
Managing Background Traffic in Cellular Networks
Shanyu Zhou∗, Muhammad Usama Chaudhry∗, Vijay Gopalakrishnan†, Emir Halepovic†,

Balajee Vamanan∗, and Hulya Seferoglu∗
∗University of Illinois at Chicago; {szhou45, mchaud30, bvamanan, hulya}@uic.edu

†AT&T Labs – Research; {gvijay, emir}@research.att.com

Abstract—A large variety of traffic — time-sensitive “fore-
ground” traffic (e.g., web browsing) and time-insensitive “back-
ground” traffic (e.g., software updates) — compete for the scarce
cellular bandwidth, especially on the downlink. While there is
limited in-network support for traffic prioritization, existing end-
to-end, “low priority transport protocols” exhibit sub-optimal
performance in cellular networks. We propose Sneaker, which
yields to time-sensitive foreground traffic during periods of
congestion and enables time-insensitive background traffic to
efficiently utilize any spare capacity. Sneaker achieves the desired
goal by randomly dropping packets coming into the base station,
based on traffic type and network conditions. Our key contribu-
tion is the derivation of the optimal dropping rate and a practical
dropping rate, which performs close to optimal. Further, Sneaker
co-exists and performs well with existing cellular schedulers and
transport protocols.

Keywords— Cellular networks; Proportional fair sched-
uler; LTE; Background traffic; Low priority transport

I. INTRODUCTION

In this era of ubiquitous cellular network connectivity, man-
agement of the scarce cellular bandwidth is important. A num-
ber of new applications (e.g., software updates, cloud sync)
are starting to compete with existing applications (e.g., web
browsing, video streaming) for cellular bandwidth. Therefore,
it is critical to develop traffic management mechanisms that
can handle large volumes of traffic with diverse characteristics.

One way to tackle the problem of managing such diverse
traffic is to partition flows into two classes: foreground and
background flows (although it is straightforward to extend the
approach to more than two classes). In this paper, we broadly
consider regular mobile traffic like human communication or
even some time-sensitive machine-to-machine (M2M) flows
(e.g., alarms, health monitoring) as foreground traffic, while
treating large volume, time insensitive flows (e.g., software
downloads) as background traffic. Our goal then is to design
a traffic management approach for cellular networks that pri-
oritizes foreground traffic during periods of congestion while
scheduling background traffic to effectively utilize any spare
capacity. We also focus on a solution for downlink because
most large volume traffic flows in the downlink direction.

There are existing in-network and end-to-end approaches to
manage foreground and background traffic. Today’s cellular
networks provide support for prioritization using QoS Class
Identifier (QCI). However, QCI suffers from several limitations:
(1) identifies only at the granularity of devices or radio bearers,
(2) offers only a handful traffic classes, many of which are

reserved for operator-provided services like voice and VoLTE,
and (3) uses static weights for the classes independent of net-
work load. As an alternative, end-to-end, low-priority transport
protocols (e.g.,TCP-LP [1]) perform well in wired and Wi-
Fi networks but suffer in cellular networks due to per-device
queues and schedulers as demonstrated in Section VI. To
summarize, existing in-network approaches do not prioritize
at flow granularity and existing end-to-end approaches are not
effective in cellular networks.

To address the challenge of managing large-volume back-
ground traffic, we propose Sneaker, which achieves high
network utilization and high throughput for background flows,
without affecting foreground flows. Flows are classified as
foreground or background. This classification can be indepen-
dent of applications running on- or off-screen at user devices,
and can be performed by either end hosts, network or content
providers. However, the mechanism for classification of traffic
into foreground and background classes is beyond the scope
of our work and not something we focus on. Sneaker ensures
that background flows quickly yield to foreground flows when
the network is congested and quickly recapture spare capacity
when the network becomes lightly loaded. Further, Sneaker
seamlessly co-exists with existing schedulers and end-to-
end protocols. Our key insight is that we can achieve the
appropriate prioritization by randomly dropping background
flow packets based on network load. Although our design is
inspired by Random Early Detection (RED) [2], our goals and
mechanisms are different from those of RED; Sneaker drops
packets from queues, not based on overall congestion, but the
load of foreground flows.

Our key design goals are to co-exist with end-to-end
protocols (i.e., TCP), without requiring changes to existing
schedulers. To achieve these goals, we first study the inter-
action of TCP with common cellular schedulers. Then, we
formulate the problem as a Network Utility Maximization
(NUM) problem to determine the optimal transmission rate
of background flows. Using this optimal transmission rate, we
derive an optimal dropping rate for background flows. Because
the optimal dropping rate is hard to realize in practice, we
identify a close approximation to the optimal rate, which is
easy to implement and works in harmony with end-to-end
protocols. We show that our practical dropping rate avoids
TCP timeouts for background flows and achieves the intended
prioritization of foreground flows. Extensive ns-3 simulations
confirm our analysis and show that Sneaker outperforms an
aggressive baseline that gives strict priority to foreground978-1-7281-1434-7/19/$31.00 c©2019 IEEE

Figure 1: The service architecture in LTE network

traffic. Further, we also show that Sneaker performs better
than existing low priority transport protocols. In summary, we
make the following contributions:

• We analyze the complex interaction between TCP and
cellular schedulers and characterize the average through-
put of TCP for common cellular schedulers.

• We derive a dropping rate that satisfies our network
objective of maximizing the performance of foreground
traffic and prove that the rate is optimal.

• We develop a practical dropping rate that achieves
prioritization and fairness among flows.

• We design Sneaker using the practical dropping rate
and evaluate it via simulations in ns-3. We show that
Sneaker significantly improves over in-network and end-
to-end baselines in terms of prioritizing foreground flows
over background flows and efficiently utilizing any spare
capacity for background flows.

The rest of the paper is organized as follows. We start with a
brief background and problem statement (Section II). We then
analyze the interaction between TCP and common base station
schedulers (Section III) and derive the optimal and practical
dropping rates (Section IV). Next, we discuss our implemen-
tation (Section V) and present evaluation results (Section VI).
We finally conclude with closing remarks (Section VIII).

II. SYSTEM MODEL

System Overview. We consider the general architecture of
LTE cellular networks as shown in Fig. 1, with two parts;
evolved packet core (EPC) and radio access networks (RAN).
The evolved packet core is a high-speed wired network that
comprises the Mobility Management Entity (MME), the Serv-
ing Gateway (SGW), and the Packet Data Network Gateway
(PGW). The LTE RAN includes the eNobeB (base station)
and User Equipment (UE), which could be cellphones, tablets,
connected vehicles, etc. Traffic from remote hosts in the
Internet traverses through the packet core, arrives at the base
station and eventually reaches the end users through wireless
channels. In this setup, we develop Sneaker at base stations
that works with existing TCP and cellular scheduling protocols
and prioritizes foreground traffic over background.

Flows. We consider a system model depicted in Figure 2,
which represents the RAN from Figure 1. There are N flows
destined to K users within the same radio cell. M of these
flows are foreground, while L of them are background flows
(i.e., N =M +L). The set of all flows is S = {S1, . . . , SN}.

Figure 2: Example cellular system setup with Sneaker

Queuing Model. At the base station, packets are queued in
per-flow queues; {Q1, . . . , QN}. Packets from flow Sn are
stored in queue Qn. These queues operate according to the
First-Come First-Serve (FCFS) rule.

Channel Model. We consider that base station back-haul
links are high speed and lossless. The bottleneck of the system
is the last hop radio channel; a radio frequency carrier shared
by a set of cellular devices. We consider that cn(t) denotes
the downlink channel capacity of device n at time t, which
is the maximum achievable data rate based on the channel
characteristics, as determined by the base station.

Scheduler. At the base station, time is divided into Trans-
mission Time Intervals (TTIs), and each TTI is usually 1 ms
in LTE [3]. The scheduler determines which packets should be
transmitted from the base station at a given TTI. Proportional
Fair scheduler (PFS) is one of the widely used schedulers in
today’s cellular systems [4]. The other popular schedulers are
Maximum Throughput (MT), Round Robin (RR), Blind Equal
Throughput (BET), Throughput to Average (TTA), etc [5].

Problem Statement. Our goal is to develop a method that
works with existing transport layer protocols and scheduling
algorithms to prioritize foreground traffic over background.
Our approach is to achieve the desired goal by randomly
dropping packets coming into the base station, based on
traffic type – foreground or background. In this context, the
fundamental problem is to determine the optimal dropping
rate. In this paper, we determine the optimal dropping rate
that forces background traffic to quickly yield to foreground
traffic when the network is congested, but allows it to quickly
recapture spare capacity when network load subsides.

III. INTERACTION OF TCP WITH CELLULAR NETWORKS

In this section, we characterize the average TCP sending
rate in cellular networks.

Let the congestion window size of flow destined to user
n at time slot t be Wn(t). We assume that round-trip time
(RTT) of each packet is constant, and equals to Tn. This is
a common assumption in classical TCP analysis [6, 7]. Let
qn(t) be the probability that packets from flow n are dropped
from buffers due to overflow in the core network as well as
the base station. Let ρn(t) be the probability that packets from
flow n are scheduled to be transmitted from the base station
according to the underlying scheduling algorithm.

In this analysis, we ignore the slow start and time-out phases
and only focus on the congestion avoidance phase of TCP,
since the duration of congestion avoidance phase takes most

2

of the TCP flow’s lifetime. In congestion avoidance phase,
at time t − Tn , Wn(t − Tn) packets are transmitted from
the source of TCP flow n. The ACKs corresponding to these
packets, received between t and t+Tn, determine the window
size update. In particular, for each transmitted and ACKed
packet, window size is increased by 1/Wn. For each packet
dropped due to buffer overflow or delayed at the base station
due to congestion, window size is reduced by Wn(t)β, where
0 < β < 1. Thus, the window size evolves as follows:
Wn(t + Tn) = Wn(t) + In(t) − Dn(t), where In(t) =
Wn(t− Tn) 1

Wn(t)
(1− qn(t))ρn(t) is the increase in window

size, and Dn(t) =Wn(t− Tn)βWn(t)(1− (1− qn(t))ρn(t))
is the decrease in window size.

The differential of the window size at time slot t is Ẇn(t) =
(Wn(t+ Tn)−Wn(t))/Tn. The steady-state window size that
satisfies Ẇn = 0 becomes Wn =

√
(1−qn)ρn

β(1−(1−qn)ρn) . Thus, the
steady-state TCP rate is formulated as

xTCPn =
WnB

Tn
=

B

Tn

√
(1− qn)ρn

β(1− (1− qn)ρn)
, (1)

where B is the typical TCP packet size. TCP rate xTCPn

depends on RTT, the scheduling probability at the base station,
and the packet dropping probability in end-to-end path. As the
bottleneck is usually the radio interface, we assume that packet
drops (with probability qn) only happen at the base station.

Our goal in this work is to determine the dropping rate qn
and actively drop packets from the queues (according to qn) to
prioritize foreground traffic over background. We characterize
the optimal value of qn in the next section.

IV. DESIGN OF Sneaker

In this section, we derive the dropping probability for
background traffic so that in the case of congestion, it does
not compete with foreground traffic while avoiding costly
timeouts, which hurt throughput.

A. NUM Formulation when Foreground and Background
Flows Coexist

First, we formulate a network utility maximization (NUM)
problem when foreground and background flows coexist. Let
L andM denote the sets of background and foreground flows,
respectively. We assume there are L and M background and
foreground flows in the network. Let xl and xm denote the rate
of the background and foreground flows, respectively. And let
cl, cm denote the channel capacity of background flow user l
and foreground flow user m, respectively. We can formulate
the following NUM problem,

max
[x1,...,xL]

L∑
l=1

Ul(xl)

s.t.
∑
m∈M

xm
cm

+
∑
l∈L

xl
cl
≤ 1

xl ≥ 0,∀l ∈ L (2)

where Ul(·) is the utility function associated with background
flow l. The NUM formulation in Eq. (2) optimizes the
total utility of background flows assuming that there exist
foreground flows. The first constraint is the time sharing
constraint across foreground and background traffic flows. In
this problem, we do not control the data rate xm of regular
flows. That is to say, xm is given (i.e., not an optimization
parameter), which is controlled by end-to-end TCP congestion
control mechanism. Note that we assume that

∑
m∈M

xm

cm
≤ 1

since the data rate controlled by TCP will not exceed the
capacity on average.

Theorem 1: Assuming that we use log-based utility function
(i.e., Ul(xl) = log(xl)), which is widely used to provide
proportional rate fairness, the optimal solution to the NUM
problem in Eq. (2) is expressed as

xOPTl =
cl
L
[1−

∑
m∈M

xm
cm

],∀l ∈ L (3)

where xOPTl depends on its channel capacity cl, the number
of background flows L, and the occupancy of the air interface
by foreground traffic

∑
m∈M(xm/cm).

Proof: The proof directly follows from the KKT conditions
[8]. We omit the detailed proof due to space constraints. �

B. Optimal Dropping Rate

Now that we characterized the optimal and TCP rates of
background flows (i.e., xOPTl in Eq. (3) and xTCPn in Eq. (1)),
we can design Sneaker by pushing the TCP rate to the optimal
rate. The optimal dropping probability qOPTl that satisfies
xTCPl = xOPTl is expressed as

qOPTl = 1− γ(clTl(1− τF))2

ρl(1 + γ(clTl(1− τF))2)
,∀l ∈ L, (4)

where τF =
∑
m∈M(xm/cm), and γ = β/(L2B2). There-

fore, qOPTl depends on channel capacity cl, RTT Tl, the
amount of foreground traffic τF =

∑
m∈M xm/cm, and the

number of background flows L. Eq. (4) also depends on ρl,
the packet scheduling probability at the base station.

When foreground traffic congests the network, i.e., τF
approaches 1, and qOPTl approaches 1. This means that every
packet from background flows would be dropped at the base
station, which would cause TCP timeouts, and eventually stop
the transmission. Therefore, we develop a practical dropping
probability in the next section, which yields to foreground
traffic, yet prevents background flows from timing out.

C. Practical Dropping Rate

We develop a practical background flow rate based on the
structure of the optimal rate in Eq. (3) as xPRl = cl

L max{1−
τF , ε}, where ε (0 < ε < 1) is the minimum rate that should
be allocated to background flows to keep them alive.

Similar to the optimal packet dropping rate, we set xTCPl =
xPRl and determine the practical drop rate qPRl as

qPRl = 1− γ(clTlmax{1− τF , ε})2

ρl(1 + γ(clTlmax{1− τF , ε})2)
,∀l ∈ L (5)

3

From Eq. (5), the largest dropping rate for background flow
l is qPRl = 1 − γ(clTlε)

2

ρl(1+γ(clTlε)2)
≤ 1, which happens when

1 − τF ≤ ε. Thus, even when foreground traffic is high,
the background flows still get some resources for transmitting
their packets. By tuning ε, we can adjust how much resources
should be allocated to background traffic, hence aggressiveness
of the background flows.

V. IMPLEMENTATION OF Sneaker

A. Design parameters and signalling for Sneaker

1) Scheduling probability: The packet dropping probability
in Eq. (5) is a function of ρl, which is the packet scheduling
probability at the base station and depends on the scheduling
algorithm. The packet scheduling probability can be measured
by the scheduler and passed to Sneaker to calculate the packet
dropping probability. Furthermore, we can characterize the
scheduling probability analytically for common schedulers.
For example, the scheduling probability is expressed as

ρl = 1− (1− 1

N
)RTT/TTI (6)

for PFS. (Note that we omit mathematical calculations due to
space constraints.) Similar analysis can be performed for other
schedulers including MT, RR, BET, and TTA.

2) Local signalling: The packet dropping rate in Eq. (5)
depends on scheduling parameters such as the time share of
foreground traffic τF , capacity of background user cl, and the
number of background flows L.

We approximate the time share of foreground traffic as
τF ≈

∑
m∈M(Qm(t)/Rm(t)), where Qm(t) is the queue

size of foreground user m in the base station at TTI t,
and Rm(t) is the maximum number of packets that can
be transmitted from foreground flow user m at TTI t. The
main idea behind this approximation is that both xm/cm and
Qm(t)/Rm(t) are time shares, and we conjecture that the
time average of Qm(t)/Rm(t) approaches xm/cm. Qm(t)
and Rm(t) are collected by existing scheduling algorithms
(such as PFS) and passed to Sneaker. Similarly, the scheduler
passes Rl(t) information to Sneaker, and we make cl ≈ Rl(t)
approximation.

3) End-to-end signalling: As for the access of other pa-
rameters, in our implementation, sender adds one bit as a
tag in its TCP header to mark its classification (foreground
or background). Sender also piggybacks the RTT information
into its TCP header. At the base station, Sneaker extracts TCP
header to obtain RTT and classification of the flow. In this
way, Sneaker obtains Tl and learns if a flow is a background
flow (hence the total number of background flows L).

B. Implementation of Sneaker on ns-3

We implemented and evaluated Sneaker using the ns-3
simulator [9]. We build on top of existing LTE protocol stack
shown in Fig. 3, where data packets are buffered in Radio
Link Control (RLC) layer after passing through Packet Data
Convergence Protocol (PDCP) layer. MAC layer reads packets
in RLC buffers depending on the scheduling algorithm used.

Figure 3: LTE protocol stack

Figure 4: Comparison of different approaches to prioritization

Sneaker, implemented at eNodeB as a slim layer on top of
PDCP, inspects every incoming packet, and extracts end-to-
end information. It also gets local signalling data from RLC
and MAC layers to calculate the packet dropping probability
using Eq. (5). Packets are dropped by Sneaker according to
the calculated packet drop probability before arriving to PDCP.
Note that we also make minimal updates to TCP so that
packets carry end-to-end information.

VI. EVALUATION OF Sneaker

We evaluate the performance of Sneaker through ns-3
simulations. Our simulation topology is shown in Fig. 1. It
consists of multi-hop wired links that connect remote servers
to Packet Gateway using 1 Gbps, 10 ms delay links. The
link speed between the base station and packet and service
gateways is 300 Mbps. The base station is configured with
751 MHz downlink band with 10 MHz bandwidth and 50
resource blocks, MIMO transmission, transmission power of
47.78 dBm, and RLC buffer size is 512 KB. The path loss
model is log distance propagation model with loss exponential
parameter of 3.52.

Prioritization. In this experiment, we verify if Sneaker
achieves the correct prioritization between background and
foreground flows. We use two remote senders to send traffic
to two different end users. While the first sender continuously
sends background traffic to a user, the second sender sends
foreground traffic in an on-off pattern every 10 seconds. All
senders share a cellular link with 70 Mbps and use TCP
Reno. We compare Sneaker with the following baselines;
PFS only, RED, Strict Priority. All these mecha-
nisms (including Sneaker) use TCP-Reno and Proportional
Fair Scheduler (PFS). Sneaker drops packets according to
Eq. (5), PFS only does not drop packets actively, RED
drops packets according to the policy in [10], and Strict
Priority drops every packet from background flow if there
exists foreground traffic.

4

Figure 5: Foreground flows benefit from Sneaker

(a) Fairness among background flows

(b) Fairness among foreground flows

Figure 6: Fairness among background and foreground flows

Fig. 4 shows the throughput achieved by both foreground
and background flows. Sneaker and Strict Priority
work as expected, i.e., yield to foreground traffic, and serve
background traffic if there is no foreground traffic. On the
other hand, PFS only and RED do not provide such ability.
We prefer Sneaker over Strict Priority as Strict
Priority completely blocks background traffic until fore-
ground traffic finishes and causes timeouts and connection
disconnects, which is not ideal.

We also study the impact of increasing number of back-
ground flows on foreground traffic rate. In this experiment,
we send a foreground flow to one user. Simultaneously, we
have a different number of background flows to another user
connected to the same base station. We show the average
throughput achieved by the foreground flow with PFS only
and Sneaker in Fig. 5. As shown, the throughput of fore-
ground flows degrades as the number of background flows
increases, as expected. However, the degradation is signifi-
cantly smaller with Sneaker than it is with PFS only, which
shows that Sneaker is able to better isolate foreground flows.
With Sneaker, the foreground flow achieves 1.8 times higher
throughput than with PFS only; with five-fold throughput
gain as the number of background flows increases to 8.

Fairness. We want to verify: fair sharing of spare bandwidth
among background flows, and fair sharing of available band-
width among foreground flows. We consider two scenarios:
(i) five background flows without any foreground flow, and
(ii) five foreground flows with one background flow. In both
scenarios, the new flows join every 20 seconds. Figure 6(a)
shows the throughput achieved by background flows using

Figure 7: Large-scale results at moderate load (50%)

Figure 8: Large-scale results at low load (20%)

Sneaker in the first scenario. We see that the background
flows quickly converge to their fair-share throughput as new
flows are added. Figure 6(b) shows that rate is fairly shared
by foreground flows in the second scenario using Sneaker.

Large-scale simulations.We consider realistic workloads
and create a large topology with 100 users that connect
to a base station. We generate a mixed traffic with short
(64 KB), medium (1 MB), and long flows (32 MB). Short
flows generate 10% of the overall foreground traffic, whereas
medium flows generate 40% of the load; the rest (i.e., 50% of
load) comes from long flows. While we generate foreground
traffic mix, we send a continuous background (long) flow.
We compare Sneaker (with background flow using TCP-Reno)
with TCP-LP and LEDBAT, the known end-to-end congestion
control mechanisms designed to yield to foreground traffic. We
simulate traffic for 120 seconds and compare the throughput
achieved by foreground and background flows in all the
schemes, with PFS as the default scheduler.

We first evaluate the performance of the three schemes
under moderate load of 50%. For this study, we set the
overall network load due to foreground flows to 50%. Fig.
7 shows the throughput of foreground and background flows.
We observe the bursty nature of foreground traffic under all
schemes, as expected. For foreground flows, TCP-LP achieves
better throughput than LEDBAT, and Sneaker achieves the best
throughput. On the other hand, the throughputs achieved by
background flows drastically differ between the three schemes.
LEDBAT and TCP-LP does not yield to foreground flows,
which is not desirable. In contrast, Sneaker modulates its
throughput to allow foreground traffic to use most of the
available capacity while effectively utilizing the spare capacity.

We consider the same experiment under low load (20%).

5

Fig. 8 shows that all the schemes achieve similar throughput
for foreground flows, as expected. However, their background
flow rates differ significantly. While TCP-LP and LEDBAT
are unable to fully utilize the spare capacity at low loads (i.e.,
they achieve lower throughput), Sneaker efficiently utilizes the
spare capacity and achieves much higher throughput.

VII. RELATED WORK

Our work is closely related to the ideas from active queue
management (AQM), interaction of TCP with cellular network
and low priority data transmission.

Active queue management (AQM): AQM is a common
approach to control data transmission rate in order to avoid
congestion and improve network performance. One of the best
known AQM schemes is Random Early Detection (RED) [11],
which controls congestion by randomly dropping packets in
the queue based on the average queue size information. This
idea generated tremendous interest in congestion control and a
lot of work has been done to improve the performance of RED
based on local information such as queue dynamics and packet
loss [12–15]. While our approach seems similar to RED, there
are important differences. While the goal of RED is to manage
congestion across all flows, ours is to achieve differentiation
between classes of flows.

Interaction of TCP with cellular network: TCP is not de-
signed to work in cellular networks [16]. Thus the interaction
of TCP with cellular network needs to be explored to better
understand the performance of TCP flows. Due to highly
variable delays on wireless links, spurious timeouts also occur
in cellular network, which causes unnecessary re-transmissions
and decreases throughput [17–20]. The scheduling algorithm
in the base station also affects performance of TCP [21].
Compared to these works, our focus is to characterize the
data rate of TCP by taking into account the specific factors in
cellular networks and formulate the desired dropping rate at
the base station based on the desired TCP data rate.

Low priority transport protocols: Researchers have studied
several low priority transport protocols such as LEDBAT [22],
TCP-LP [1] and TCP-Nice [23]. LEDBAT [22] and TCP-
LP [1] use one-way delay as the congestion indicator and
adjust congestion control accordingly. TCP-Nice uses RTT-
threshold-based mechanism to indicate congestion [23]. The
key idea of the current low-priority protocols is to detect
congestion earlier than regular TCP. Compared to these works,
the focus of our work is not to design an end-to-end low
priority transport protocol, but to design a packet dropping
policy in queues to enable per-flow differentiation.

VIII. CONCLUSION

Existing in-network and end-to-end mechanisms for per-
flow prioritization do not work well over scheduled links in
cellular networks. We presented Sneaker, an in-network arbiter
that enables differentiation between foreground and back-
ground flows, while providing high performance and maintain-
ing fairness within each traffic class. We have formulated the
problem of per-flow prioritization using NUM framework and

shown that Sneaker achieves the desired optimality. Further,
we have extensively evaluated our design using both targeted
small-scale and realistic large-scale simulations. We plan to
analyze mobility and signal quality variation in future work.

ACKNOWLEDGMENTS

This work was supported in part by UIC seed grant, NSF
grant CNS-1801708, and the ARL grant W911NF-1820181.

REFERENCES
[1] A. Kuzmanovic and E. W. Knightly, “TCP-LP: low-priority service via

end-point congestion control,” IEEE/ACM ToN, vol. 14, 2006.
[2] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM ToN, no. 4, pp. 397–413, 1993.
[3] B. Holfeld, D. Wieruch, T. Wirth, L. Thiele, S. A. Ashraf, J. Huschke,

I. Aktas, and J. Ansari, “Wireless communication for factory automa-
tion: an opportunity for LTE and 5G systems,” IEEE Communications
Magazine, vol. 54, no. 6, pp. 36–43, 2016.

[4] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts
achieve high throughput and low delay over cellular networks.” in NSDI,
2013, pp. 459–471.

[5] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Down-
link packet scheduling in LTE cellular networks: Key design issues and
a survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2,
pp. 678–700, 2013.

[6] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP
Reno performance: a simple model and its empirical validation,” ToN,
vol. 8, no. 2, pp. 133–145, 2000.

[7] S. H. Low, “A duality model of TCP and queue management algorithms,”
IEEE/ACM ToN, vol. 11, no. 4, pp. 525–536, 2003.

[8] H. Kuhn and A. Tucker, “Nonlinear programming,” in Proceedings of
the 2nd Berkeley Symposium on Mathematical Statistics and Probability,
1951, pp. 481–492.

[9] “NS-3 network simulator,” http://www.nsnam.org/.
[10] P. Kuusela, P. Lassila, J. Virtamo, and P. Key, “Modeling RED with

idealized TCP sources,” Proceedings of IFIP ATM & IP, 2001.
[11] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM ToN, vol. 1, no. 4, 1993.
[12] T. J. Ott, T. Lakshman, and L. H. Wong, “SRED: stabilized RED,” in

IEEE INFOCOM’99, vol. 3, 1999, pp. 1346–1355.
[13] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive

virtual queue (AVQ) algorithm for active queue management,” in ACM
SIGCOMM Comp. Comm. Review, vol. 31, no. 4. ACM, 2001.

[14] W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The BLUE active
queue management algorithms,” IEEE/ACM Transactions on Networking
(ToN), vol. 10, no. 4, pp. 513–528, 2002.

[15] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe – A stateless active
queue management scheme for approximating fair bandwidth alloca-
tion,” in IEEE INFOCOM 2000, vol. 2, 2000, pp. 942–951.

[16] J. Wang, A. Huang, W. Wang, Z. Zhang, and V. K. N. Lau, “On
the transmission opportunity and TCP throughput in cognitive radio
networks,” Int. J. Commun. Syst., vol. 27, no. 2, May 2012.

[17] A. Gurtov and R. Ludwig, “Responding to spurious timeouts in TCP,”
in Proc. of IEEE INFOCOM, vol. 3, 2003, pp. 2312–2322.

[18] R. Ludwig and R. Katz, “The eifel algorithm: Making TCP robust
against spurious retransmissions,” ACM Computer Communication Re-
view, vol. 30, pp. 30–36, January 2000.

[19] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and H. Zang, “Expe-
riences in a 3G network: Interplay between the wireless channel and
applications,” in MOBICOM. ACM, 2008, pp. 211–222.

[20] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and A. Terzis,
“CQIC: Revisiting cross-layer congestion control for cellular networks,”
in Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications. ACM, 2015, pp. 45–50.

[21] T. E. Klein, K. K. Leung, and H. Zheng, “Enhanced scheduling
algorithms for improved TCP performance in wireless IP networks,”
in Proc. of IEEE Globecom, vol. 4, 2004, pp. 2744–2759.

[22] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “LEDBAT: The new
bittorrent congestion control protocol.” in ICCCN, 2010, pp. 1–6.

[23] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: A mechanism
for background transfers,” ACM SIGOPS Operating Systems Review,
vol. 36, no. SI, pp. 329–343, 2002.

6

