
ResQueue: A Smarter Datacenter Flow Scheduler
Hamed Rezaei

University of Illinois at Chicago
hrezae2@uic.edu

Balajee Vamanan
University of Illinois at Chicago

bvamanan@uic.edu

ABSTRACT
Datacenters host a mix of applications: foreground applica-
tions perform distributed lookups in order to service user
queries and background applications perform batch process-
ing tasks such as data reorganization, backup, and replication.
While background flows produce the most load, foreground
applications produce the most number of flows. Because
packets from both types of applications compete at switches
for network bandwidth, the performance of applications is
sensitive to scheduling mechanisms. Existing schedulers use
flow size to distinguish critical flows from non-critical flows.
However, recent studies on datacenter workloads reveal that
most flows are small (e.g., most flows consist of only a hand-
ful number of packets). In light of recent findings, we make
the key observation that because most flows are small, flow
size is not sufficient to distinguish critical flows from non-
critical flows and therefore existing flow schedulers do not
achieve the desired prioritization. In this paper, we introduce
ResQueue, which uses a combination of flow size and packet
history to calculate the priority of each flow. Our evaluation
shows that ResQueue improves tail flow completion times
of short flows by up to 60% over the state-of-the-art flow
scheduling mechanisms.

CCS CONCEPTS
• Networks → Transport protocols; Network protocol
design.
KEYWORDS
Datacenter Networks, Congestion Control, Flow Scheduling

ACM Reference Format:
Hamed Rezaei and Balajee Vamanan. 2020. ResQueue: A Smarter
Datacenter Flow Scheduler. In Proceedings of The Web Conference
2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3366423.3380012

This paper is published under the Creative Commons Attribution 4.0 Inter-
national (CC-BY 4.0) license. Authors reserve their rights to disseminate
the work on their personal and corporate Web sites with the appropriate
attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee),
published under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380012

1 INTRODUCTION
Modern datacenters host user-facing, foreground applica-
tions that query large amounts of Internet data (e.g., Web
Search) and background applications that perform back-
ground tasks such as data reorganization, replication, and
backup [7, 8]. Foreground applications such as Web Search
access data that is distributed among hundreds of servers.
Every Web Search query must wait for a response from most
of the worker servers (e.g., 99% of servers) to achieve a good
trade-off between query response time and result quality.
Therefore, foreground applications’ performance is sensitive
to higher percentiles (i.e., 99th to 99.9th ) of Flow Completion
Times (FCT) [13]. While foreground applications generate
mostly short flows (e.g., 1KB to 10KB), background applica-
tions transfer large amounts of data (e.g., 1MB to 100MB)
across the network, which requires high throughput [2].
Thus, a well-designed datacenter network must provide low
tail flow completion times for short flows and high through-
put for long flows.

The problem is challenging because both short flows (from
foreground applications) and large flows (from background
applications) compete for network bandwidth at switches.
It is likely for short flows to get stuck behind several long
flows and suffer elongated tail FCTs. Similarly, long flows
incur packet loss from competing bursts of short flow pack-
ets and lose throughput. Recent studies from Microsoft [5]
and Facebook [28] show the extent of packet losses in their
networks.

Load balancing approaches [3, 16, 18, 19], congestion con-
trol approaches [1, 4, 12, 15, 17, 23, 25, 30, 31, 33], and packet
scheduling approaches [2, 6, 9, 14, 21, 22, 26] all address this
problem, either directly or indirectly. However, when most
flows are short, packet scheduling approaches tend to be
most effective because there is little time for load balanc-
ing and congestion control to kick in. Indeed, recent studies
show that the average flow size of typical datacenter work-
loads such as Web Search is less than one kilobyte [28, 32].
Motivated by these recent studies, we, therefore, focus our
attention on flow scheduling.
One of the well-known solutions for flow scheduling is

to use multi-level queues at switches that gradually demote
flows from high to low priority (i.e., each flow starts at the
highest priority queue and moves down in priority after
sending some packets) [6]. However, recent studies on pro-
duction datacenters show that flows inWeb Search workload

1

https://doi.org/10.1145/3366423.3380012
https://doi.org/10.1145/3366423.3380012


WWW ’20, April 20–24, 2020, Taipei, Taiwan Hamed Rezaei and Balajee Vamanan.

are extremely small such that about 75% of the flows only
send a single packet to the receiver [28, 32]. This study re-
veals that flow size is insufficient to effectively distinguish
between flows and prioritize critical flows over other flows.

There is another issue that flow schedulers must address.
In Web Search, gathering data from several servers syn-
chronously causes incast congestion, which leads to per-
formance degradation. Incast causes rapid queue buildup at
the switch port connected to the receiver server (e.g., front-
end server) [11]. A recent study reports that about 85% of
incasts last for 50 microseconds or less, which is smaller than
Round Trip Times (RTT) of most datacenter networks [32].
Moreover, the study shows that incast inter-arrival time is
so short that retransmitted packets are likely to collide with
another incast. Ideally, we would like to schedule flows such
that minimum number of packets are dropped during incast,
which would lead to shorter tail flow completion times.

We make the key observation that previous flow schedul-
ing mechanisms are inefficient when short flows have only
a handful number of packets to send and they do not dis-
tinguish between those flows that are already delayed and
those that are not. Because most flows are short and their
sizes are similar, the schedulers give the same priority to a
large fraction of flows regardless of their drop history. For
example, when two flows that have only one packet to send
arrive at a switch while one of them being a retransmitted
packet, existing schedulers (e.g., PIAS[6], UPS[22]) assign
both packets to the same priority queue. Clearly, in this in-
stance, it makes more sense to give a higher priority to the
flow that has already suffered a retransmission. Moreover,
recent studies [32] show that incast inter-arrival time is un-
predictable and sometimes extremely short, which increases
the chance of collision between a retransmitted packet and
other packets. As such, we need a flow scheduling mecha-
nism that ensures that retransmitted packets do not suffer
repeated packet drops during incast. Therefore, we argue
that modern flow schedulers should prioritize retransmitted
packets, in addition to prioritizing shorter flows over the
longer ones.

We propose ResQueue, a novel datacenter flow scheduling
scheme, which is broadly applicable to many incast-heavy
foreground applications, including Web Search, Data mining,
and social networks. ResQueue uses a combination of packet
drop history and flow size to determine each flow’s priority.
ResQueue tags packets at the endhost based on number of
bytes sent; if the packet is a retransmitted packet, the end-
host performs one additional step: it subtracts one from the
calculated priority in the previous step (based on sent bytes)
to give a higher priority to this packet. At switches, since
short flows have only a handful number of packets to send,
all their retransmitted packets will be scheduled in queue
level-1, which is the highest priority queue. This queue is

reserved for retransmitted packets only. Thus, ResQueue en-
sures that retransmitted packets are not dropped again if they
collide with a burst of packets. By avoiding repeated packet
drops, ResQueue improves both tail FCTs of short flows and
throughput of long flows, as we show in our results section
(Section 4).

In summary, we make the following contributions:
• ResQueue is the first scheduler to consider packet drop
history in flow scheduling.

• ResQueue prioritizes retransmitted packets, in addition
to short flows, which helps both flow completion times
of short flows and throughput of long flows.

• ResQueue achieves up to 60% lower tail flow comple-
tion times compared to state-of-the-art flow schedulers
without any loss of throughput with typical datacenter
workloads.

2 MOTIVATION
New studies on datacenter networks reveal that Web search
workload is not only bursty, but it is also dominated by
extremely short flows [28, 32]. Their analysis shows that
while about 75% of the Web search flows are nearly 1KB
(figure 6.a in [28]), about 90% of them are smaller than 6KB.
Given that state-of-the-art flow scheduling methods such as
UPS [22] and PIAS [6] rely on flow size to prioritize some
flows over the others, these methods give the same priority
to about 80% of the flows, which creates inefficiencies in
flow prioritization and leads to performance degradation in
datacenter networks.

In Web search workloads, packets might be dropped more
than once due to traffic burstiness. Most previous datacenter
flow schedulers are designed to look at the flow size only
to determine the flow priority, and, therefore, they fail to
detect/prioritize the packets that are droppedmore than once.
We designed an experiment to see how the packet drop rate
varies among different loads. Our at-scale ns-3 simulation
shows that a packet could be dropped up to seven times at
high loads. This is because when a packet is retransmitted, it
might repeatedly collide with a burst of packets, which leads
to excessive packet drops.
Most of previous solutions work when short flows are

relatively large in size (i.e., 10KB-100KB). As an example,
PIAS [6] demotes flows from higher priority queues to lower
priority queues based on their bytes sent, but it cannot use the
same approach if most flows are 1KB in size, as is the case in
many datacenter workloads[28]. Clearly, in this instance, all
packets get the same priority. Also, UPS [22] uses Least Slack
Time First (LSTF) as its main mechanism for determining
flow priority. However, due to the same reason, this method
will not perform well if all flows are extremely small. Also,

2



ResQueue: A Smarter Datacenter Flow Scheduler WWW ’20, April 20–24, 2020, Taipei, Taiwan

there is a large body of deadline-based flow scheduling meth-
ods (i.e., [2], [30], [31], etc) that perform well when flow sizes
are not very small. Further, it is not easy to get information
on flow deadlines in many datacenters. A new study [29]
reveals that flow characteristics such as flow deadline and
flow size are often unknown prior to their transmission.
We introduce ResQueue, which does not require prior

knowledge about the flows. It is designed to address the
shortcomings of previous approaches. It prioritizes those
packets that were dropped before and schedules them in
higher priority queues in switches. ResQueue is extremely
effective and easy to implement in real datacenter networks.

3 DESIGN
In this section, we discuss ResQueue that detects those pack-
ets that were dropped in the past, and prioritizes them over
packets of that same size that did not incur loss. This is criti-
cally important because the performance of foreground ap-
plications (e.g., Web search) is highly sensitive to packet loss
rate as TCP timeouts are multiple orders of magnitude larger
than typical flow completion times. Our at-scale simulations
show that while a large fraction of the Web application flows
are delivered to the destination server in less than 100 mi-
croseconds, others that are dropped more than once could
be delivered after 3-4 milliseconds (assuming RTO = 1ms).
Bellow we discuss the mechanism of ResQueue, which is de-
signed to rescue those packets that belong to short flows
from being dropped again.

3.1 ResQueue
We introduce ResQueue, which is a novel flow scheduling
method that is designed to give more accurate priority to
flows based on their size and their history of packet drops. At
its core, similar to PIAS [6], ResQueue implements a Multi
Level Feedback Queue (MLFQ) at switches, in which a flow
is demoted from higher-priority queues to lower-priority
queues according to their number of sent bytes. The priority
of each flow is calculated based on the number of bytes sent,
and then, this priority is tagged on the packet by the sender
server. In MLFQ mechanism, if there are N queues in the
switch, all flows will be scheduled in the first queue when
they start the data transmission (bytes sent = 0). Flow priority
demotes when the flow has already sent some packets and
exceeds a predefined threshold. Packets that are scheduled
in the second queue will not be dequeued unless all packets
in the first queue are dequeued. Due to space constraints,
we do not provide the details of priority demotion here. The
whole mechanism is explained in [6].

In ResQueue, we reserve the first queue for those retrans-
mitted packets that belong to short flows (the size of this
queue is 20KB in our experiments. We further discuss the

size of reserved buffer in section 4). We do this reservation
for only short flows because Web search workload is dom-
inated by short flows, and, therefore, performance of the
whole network will be determined by these short flows.

If the sender server is transmitting a normal packet, ResQueue
acts like PIAS. However, if the sender server is retransmitting
a packet (or a window of packets), it calculates the priority
of the packet(s) in two rounds: first, it finds the appropriate
queue level based on its number of sent bytes (as in [6]), and,
second, it subtracts one from the calculated value because of
its drop history. For example, if a flow has only one packet
to send and this packet was dropped before, its bytes sent
indicates that the packets should be enqueued in queue level-
2; however, the server tags the retransmitted packet with
priority 1 due to its drop history, and, therefore, all switches
will enqueue this packet in queue level-1. We provision a
reserved high-priority queue only for short flows that expe-
rienced packet loss. As in [32], Web flows are so small that
they are often enqueued either in level-1 or level-2 queues,
depending on their drop history.

Note that although ResQueue does not schedule large flows
in high priority queue, it still improves throughput of these
flows. While those large flows that experience one or more
packet drops in the past will not collide with short flows,
they get higher priority compared to other same-size flows
that did not suffer from packet drops in the past. Imagine that
a large flow’s packets are scheduled in queue level-4, and,
meanwhile, a window of its packets get dropped due to high
congestion. When the window of packets is retransmitted,
theywill be scheduled in queue level-3 to avoid further delays
to these packets. Although queue level-3 is not reserved for
dropped packets, packets in this queue will drain faster than
packets in queue level-4, which improves overall throughput
to some extent.
Figure 1 depicts a comprehensive example of ResQueue’s

mechanism. As we see in figure 1, the sender is retransmit-
ting the red packet that was dropped in the previous round.
Although the first round of priority calculation indicates that
this packet should be scheduled in queue level-2 (based on
sent bytes), dropped flag is set for this packet, which leads to
priority escalation. Therefore, when the red packet arrives
at the switches, this packet will be scheduled in an isolated
high priority queue (queue level-1), which guarantees that
this packet will not collide with a burst of packets again.
For the best performance, all servers across the datacen-

ter and all switches in the path from source to destination
need to support ResQueue to save the retransmitted packets.
ResQueue’s implementation is similar to PIAS — ResQueue
tags packets with priority information based on bytes sent
at end-hosts; upon timeouts, the priority is decremented.

3



WWW ’20, April 20–24, 2020, Taipei, Taiwan Hamed Rezaei and Balajee Vamanan.

Figure 1: Retransmitted packet gets higher priority

3.2 Why ResQueue works?
Recent studies on datacenter networks show that incast inter-
arrival time is so small that about 30% of the incasts arrive
at most 50 microseconds after the previous one [32]. Con-
sidering this traffic pattern and the size of Web search flows
in modern datacenter networks, retransmitted packets are
likely to collide with a burst of packets, which causes exces-
sive packet drops. Note that RTT in datacenter networks is
usually higher than 50 microseconds, which further compli-
cates the situation. Because flows are so small that they last
only for a handful of RTTs (assuming drops), prioritizing
retransmitted packets would save them from being dropped
again after colliding with a burst of packets. Although there
are not too many of retransmitted packets that collide with
a burst of packets, it still negatively affects the higher per-
centiles (i.e., 99th percentile) of flow completion times. Note
that in datacenter networks we only care about tail (i.e., 99th
to 99.9th ) flow completion time of short flows. Therefore,
ResQueue has the potential to play a crucial role in improving
tail flow completion times of short flows.

3.3 Why not prioritize flows instead of
packets?

If a flow already suffered from packet drops in the past, the
performance would be higher if the flow remains prioritized
until it finishes. However, there are some challenges that we
need to address if the whole flow remains prioritized:

• If the whole flow is prioritized, large flows may remain
prioritized for a long time, which causes performance
degradation to short flows.

• We need a relatively large table at the endhost to track
the flows that already suffered from packet drops. This
mechanism requires a high number of unnecessary
operations at the endhost.

There is at least one solution for the first challenge. For
instance, the endhost can increase flow priority if larger
number of packets are dropped, and decrease the priority if
larger number of packets remained to be transferred. How-
ever, this solution is indeed complicated and needs to be
further analyzed.

For the second challenge, our key insight is that because
most short flows only consist of handful of packets (1-2
packets), we can consider each packet as a separate flow
without adding complexity to the system. Therefore, priori-
tizing retransmitted packets would be efficient and easier to
implement.

3.4 Packet reordering
In this sectionwe investigate the effect of ResQueue on packet
reordering at the receiver server. Packet reordering is an
important issue as it directly affects the flow completion
time of the flow. If some packets arrive out of order, the
receiver server needs to spend considerable number of CPU
cycles on reordering them, which further delays the flow
completion time.
ResQueue only schedules retransmitted packets in the higher
priority queue. These packets are already out of order and
ResQueue’s prioritization mechanism guarantees that they
will not arrive at the receiver later than the new window of
packets. Thus, ResQueue does not worsen packet reordering.
In fact, ResQueue somewhat alleviates packet reordering by
making those late packets to arrive earlier.

4 EVALUATIONS
In this section, we discuss the details of our testbed and work-
loads, and we provide an exhaustive analysis of ResQueue’s
performance in terms of flow completion time, throughput,
and packet drop rate.

4.1 Experimental Methodology
We use ns-3 [27] simulator to simulate a leaf-spine data-
center topology, which is common in datacenters [2]. In our
topology, the fabric interconnects 400 servers through 20 leaf
switches that are connected to 10 spine switches (i.e., there
is an over-subscription factor of 2). All links are 10 Gbps
and the round trip time across the network is 80 microsec-
onds. We use workload characteristics reported in recent
studies [28, 32] to create a realistic traffic in our simulations.
Hence, our short flows’ sizes are in the range of 1KB to 6KB,
while 80% of the flows are 1KB in size. Also, we use 1 MB
flows as our large flows. All servers are spread across the
network uniformly randomly and the switches use shallow
buffers as suggested in prior work (e.g., [2]).

4.2 Flow Completion Times
Tail flow completion time is the key determinant of appli-
cation performance in datacenters. Thus, we only evaluate
ResQueue’s performance in lowering tail flow completion
time of short flows. Note that median flow completion time

4



ResQueue: A Smarter Datacenter Flow Scheduler WWW ’20, April 20–24, 2020, Taipei, Taiwan

Figure 2: Normalized tail flow completion time of
short flows

will be the same in both PIAS and ResQueue, as ResQueue tar-
gets dropped packets only, which affects higher percentiles
of flow completion time.
Our experiments show that ResQueue improves perfor-

mance of PIAS (in terms of tail flow completion time) by a
factor of 1.6x for loads greater than 20%, on average. Figure
2 shows the result of our experiments when incast degree
(i.e., number of concurrent senders) is 32. We discuss more
about sensitivity of ResQueue’s performance to different in-
cast degrees later in this section.

As we see in figure 2, although PIAS outperforms DCTCP
in lowering tail flow completion times, ResQueue lowers tail
flow completion times more by reducing the total number
of packet drops. In particular, ResQueue achieves impressive
gains of over 2x at higher loads (≥ 60%) over PIAS.

4.3 Throughput
Although ResQueue is mainly designed for lowering tail flow
completion times of short flows, it improves the throughput
of large flows as well. ResQueue schedules dropped packets
in a higher priority queue depending on their size. Therefore,
when some large flows compete for bandwidth, those pack-
ets that were previously dropped will get higher priority. For
example, if a packet should be scheduled in queue level-4
(based on flow’s bytes sent), it will be scheduled in queue
level-3 if and only if it is a retransmitted packet. This mech-
anism will expedite the dropped packets, which provides
higher throughput for large flows.
Figure 3 shows throughput comparison between PIAS and
ResQueue. While the absolute throughput decreases when
load increases due to higher contention with other flows at
switches, ResQueue’s throughput remains higher than PIAS
even at high loads. Instead of repeatedly dropping packets
from a small subset of flows, ResQueue distributes packet
losses to more flows. As a result, more senders throttle their
rates, which helps alleviate saturation. Figure 3 shows that
ResQueue ’s relative advantage over PIAS increases with load.

Figure 3: Normalized throughput of large flows

Figure 4: Maximum drops for any packet

Overall, ResQueue improves the throughput of large flows
by a factor of 1.08x relative to competition, for loads greater
than 20%, on average.

4.4 Packet drop rate
In this section, we analyze packet losses in DCTCP, PIAS, and
ResQueue. Figure 4 shows the maximum number of packet
drops for any packet in DCTCP, PIAS, and ResQueue for
different loads. We clearly see that DCTCP and PIAS suffer
higher packet loss than ResQueue and their packet drops
worsen with load. In contrast, a packet does not get dropped
more than once with ResQueue, even at high loads.
Note that our highest priority level is reserved for re-

transmitted packets only and small flow packets start from
the second level and get promoted to the highest priority
level upon loss. Because retransmissions constitute a small
fraction of packets, we do not observe losses in the highest
priority queue (i.e., maximum number of packet drops for
any packet in Figure 4 for ResQueue is 1 across all loads).

4.5 Sensitivity Analysis
4.5.1 Sensitivity to incast degree. In this section, we evaluate
ResQueue’s sensitivity to incast degree. Figure 5 shows the
normalized tail flow completion times of ResQueue compared
to PIAS (PIAS’ tail FCT for each incast degree is normalized

5



WWW ’20, April 20–24, 2020, Taipei, Taiwan Hamed Rezaei and Balajee Vamanan.

Figure 5: Sensitivity of ResQueue to incast degree
(normalized FCT is 1 for PIAS)

Figure 6: Sensitivity of ResQueue’s performance to
size of the reserved buffer

to 1). We vary the incast degree as 32 (our default incast
degree), 40, and 48 along X-axis, for different loads from
40% to 80% (typical operating point of datacenter networks).
As expected, the tail flow completion times increase when
incast degree and load increase. Overall, ResQueue achieves
an average reduction in tail flow completion times by a factor
of 1.6x, for loads greater than 40%. Thus, ResQueue achieves
improvement over PIAS (i.e., normalized FCT less than 1)
irrespective of incast degree and load.

4.5.2 Sensitivity to size of reserved buffer. ResQueue’s main
mechanism is to escalate priority of dropped packets by
storing them in a higher priority queue. Since we reserve
the queue level-1 for those retransmitted packets that belong
to short flows, we need to measure the buffer size that we
need to reserve to achieve the highest performance. Because
most flows are short, they are highly likely to use this buffer
during congestion.
Our analysis shows although a retransmitted packet is

likely to collide with a burst of packets, the total number
of retransmitted packets is not high. Figure 6 shows the
sensitivity of ResQueue to size of the reserved buffer. As
we see in the figure, there is no difference between perfor-
mance of ResQueue and PIAS, if the size of reserved buffer is

smaller than 5KB. Likewise, sizes larger than 20KB do not im-
prove the performance of ResQueue as the buffer goes unused.
Therefore, we have a sweet spot between 15KB and 20KB that
minimizes packet drops for short flows and achieves high
throughput for large flows. Clearly, 20KB of dedicated buffer
is not a big amount of buffer and can be easily provided by
switch vendors. Modern datacenter switches are equipped
with a large (4MB to 50MB) shared buffer that is shared
among all ports. Reserving 20KB of a 4MB buffer contributes
to only 0.5% of the total buffer, which is almost negligible.
Thus, ResQueue’s overhead is minimal, and our performance
is robust for a range of loads and workloads.

5 RELATEDWORK
There is a large body of work on flow scheduling in dat-
acenters. Most of these schemes either require extensive
hardware modifications or they rely on prior knowledge
about the flows (e.g., deadline). Flow scheduling methods
can be divided into two groups: information agnostic flow
schedulers and information aware flow schedulers. Earliest
Deadline First (EDF) [20] is the earliest information-aware
packet scheduling approach and has been proven to be opti-
mal for minimizing deadline misses. D3 [31] and PDQ [17]
proactively assign flow rates based on deadlines, whereas
D2TCP [30] andMCP [10] reactively adjust sendingwindows
based on deadlines. pFabric [2], PASE [24], and UPS [22]
prioritize packets based on flow sizes/deadlines. All these
approaches require explicit flow sizes or deadlines, which is
known to be hard to obtain in practice [29].
Among information agnostic flow schedulers, PIAS [6]

and Slytherin [26] infer the priority of flows based on in-
network mechanisms such as MLFQ and ECN marks. While
information-agnostic approaches are easier to deploy than
information-aware approaches, both these approaches are
not effective in mitigating repeated packet drops, which oc-
curs when most flows are small.

6 CONCLUSION
We presented ResQueue, which identifies delayed packets
and prioritizes them in switches. Unlike prior approaches
that rely only on flow size to determine priority, ResQueue
uses a combination of flow size and packet drop history
to infer priority. ResQueue improves tail flow completion
times, which is the key metric for a broad class of user-
facing datacenter applications. Further, ResQueue does not
require hardware changes at switches. The current trend of
increasing traffic burstiness in datacenters combined with
the emphasize on low tail flow completion times necessitate
schemes such as ResQueue that consider packet history in
flow scheduling.

6



ResQueue: A Smarter Datacenter Flow Scheduler WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] MohammadAlizadeh et al. 2010. Data center TCP (DCTCP) (SIGCOMM

’10).
[2] Mohammad Alizadeh et al. 2013. pFabric: Minimal Near-optimal Data-

center Transport (SIGCOMM ’13). ACM.
[3] Mohammad Alizadeh et al. 2014. CONGA: Distributed Congestion-

aware Load Balancing for Datacenters (SIGCOMM ’14).
[4] Hamidrezae Almasi, Hamed Rezaei, Muhammad Usama Chaudhry,

and Balajee Vamanan. 2018. Pulser: Fast Congestion Response using
Explicit Incast Notifications for Datacenter Networks. arXiv preprint
arXiv:1809.09751 (2018).

[5] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Boon Thau Loo, and Geoff
Outhred. 2018. 007: Democratically finding the cause of packet drops.
In 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18). 419–435.

[6] Wei Bai et al. 2015. Information-Agnostic Flow Scheduling for Com-
modity Data Centers.. In NSDI.

[7] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. 2003. Web Search
for a Planet: The Google Cluster Architecture. IEEE Micro 23, 2 (March
2003), 22–28.

[8] Luiz Andre Barroso and Urs Hoelzle. 2009. The Datacenter As a Com-
puter: An Introduction to the Design of Warehouse-Scale Machines (1st
ed.). Morgan and Claypool Publishers.

[9] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh. 2016. Sched-
uling Mix-flows in Commodity Datacenters with Karuna (SIGCOMM
’16).

[10] Li Chen, Shuihai Hu, Kai Chen, Haitao Wu, and Danny HK Tsang.
2013. Towards minimal-delay deadline-driven data center TCP. In
Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks.
ACM, 21.

[11] Yanpei Chen et al. 2009. Understanding TCP incast throughput collapse
in datacenter networks. In Proceedings of the 1st ACM workshop on
Research on enterprise networking. ACM.

[12] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-
Bounded Congestion Control for Datacenters. In Proceedings of SIG-
COMM. 239–252.

[13] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (Feb. 2013).

[14] Peter X. Gao et al. 2015. pHost: Distributed Near-optimal Datacenter
Transport over Commodity Network Fabric. In Proceedings of CoNEXT.
1:1–1:12.

[15] Mark Handley et al. 2017. Re-architecting Datacenter Networks and
Stacks for Low Latency and High Performance. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’17). ACM.

[16] Keqiang He et al. 2015. Presto: Edge-based Load Balancing for Fast
Datacenter Networks (SIGCOMM ’15).

[17] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Fin-
ishing flows quickly with preemptive scheduling. In Proceedings of the
ACM SIGCOMM 2012 conference on Applications, technologies, architec-
tures, and protocols for computer communication (SIGCOMM ’12). ACM,
127–138. https://doi.org/10.1145/2342356.2342389

[18] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and FabienDuchene.
2014. FlowBender: Flow-level Adaptive Routing for Improved Latency
and Throughput in Datacenter Networks. In Proceedings of the 10th
ACM International on Conference on Emerging Networking Experiments
and Technologies (CoNEXT ’14). ACM, New York, NY, USA, 149–160.

[19] Naga Katta et al. 2016. HULA: Scalable Load Balancing Using Pro-
grammable Data Planes (SOSR ’16). ACM.

[20] Chung Laung Liu and James W Layland. 1973. Scheduling algorithms
for multiprogramming in a hard-real-time environment. Journal of
the ACM (JACM) 20, 1 (1973), 46–61.

[21] Mojtaba Malekpourshahraki, Brent Stephens, and Balajee Vamanan.
2019. Ether: Providing both Interactive Service and Fairness in Multi-
Tenant Datacenters. In Proceedings of the 3rd Asia-Pacific Workshop on
Networking 2019. ACM, 50–56.

[22] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
2016. Universal Packet Scheduling. In Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation (NSDI’16).
501–521.

[23] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-
all, and David Zats. 2015. TIMELY: RTT-based Congestion Control for
the Datacenter (SIGCOMM ’15). ACM.

[24] Ali Munir, Ghufran Baig, Syed M. Irteza, Ihsan A. Qazi, Alex X. Liu,
and Fahad R. Dogar. 2014. Friends, Not Foes: Synthesizing Existing
Transport Strategies for Data Center Networks. In Proceedings of the
2014 ACM Conference on SIGCOMM (SIGCOMM ’14). ACM, New York,
NY, USA, 491–502. https://doi.org/10.1145/2619239.2626305

[25] Hamed Rezaei, Muhammad Usama Chaudhry, Hamidreza Almasi, and
Balajee Vamanan. 2019. ICON: Incast Congestion Control using Packet
Pacing in Datacenter Networks. In 2019 11th International Conference
on Communication Systems & Networks (COMSNETS). IEEE, 125–132.

[26] Hamed Rezaei, Mojtaba Malekpourshahraki, and Balajee Vamanan.
2018. Slytherin: Dynamic, network-assisted prioritization of tail pack-
ets in datacenter networks (ICCCN’18). IEEE.

[27] George F Riley and Thomas R Henderson. 2010. The ns-3 network
simulator. In Modeling and tools for network simulation. Springer,
15–34.

[28] Arjun Roy et al. 2015. Inside the social network’s (datacenter) network.
In ACM SIGCOMM Computer Communication Review. ACM.

[29] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš, Muhsen Owaida,
Ce Zhang, and Ankit Singla. 2019. Is advance knowledge of flow sizes
a plausible assumption?. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19). 565–580.

[30] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. 2012.
Deadline-aware Datacenter TCP (D2TCP). In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM ’12).

[31] ChristoWilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
2011. Better never than late: meeting deadlines in datacenter networks.
In Proceedings of the ACM SIGCOMM 2011 conference (SIGCOMM ’11).
ACM, New York, NY, USA, 50–61. https://doi.org/10.1145/2018436.
2018443

[32] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy.
2017. High-resolution measurement of data center microbursts
(IMC’17). ACM.

[33] Yibo Zhu et al. 2015. Congestion Control for Large-Scale RDMA
Deployments. In Proceedings of SIGCOMM. 523–536.

7

https://doi.org/10.1145/2342356.2342389
https://doi.org/10.1145/2619239.2626305
https://doi.org/10.1145/2018436.2018443
https://doi.org/10.1145/2018436.2018443

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 ResQueue
	3.2 Why ResQueue works?
	3.3 Why not prioritize flows instead of packets?
	3.4 Packet reordering

	4 Evaluations
	4.1 Experimental Methodology
	4.2 Flow Completion Times
	4.3 Throughput
	4.4 Packet drop rate
	4.5 Sensitivity Analysis

	5 Related Work
	6 Conclusion
	References

