL METHODOLOGY
In this section, we present our evaluation methodology, including
details of the topology and the workload.

4.1 Topology
We use ns-3 [51] simulator to simulate a datacenter network. We im-
plemented all previously discussed topologies including leaf-spine,
Bcube [33], Jellyfish [58], and Subways [41] in our simulations. In
these topologies, we connect 400 servers through 20 leaf (outer
switches in Jellyfish) switches and 10 spine (inner switches in Jel-
lyfish) switches. In tree topologies (e.g., leaf-spine, Subways, and
Bcube), each of leaf switches have 20 downlinks to servers and 10
uplinks to spine switches. Also, the network fabric interconnects

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Rezaei and Vamanan

leaf and spine switches in a full mesh manner. In Jellyfish, however,
we connect 20 outer switches to 10 inner switches as per [58]. The
link speed between servers and leaf (outer) switches is 10 Gbps and
links between leaf switches and spine (inner) switches are operating
at 40 Gbps. The longest end-to-end Round-Trip Time (RTT) across
the fabric is 80 microseconds, which is close to that of real datacen-
ter networks. Also, congestion control mechanism in all topologies
is DCTCP, and per port buffer size in leaf and spine switches is 240
KB (Superways ns3 code is publicly available at [16]).

4.2 Workload and Traffic
We use the workload reported in recent studies on Facebook’s data-
center network [52, 64] to create a realistic traffic in our simulations.
Our short flows’ sizes are in the range of 1 KB to 10 KB, while nearly
70% of the flows are 1 KB in size. Also, as reported in [52], our long
flows’ sizes are in the range of 100 KB to 10 MB, while half of the
long flows are 1 MB or below. All servers are spread across the
network uniformly randomly, and 20 of the servers are incast ag-
gregators (i.e., 5% of all servers). Also, we used a combination of
short and long flows to produce incast. In our experiments, incast
degree varies in the range of 48 to 96 among all incast applications,
and incast inter-arrival times match the reported numbers in [64].

5 EVALUATION
In this section, we present the results of our evaluation using (1)
ns-3 [51] simulations (Section 5.1–Section 5.2), (2) a real implemen-
tation using CloudLab [50] (Section 5.5), and (3) a cost analysis
(Section 5.3). Our performance evaluation consists of 5 parts:

• Flow Completion Time (FCT): In datacenter networks,
99𝑡ℎ percentile FCT is the most important metric for measur-
ing short flows’ performance [18]. Thus, we do not provide
detailed results of median flow completion times. However,
our experiments show that when Superways is implemented
on top of the aforementioned topologies, it results in up
to 21% improvement in median flow completion time, on
average, for all loads.
• Throughput: We measure the average throughput of long
flows (including those that participate in incast) when Su-
perways is implemented on existing datacenter topologies
to evaluate the effectiveness of Superways on throughput of
long flows.
• Cost analysis: We analyze cost of implementing Superways
and Subways in a small scale datacenter. We only compare
to Subways because while is similar to Superways, it is the
most recent proposal as well.
• Why connecting to spines: We will discuss the reasons
that convinced us to connect the extra links to spine switches
rather than leaf switches.
• Real testbed: Finally, we will verify our simulation results
in CloudLab [50]. We show the performance of Superways in
a real Web search workload, using Apache solr text indexing
servers.

5.1 Flow Completion Time
Our experiments show that Superways significantly reduces the
tail (99𝑡ℎ percentile) flow completion times of short flows, when

it is implemented on top of other datacenter topologies. We im-
plemented Superways on top of a leaf-spine topology to see how
performance of leaf-spine will improve compared to its regular
form. We see the results of this experiment in Figure 6. We show
the average tail flow completion time of short flows (among various
incast degrees) along Y-axis, versus load on X-axis. As we see in the
figure, when Superways is implemented on top of a leaf-spine topol-
ogy, it not only outperforms normal leaf-spine, but it significantly
outperforms other complex and expensive datacenter topologies
as well. Also, Figure 6 shows the performance of DT, which is the
state-of-the-art shared buffer management technology in existing
datacenter switches. As we see in the figure, when DT is imple-
mented on all switches in a leaf-spine topology, it works well at
lower loads only, which is not the case in many modern datacenter
networks.
We implemented Superways on top of other datacenter topologies to
see how their performance improves. The result of this experiment
is shown in Figure 7. We show the reduction in tail flow completion
time along Y-axis versus load on X-axis. As we see in this figure, by
implementing Superways on top of Jellyfish (Superways/Jellyfish),
flow completion time of short flows will reduce by 97%, on average,
for all loads, compared to regular Jellyfish. Also, tail flow comple-
tion times in Superways/Bcube and Superways/Subways will reduce
by 96% and 95% on average, for all loads, compared to their regular
topology. Although Subways and Bcube both provide additional
links for servers, their tail flow completion time reduction rate is
close to that of leaf-spine and Jellyfish; which shows Bcube and
Subways fail to solve incast problem.

5.2 Throughput
Superways forwards incast packets on a handful of dedicated links
so that they do not collide with other non-incast flows. In other
words, long flows will use those links that are not congested, and
therefore, their throughput will not be affected by colliding with a
burst of short flows.

In Figure 8, we show the average (among various incast degrees)
throughput of long flows along Y-axis versus load on X-axis. As
we see in the figure, by implementing Superways on top of simple
leaf-spine, throughput of long flows improves by several orders of
magnitude such that it achieves higher performance compared to
all other topologies at higher loads (60%-80%).

Next, we studied the impact of Superways on throughput, when it
is implemented with other datacenter topologies. The result of this
experiment is shown in Figure 9. While Superways improves long
flows throughput in Bcube and Subways by 9% and 20% respectively,
leaf-spine topology benefits a lot from deploying Superways. Long
flows’ throughput in Superways/leaf-spine improves by about 55%,
on average, for all loads. Superways improves long flows’ through-
put in Jellyfish by about 17% on average, for all loads, which shows
the throughput efficiency of Superways in both tree and graph
topologies.
5.3 Cost analysis
In this section, we study cost of implementing Superways and Sub-
ways on top of a leaf-spine topology. Similar to previous studies
on cost comparisons (e.g., [47]), we use price quotes from different
vendors to get a clear picture of the equipment cost. We used price
quotes from vendors such as FS [10], Dell [8], and retailer websites

Superways: A Datacenter Topology for Incast-heavy workloads WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Figure 6: 99𝑡ℎ percentile flow comple-
tion times

Figure 7: Reduction in 99𝑡ℎ percentile
FCT after implementing Superways

Figure 8: Long flows’ average through-
put

Figure 9: Speedup in longflows’ through-
put after implementing Superways

Figure 10: Cost comparison between Sub-
ways and Superways

Figure 11: Cost of Superways with high
incast degrees and shallow buffers

such as Amazon [1], Compsource [7], and Cablewholesale [4]. We
consider vendors such as Dell [8], Juniper [14], Cisco [6], Brocade
[3], and Huawei [12] for switches, and intel [13], HP [11], Rosewill
[15], and Arista [2] for our NICs. Although prices vary among
different vendors, we considered those equipment that satisfy the
minimum requirements.

Our studies show that a 48 port 10 Gbps leaf switch would cost
nearly $5K, and a 32 port 40 Gbps spine switch costs nearly $11K,
on average. Also, we found the value of $80 for a single-port 10
Gbps NIC. Bellow we use these prices to provide an exhaustive
analysis on cost of implementation of Superways and Subways.

5.3.1 Cost analysis: Subways. We envision a datacenter network
similar to the one in [41]. We consider a small datacenter network
with 48 leaf switches and 24 spine switches that are connected in
a leaf-spine topology. We assume each leaf switch is connected to
48 servers and each rack contains 48 servers plus the leaf switch
that connects to them. We implement Subways type-1 (p=2), which
requires an additional link from every server to its neighboring
rack. Assuming a 42U rack with 6.5 ft height and cold aisle of 3.9
ft, on average, each server requires a 5.2 ft cable to connect to the
neighbouring rack’s leaf switch. Our price analysis on cable cost
shows that a 10 ft long cat7 cable will cost about $5, which shows
that we need to pay $11520 (i.e., 48 × 48 × $5) for the extra cables.
Although Subways proposes a new way of wiring that decreases
the cable cost, it does not significantly reduce the overall imple-
mentation cost, because cabling costs contribute to a small fraction
of total cost of implementation. Subways needs more leaf switches
to keep the over-subscription ratio of the network unchanged, and
therefore, we need to pay 48 × $5, 000 = $240, 000 for extra leaf
switches. Finally, assuming Subways type-1 with only one extra
link per each server, we need to buy one more NIC for all servers,
which costs 48 × 48 × $80 = $184320. In total, we need to pay

extra $435,840 to implement Subways on a leaf-spine topology with
2304 servers.

5.3.2 Cost analysis: Superways. Superways’ cost is highly depen-
dent on number of incast applications, incast degrees, spines’ link
speed, and buffer sizes at leaf and spine switches. Bellow, we analyze
Superways’ cost in different scenarios when each incast applica-
tion requires different number of extra links to absorb all incoming
packets. Assuming that 3% of all servers host incast applications
(70 out of 2304), and each incast application requires one more link
to absorb all packets, we need to provide 70 extra links to connect
incast servers to spine switches. Assuming 42U racks and a rectan-
gular server room with two rows of racks and the rack containing
spine switches located at the end of one of the rows, we need 50 ft
long cables to connect the incast servers to spine switches (worst
case scenario). Our price analysis on cable cost shows that a 50 ft
cat7 cable will cost about $20, which shows that we need to pay
70 × $20 = $1400 for extra cables. Since we need to add one extra
NIC for those servers that hold incast applications, total cost of
purchasing new NICs is 70×$80 = $5600. In the extreme case that
existing spine switches do not have enough available ports, we need
to buy two more spine switches to connect to incast servers. The
total cost of two extra spine switches is nearly $22K. Therefore, if
each incast server requires one extra link, the total implementation
cost of Superways will be around $28820.
Figure 10 shows the cost comparison between Superways and Sub-
ways type-1. This figure shows the total cost of Superways for 3
different cases when 3%, 4%, and 5% of all servers are incast appli-
cations (aggregators). Note that performance of all four schemes
is the same because each server (each incast server in Superways)
has only one extra link. As we see in Figure 10, even if 5% of all
servers are hosting incast applications, which is a relatively large
number, Superways is still about 9x cheaper than Subways. Also,

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Rezaei and Vamanan

Figure 12: connecting extra links to leaf switches vs connect-
ing extra links to spine switches.

Figure 11 shows different cases of Superways when more than one
extra link is required per each incast server. This is the case when
incast degrees are extremely high, link speeds of both leaf and spine
switches is the same (e.g., all are operating at 10 Gbps, which is not
high), and buffers are shallow. Although having too many links for
each incast server is a rare case, even with high number of extra
links, Superways still costs much less than Subways, which is due
to its heterogeneous design that focuses on one area of the network
only. In other words, Superways might need more than one link
for each incast server depending on the burstiness of traffic, but,
since it does not need too many extra switches and it only requires
some servers to have extra links, the total cost of implementation
remains low compared to other topologies with redundant links.
5.4 Why connect to spine switches?
There are both performance and cost related factors involved in
Superways’ design. By connecting to spine switches, which are
more powerful in terms of processing speed and bandwidth, the
amount of time that incast packets stay in a port’s queue will reduce
compared to leaf switches, and therefore, their average and tail
FCT improves. Moreover, by providing such dedicated links from
spine switches to incast applications, long flows will no longer
collide with a batch of short incast flows on the spine switches,
and therefore, they will not suffer delay specially when packet
prioritization is enabled in the network (i.e, those short incast flows
will always get the highest priority). Finally, due to large difference
in link bandwidth of spine and leaf switches, the number of links,
number of server side NICs, and total number of required switches
will significantly reduce, which significantly reduces the overall
cost of implementation if we connect the extra links to spine servers.

Figure 12 shows a comprehensive picture of comparing the over-
all performance of Superways when we connect the extra links
to spine switches versus connecting to leaf switches. As we see
from the figure, while connecting to spine switches improves both
throughput and tail FCT by up to 8%, it reduces the cost of imple-
mentation by about 7x, which is a considerable amounts of money
in medium to large scale datacenters. Thus, connecting the extra
links to spine switches would be the best option as it improves
performance and reduces cost of implementation, while adding
a little complexity to the routing mechanism (i.e., we can easily
update the routing table on the SDN controller through OpenFlow
messages).

Table 2: Improvements in flow completion time and
throughput - Real testbed and simulations

Testbed results Simulation results
Topology Tail FCT Throughput Tail FCT Throughput

Super/leaf-spine 85.12% 38.4% 96.75% 50.7%
Super/Jellyfish 81.4% 16.3% 97.25% 17.1%
Super/Bcube 83.7% 7.1% 96.75% 11.5%

Super/Subways 80.04% 15.5% 95% 20.5%

5.5 Real testbed
We implemented a leaf-spine topology in CloudLab [50] to validate
our simulation results and to evaluate metrics such as CPU usage
and network I/O utilization, which cannot be done on a simulator.
Similar to Figure 3(b), Our real testbed emulates 16 servers, 4 leaf
switches, and 2 spine switches. The over-subscription ratio in the
leaf-spine topology is 2:1, and the leaf switches are connected to
spine switches in a full mesh manner. Also, using the same number
of servers and switches, we implemented Bcube, Subways, and Jelly-
fish to validate the efficiency of Superways when it is implemented
on top of these topologies. Bcube, Subways, and Jellyfish are imple-
mented as per [33], [41], and [58]. Our servers run Ubuntu 16.04
(kernel version 3.3) and our switches run Open vSwitch version
2.31. We rate limit all switches to 1 Mbps, and, also, we set the
transmit queue size of spine and leaf switches to 10KB.

To create a realistic workload, we used the reported numbers
in [52] and [64]. Our short and long flows are 4 KB and 1 MB in
size, and our incasts are a mix of short and long flows. While we
used iperf3 to produce all-to-all traffic between random servers,
we installed Apache Solr [59] version 8.2.0 on certain servers to
emulate a real Web search traffic (including incast). These Apache
Solr servers generate light weight queries that ask other servers
about a specific event that they already saved in their database. We
created incast traffic so that all incast senders send synchronous
replies to the Apache Solr servers.

5.5.1 Flow completion time and throughput. We provisioned three
incast applications (running Apache Solr server v8.2.0) with incast
degrees of 9, 3, and 3 that are co-located on one of our servers
according to calculations described in section 3. We repeated the
experiments 10 times to accurately measure the performance of
Superways in all topologies. Table 2 shows the improvement in 99𝑡ℎ
and 50𝑡ℎ percentile flow completion times of short flows when
Superways is implemented on top of other topologies. As we see
from the table, our testbed results are close to simulation outputs,
which endorses the efficiency of Superways in improving tail FCT
of short flows. We measured the throughput of long flows as well.
Since long flows will no longer collide with bursts of short flows at
the network core, their throughput improves by up to 38.4%, as we
see in table 2.

5.5.2 CPU utilization vs bandwidth utilization. Co-locating more
than one incast application on a single server may arise concerns
about CPU usage of that particular server. We designed an experi-
ment to see how CPU utilization varies among those servers that
participate in all-to-all traffic, and that of incast aggregators. Fig-
ure 13 shows the result of this experiment. The red line shows the

Superways: A Datacenter Topology for Incast-heavy workloads WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Figure 13: CPU utilization of an incast aggregator compared
to a worker server

Figure 14: Bandwidth utilization of an incast aggregator
compared to a worker server

CPU utilization of a server with Apache Solr V8.2.0 installed on it
(incast application) and the blue line shows CPU utilization of a
random server that transmits both short and long flows using iperf3.
As we see in the figure, CPU utilization of both servers is almost the
same, so that the average CPU utilization of the incast aggregator
is 8.19%, while this value is 7.08% for the other server. Therefore, co-
locating incast applications on a single server will not over-utilize
the CPU as incast applications do not run compute-intensive tasks.
On the other hand, we claimed throughout the paper that incast ag-
gregators require more bandwidth compared to other servers due to
their high number of incoming packets. To verify this assumption,
we measured the bandwidth utilization for an incast aggregator
and a random server during a short period of time. Figure 14 shows
this comparison. As we see in this figure, the incast aggregator
utilizes bandwidth much more than the other server so that while
average bandwidth utilization is 17% for an ordinary server, this
value is 68% for an incast aggregator. Thus, incast applications are
indeed network bound and providing more bandwidth for them is
necessary to guarantee the highest performance.
6 RELATEDWORK
There is a large body of related work in datacenter networks that
directly or indirectly deal with incast. D3 [62], PDQ [36], and
D2TCP [60] optimize the completion times of short flows using
either proactive and reactive rate allocation. They all rely on flow
information such prior knowledge about flow size and flow dead-
line, that are not easy to achieve in real datacenters. DCTCP [18] is
a pioneering work that improves the accuracy and response times

of traditional TCP and ECN [48]. It throttles its sending rate based
on the fraction of congested packets.

Homa [45], NDP [35], and ExpressPass [29] employ receiver-
driven techniques, and therefore, address incasts. All these tech-
niques require at least one RTT to deal with incasts. Recall that
most incasts last shorter than one RTT [64]. While some of these
proposals would allow the receiver to schedule the rest of packets,
they do not control packet scheduling in the first RTT; the first
window of packets are always sent at line rate. Recent measurement
studies show that the average flow size of workloads such as Web
Search is of the order of one kilobyte [52, 64], which would easily
fit within 1 RTT in modern datacenters (e.g., a 10 Gbps link with
an RTT of 100 `𝑠 would send more than 100 KB of data in 1 RTT).
Therefore, aforementioned schemes always miss the sent packets
in the first RTT. Note that most datacenter flows finish in only one
RTT.

Other approaches detect incasts at the routers [21, 54] by requir-
ing end-host to set rates. However, they suffer from false-positives
and false-negatives in incast detection. Pacing [19, 43, 49] packets
at the sender alleviates incasts to some extent but do not completely
avoid the rate mismatch at the receiver due to incasts. Homa [45],
another receiver-driven protocol, sends the first part of a flow with-
out any restrictions but the latter parts of the flowmust be explicitly
scheduled by the receiver. Similar to NDP, Homa would suffer from
incasts during the first RTT because most flows are short and would
fit within the first RTT. Therefore, the congestion control schemes
do not effectively deal with incasts.

There are a number of recent papers on topology (e.g., Sub-
ways [41], Bcube[33], Portland [46], VL2 [32], and fat-tree [17]).
We present Superways, which is complementary to all these topolo-
gies, in that providing extra links only for those servers that receive
a bulk of messages from multiple senders simultaneously. We elab-
orately discuss Bcube [33], Jellyfish [58], and Subways [41] in the
body of our paper. DCell [34] adds multiple network interfaces to
servers to use them as switches to forward packets. DCell, however,
requires a large number of cables, which limits its scalability to
large datacenters. Similarly, VL2 [32] leverages servers for packet
forwarding, and therefore suffers from CPU and bandwidth over-
heads. A recently proposed method called Larry [27] uses idle links
on neighbor ToR switches to transmit packets to core switches, in
case of uplink congestion in the ToR switches. However, Larry is not
able to handle incast because it focuses on rack uplink congestions
only.

7 CONCLUSION
In this paper, we presented Superways, a heterogeneous datacenter
topology that is designed for incast-heavy workloads. Based on our
key observation that in most incast applications a few aggregator
processes are bottlenecked by receiver bandwidth, our proposal
provides additional bandwidth (links) for a small subset of nodes.
Further, we proposed a heuristic for scheduling critical aggrega-
tor processes in our heterogeneous topology. Our insight for the
scheduler is to greedily find the optimal number of extra links by
measuring the residual buffer of the extra links after bin-packing
incast aggregators. By connecting incast aggregators to the spine
switches, Superways decreases the packet drop rate and improves
the tail flow completion times of incast flows. When combined

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Rezaei and Vamanan

with existing load balancing schemes, Superways distributes the
incast flows among multiple receive links, avoiding flow collision
between incast and non-incast flows. Furthermore, Superways im-
proves fault tolerance and throughput while reducing the total cost
of implementation compared to other schemes such as Subways. As
incast-heavy applications become more prevalent, heterogeneous
topologies and their associated job scheduling strategies such as
our proposal would become increasingly important.

REFERENCES
[1] Amazon. http://www.Amazon.com.
[2] Arista Networks. https://www.arista.com.
[3] Brocade Inc. https://www.brocade.com.
[4] Cablewholesale. https://www.cablewholesale.com.
[5] Cablinginstall. https://www.cablinginstall.com/data-center/article/16468527/the-

data-center-evolution-how-to-overcome-its-cabling-challenges.
[6] Cisco Systems. https://www.cisco.com.
[7] Compsource. https://www.compsource.com.
[8] Dell. http://www.dell.com.
[9] fb. https://www.techrepublic.com/article/facebook-fabric-an-innovative-

network-topology-for-data-centers/.
[10] FS.com. http://www.fs.com.
[11] HP. https://www.hp.com.
[12] Huawei Technologies. https://www.huawei.com.
[13] intel. https://www.intel.com.
[14] Juniper Networks. https://www.juniper.net.
[15] Rosewill. https://www.rosewill.com.
[16] Superways_ns3_code. https://github.com/hrezae2/Superways-WWW-21/.
[17] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,

commodity data center network architecture (SIGCOMM ’08).
[18] Mohammad Alizadeh et al. 2010. Data center TCP (DCTCP) (SIGCOMM ’10).
[19] Mohammad Alizadeh et al. 2012. Less is more: trading a little bandwidth for

ultra-low latency in the data center (USENIX NSDI).
[20] Mohammad Alizadeh et al. 2013. pFabric: Minimal Near-optimal Datacenter

Transport (SIGCOMM ’13). ACM.
[21] Hamidreza Almasi, Hamed Rezaei, Muhammad Usama Chaudhry, and Balajee Va-

manan. 2019. Pulser: Fast Congestion Response Using Explicit Incast Notifications
for Datacenter Networks (IEEE LANMAN’19). 1–6.

[22] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing Router
Buffers (SIGCOMM ’04).

[23] Arista 2020. Arista 7050QX Series 10/40G Data Center Switches. https://www.
arista.com/assets/data/pdf/Datasheets/7050QX-32_32S_Datasheet.pdf.

[24] Telecommunications Industry Association. 2012. TIA standard ANSI/TIA-942-A,
data center cabling standard amended.

[25] Wei Bai, Kai Chen, Shuihai Hu, Kun Tan, and Yongqiang Xiong. 2017. Conges-
tion Control for High-Speed Extremely Shallow-Buffered Datacenter Networks
(APNet’17).

[26] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, omega, and kubernetes. Queue 14, 1 (2016), 70–93.

[27] Andromachi Chatzieleftheriou, Sergey Legtchenko, Hugh Williams, and Antony
Rowstron. 2018. Larry: Practical network reconfigurability in the data center
(USENIX NSDI’18). 141–156.

[28] Yanpei Chen et al. 2009. Understanding TCP incast throughput collapse in
datacenter networks. In Proceedings of the 1st ACM workshop on Research on
enterprise networking. ACM.

[29] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters. In Proceedings of SIGCOMM. 239–252.

[30] Abhijit K Choudhury and Ellen L Hahne. 1998. Dynamic queue length thresholds
for shared-memory packet switches. IEEE/ACM Transactions On Networking 6, 2
(1998), 130–140.

[31] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,
2 (Feb. 2013).

[32] Albert Greenberg et al. 2009. VL2: a scalable and flexible data center network
(SIGCOMM ’09, 4). ACM.

[33] Chuanxiong Guo et al. 2009. BCube: a high performance, server-centric network
architecture for modular data centers. ACM SIGCOMM Computer Communication
Review 39, 4 (2009), 63–74.

[34] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. 2008. Dcell: a scalable and fault-tolerant network structure for data centers.
In ACM SIGCOMM Computer Communication Review. ACM.

[35] Mark Handley et al. 2017. Re-architecting Datacenter Networks and Stacks for
Low Latency and High Performance. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’17). ACM.

[36] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Finishing flows
quickly with preemptive scheduling (ACM SIGCOMM’12).

[37] Sundar Iyer, Ramana Rao Kompella, and Nick McKeown. 2008. Designing Packet
Buffers for Router Linecards. IEEE/ACM Trans. Netw. 16, 3 (June 2008), 705–717.
https://doi.org/10.1109/TNET.2008.923720

[38] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. 2009. The Nature of Data Center Traffic: Measurements & Analysis. In
Proceedings of IMC. 202–208.

[39] Jitendra Kumar and Ashutosh Kumar Singh. 2020. Cloud datacenter workload es-
timation using error preventive time series forecastingmodels. Cluster Computing
23, 2 (2020), 1363–1379.

[40] Charles E. Leiserson. 1985. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE Trans. Comput. 34, 10 (Oct. 1985), 892–901.

[41] Vincent Liu et al. 2015. Subways: A case for redundant, inexpensive data center
edge links (CoNEXT’15). ACM.

[42] S. H. Low, F. Paganini, Jiantao Wang, S. Adlakha, and J. C. Doyle. 2002. Dynamics
of TCP/RED and a scalable control. In Proceedings.Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies, Vol. 1.

[43] Radhika Mittal et al. 2015. TIMELY: RTT-based Congestion Control for the
Datacenter (SIGCOMM ’15). ACM.

[44] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016.
Universal Packet Scheduling. In Proceedings of the 13th Usenix Conference on
Networked Systems Design and Implementation (NSDI’16). 501–521.

[45] Behnam Montazeri et al. 2018. Homa: A receiver-driven low-latency transport
protocol using network priorities (SIGCOMM ’18). ACM, 221–235.

[46] Niranjan Mysore et al. [n.d.]. Portland: a scalable fault-tolerant layer 2 data center
network fabric. In ACM SIGCOMM Computer Communication Review, Vol. 39.

[47] Lucian Popa, Sylvia Ratnasamy, Gianluca Iannaccone, Arvind Krishnamurthy,
and Ion Stoica. 2010. A cost comparison of datacenter network architectures. In
Proceedings of the 6th International Conference. ACM, 16.

[48] Kadangode Ramakrishnan, Sally Floyd, and David Black. 2001. The addition of
explicit congestion notification (ECN) to IP. Technical Report.

[49] Hamed Rezaei et al. 2019. ICON: Incast Congestion Control using Packet Pacing
in Datacenter Networks (IEEE COMSNETS). 125–132.

[50] Robert Ricci and Eric Eide. 2014. The CloudLab Team. Introducing CloudLab:
Scientific infrastructure for advancing cloud architectures and applications. USENIX
39, 6 (2014).

[51] George F Riley and Thomas R Henderson. 2010. The ns-3 network simulator. In
Modeling and tools for network simulation. Springer, 15–34.

[52] Arjun Roy et al. 2015. Inside the social network’s (datacenter) network. In ACM
SIGCOMM Computer Communication Review. ACM.

[53] Danfeng Shan, Wanchun Jiang, and Fengyuan Ren. 2015. Absorbing micro-burst
traffic by enhancing dynamic threshold policy of data center switches. In 2015
IEEE Conference on Computer Communications (INFOCOM). IEEE, 118–126.

[54] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo. 2018. Micro-Burst in Data Cen-
ters: Observations, Analysis, and Mitigations. In 2018 IEEE 26th International
Conference on Network Protocols (ICNP). 88–98.

[55] Arjun Singh et al. 2015. Jupiter Rising: A Decade of Clos Topologies and Central-
ized Control in Google’s Datacenter Network. In Proceedings of SIGCOMM.

[56] Ankit Singla et al. 2010. Proteus: a topology malleable data center network
(HotNets’10). ACM.

[57] Ankit Singla, P Brighten Godfrey, and Alexandra Kolla. 2014. High throughput
data center topology design (NSDI’14).

[58] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P Brighten Godfrey. 2012. Jellyfish:
Networking data centers randomly (NSDI’12).

[59] solr 2020. Apache Solr. https://lucene.apache.org/solr/.
[60] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. 2012. Deadline-aware

Datacenter TCP (D2TCP) (SIGCOMM ’12).
[61] Andras Varga. 2010. OMNeT++. In Modeling and tools for network simulation.

Springer, 35–59.
[62] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.

Better never than late: meeting deadlines in datacenter networks (SIGCOMM ’11).
ACM, New York, NY, USA.

[63] Kyriakos Zarifis et al. 2014. DIBS: Just-in-time Congestion Mitigation for Data
Centers. In Proceedings of the Ninth European Conference on Computer Systems
(EuroSys ’14).

[64] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts (IMC’17). ACM.

http://www.Amazon.com
https://www.arista.com
https://www.brocade.com
https://www.cablewholesale.com
https://www.cablinginstall.com/data-center/article/16468527/the-data-center-evolution-how-to-overcome-its-cabling-challenges
https://www.cablinginstall.com/data-center/article/16468527/the-data-center-evolution-how-to-overcome-its-cabling-challenges
https://www.cisco.com
https://www.compsource.com
http://www.dell.com
https://www.techrepublic.com/article/facebook-fabric-an-innovative-network-topology-for-data-centers/
https://www.techrepublic.com/article/facebook-fabric-an-innovative-network-topology-for-data-centers/
http://www.fs.com
https://www.hp.com
https://www.huawei.com
https://www.intel.com
https://www.juniper.net
https://www.rosewill.com
https://github.com/hrezae2/Superways-WWW-21/
https://www.arista.com/assets/data/pdf/Datasheets/7050QX-32_32S_Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7050QX-32_32S_Datasheet.pdf
https://doi.org/10.1109/TNET.2008.923720
https://lucene.apache.org/solr/

	Abstract
	1 Introduction
	2 Motivation
	3 Superways
	3.1 Placement heuristic
	3.2 Routing and load balancing
	3.3 Topology management

	4 Experimental methodology
	4.1 Topology
	4.2 Workload and Traffic

	5 Evaluation
	5.1 Flow Completion Time
	5.2 Throughput
	5.3 Cost analysis
	5.4 Why connect to spine switches?
	5.5 Real testbed

	6 Related work
	7 Conclusion
	References

