
Pulser: Fast Congestion Response Using Explicit
Incast Notifications for Datacenter Networks

Hamidreza Almasi, Hamed Rezaei, Muhammad Usama Chaudhry, and Balajee Vamanan
Department of Computer Science, University of Illinois at Chicago, USA

Email: {halmas3, hrezae2, mchaud30, bvamanan}@uic.edu

Abstract—Datacenter applications frequently cause incast con-
gestion, which degrades short flows’ flow completion times and
long flows’ throughput. Existing congestion control schemes (e.g.,
DCTCP) do not explicitly detect and isolate incast. Instead,
they rely on existing Explicit Congestion Notification (ECN) to
react to general congestion. They, therefore, lose performance
due to slow, cautious, and inaccurate reaction to incast. We
propose a novel algorithm that detects incasts and notifies senders
using a new Explicit Incast Notification (EIN). We show that
our incast detection is fast and accurate. Next, we present our
congestion control scheme, called Pulser, which isolates incasts
using EIN. Unlike DCTCP, which gradually adjusts sending rate,
Pulser drastically backs off during incast and rapidly restores
sending rate once incast ends (i.e., like a pulse). Our real
experiments and ns-3 simulations show that Pulser outperforms
prior schemes, DCTCP and ICTCP, in both flow completion times
and throughput.

Keywords— Datacenter; TCP; Incast; Tail latency; ECN

I. INTRODUCTION

Datacenters provide fast, curated access to vast amounts of
Internet data. Today’s datacenters host a mix of applications
– foreground applications perform distributed lookup in re-
sponse to user queries and background applications perform
data update and reorganization. While foreground applica-
tions predominantly generate short flows and the nature of
distributed lookup implies that their performance is sensi-
tive to higher percentiles (i.e., tail) of short-flow completion
times [1], background applications generate long lasting flows
and require high throughput. Therefore, today’s datacenter
networks optimize short flows’ completion times and long
flows’ throughput.

The key to optimizing both Flow Completion Times (FCT)
of short flows and the throughput of long flows fundamentally
lies in accurately and quickly responding to congestion. Tra-
ditional TCP uses packet loss to modulate its sending rate and
relies on duplicate ACKs and timeouts to infer packet loss.
Because packet loss is often a late indication of congestion,
today’s datacenter networks leverage some form of Active
Queue Management (AQM) such as Explicit Congestion No-
tification (ECN), to quickly infer congestion. Current state-of-
the-art datacenter networks use variants of DCTCP [2], which
leverages ECN. ECN-enabled routers mark packets if their
instantaneous queue length exceeds a predefined threshold and
DCTCP senders modulate their sending rate proportional to the
fraction of observed ECN marks in the ACK packets.

While DCTCP senders respond to congestion faster than
traditional TCP using early network feedback (i.e., ECN),
DCTCP incurs packet drops when network queues buildup at a
much faster rate than DCTCP senders can respond. Many fore-
ground datacenter applications, by design, perform distributed
lookup of small data items that are spread among hundreds or
thousands of servers. Therefore, they cause frequent incasts
(i.e., data from many input ports converges to one output
port and causes rapid queue buildup). Today’s incast-heavy
applications (e.g., Web Search) and high-bandwidth network
topologies (e.g., fat-trees with low over-subscription factors)
imply that congestion often happens due to incasts at the
network edge, as reported by Google [3] and Microsoft [4].
Because incast causes a rapid queue buildup in a short
time, DCTCP’s iterative, gradual window adaptation does
not prevent buffer overflow. Alternatively, tweaking DCTCP’s
window adaptation algorithm to drastically cut the window
or lowering ECN threshold in the switches would worsen
throughput due to overreaction to not-so-severe (non-incast)
congestion [5].

We make the key insight that because existing schemes do
not explicitly detect and isolate incast from other general forms
of congestion, it is not possible for existing schemes to aggres-
sively cut the sending rate without losing throughput. In other
words, incast detection and aggressive response go hand-in-
hand. In this paper, we make the case for isolating incast from
other general cases of congestion and we design a protocol that
aggressively cuts sending rate in response to incasts. Because
incast congestion is the common case, accurate detection and
timely response to incast can significantly improve network
performance, as our results show. Because detecting incasts at
the end-hosts would require multiple round-trips and would be
significantly less efficient due to the short incast time scales
(e.g., 50µs [6]), we argue for detecting incasts at switches,
as opposed to detecting at end-hosts. We present a novel
algorithm for detecting incasts within a short time interval
by monitoring the gradient of queue length. Similar to ECN,
switches set an Explicit Incast Notification (EIN) mark upon
detecting incasts. Switches detect incast per output port and
mark packets traversing through those ports.

We propose a DCTCP variant, called Pulser, which lever-
ages EIN for window adaptation. Pulser resets the congestion
window to a small value upon observing EIN via ACKs. While

978-1-7281-1434-7/19/$31.00 c©2019 IEEE

incasts last for a short time and constitute a small fraction of
the overall network load, they occur frequently [6]. So, if we
drastically reduce the congestion window and slowly ramp-
up the window after each incast, we would lose substantial
throughput. Therefore, Pulser restores the congestion window
to its pre-incast value if subsequent ACKs do not have EIN
marks. The net effect is that Pulser has a braking phase
when EIN marks are observed, which only lasts for a short
time; after the incast episode, Pulser restores the window to
its pre-incast value, instead of a gradual increase. Fast and
accurate incast detection is key to Pulser’s design, and without
such detection, Pulser would either lose throughput or incur
long latency tails. ICTCP [7] addresses incast at the receiver
without adding network support. Consequently, ICTCP’s end-
host detection is slow and Pulser outperforms ICTCP (see
section V).

In summary, we make the following contributions:
• We propose a combination of in-network and end-host

mechanisms that explicitly detect and isolate incast con-
gestion, which is common but is not efficiently handled
by existing proposals.

• We introduce a novel, gradient-based incast detection
algorithm, which is fast and accurate.

• We propose Pulser, a congestion control scheme that
uniquely leverages our incast detection to improve both
short flows’ completion times and long flows’ throughput.

Using a combination of real testbed and ns-3 [8] simu-
lations, we show that Pulser improves both 99th-percentile
short-flow completion times and long-flow throughput:
With simulations, Pulser:

• achieves 10% (1.12x) reduction in median and 50%
(2x) reduction in 99th percentile FCT than DCTCP and
ICTCP, on average, for loads greater than 20%. At higher
loads, Pulser achieves up to 25% and 70% reduction in
median and 99th percentile FCT, respectively.

• achieves 20% higher long-flow throughput than DCTCP
and ICTCP, on average, for loads greater than 20%.

With real testbed, Pulser:
• outperforms DCTCP by about 26% in 99th percentile

flow completion times.
• achieves about 25% higher throughput than DCTCP.
The remainder of the paper is organized as follows. We

start with background and motivation in Section II. We then
present our design in Section III. We present our methodology
and evaluation in Sections IV, V and VI. We discuss related
work in Section VII and conclude in Section VIII.

II. BACKGROUND AND MOTIVATION

DCTCP is a pioneering work that made a key insight that
a proportional response to congestion, inferred via ECN, is
key to improving both flow completion times and throughput.
DCTCP aggregates ECN marks at the end-host to accurately
estimate the extent of queuing at the bottleneck switch and
uses the estimate to modulate the sending window [9]. DCTCP
performs well for long flows or when incast is somewhat
mild (e.g., small fan-in). However, DCTCP performs poorly

Figure 1: Incast detection in DCTCP using ECN

with an incast-heavy traffic with many short flows (e.g., large
fan-in). The queue size would increase rapidly during incast,
and therefore, it is essential to drastically slow down all
senders in order to avoid packet loss. However, DCTCP’s
proportional response would require multiple round-trip times
(RTTs), which is too slow for incast.

Our at-scale ns-3 simulations capture this behavior. Figure 1
shows how the queue length of a port (red line), which
experiences incast, changes over time (Section V discusses
our methodology). Figure 1 also shows DCTCP’s reaction
(green line) as a binary pulse — 0 indicates insufficient slow
down and 1 indicates appropriate slow down. We clearly see
that even though incast starts around 10 us, DCTCP does not
slow down enough until 210 us, which it is too late. While
it is tempting to reduce the ECN threshold so that DCTCP
responds earlier, several past papers have shown that small
ECN thresholds cause throughput loss [2, 5]. Later, we will
show that Pulser reacts to incast much faster than DCTCP
(Section V).

Though datacenter traffic is heavy-tailed with a small
fraction of long flows accounting for the majority of bytes
transferred, the growing popularity of online services (e.g.,
Google Search, Facebook) implies that the fraction of short
flows and the intensity of incast is bound to increase. While the
performance of all end-to-end rate control schemes degrade as
the fraction of short flows increase, we contend that an AQM
mechanism that is customized for incasts and an associated
congestion control algorithm that leverages the mechanism
could substantially improve performance over the current
state-of-the-art algorithms.

III. Pulser

Pulser consists of two parts: (1) fast and accurate incast
detection and (2) end-to-end congestion control that leverages
incast detection. Recall that while current proposals do not
isolate incast congestion and only gradually react to general
congestion, we explicitly detect incasts using EIN and Pulser
drastically cuts the sending rate upon seeing EIN marks. We
describe our novel incast detection (i.e., EIN marking) in
section III-A and our congestion control in section III-B.

A. Explicit Incast Notifications (EIN)
During incast, data from multiple input ports (e.g., 8 or

higher) gets forwarded to the same output port within a switch,
which causes a steep increase in the output port’s queue length

Algorithm 1: Incast detection (EIN generation) at switches
Result: Set or Reset EIN

1 for Each packet “P” at dequeue do
2 Gradient = (Qlen−Qlenprev)/(T − Tprev)
3 Qlenprev ← Qlen
4 Tprev ← T
5 EINprev ← EIN
6 EIN ← 0
7 Calculate Average Gradient for last “N” samples
8 if Average Gradient > EINthreshold then
9 EIN ← 1

10 else
11 if EINprev == 1 then
12 if Qlen > HighWaterMark then
13 EIN ← 1
14 end
15 end
16 end
17 end

in a short time. Therefore, our incast detection logic uses the
gradient of queue length rather than the queue length. At a
high level, our algorithm marks packets when the gradient of
queue length exceeds a threshold (i.e., when the queue fills
rapidly).

Algorithm 1 shows our complete incast detection algorithm.
Similar to current ECN implementations, we mark packets
(i.e., detect incasts) when packets are dequeued. For each
packet dequeue event, we calculate the gradient of queue
length (line 2) and calculate the average gradient for the
last N samples (line 7). If the average gradient is more
than EINthreshold, we mark packets by setting the new
Explicit Incast Notification (EIN) bit (line 9). EIN requires
an additional bit in the IP header (similar to CE bit for ECN)
and it is set by switches; we need another bit in the TCP
header of ACKs to notify senders (similar to ECE for ECN).
As a safety measure, we also set EIN if we have previously
set EIN and if the current queue length exceeds a configurable
HighWaterMark (lines 10–14). We set HighWaterMark
to be equal to ECN threshold as a lower value would incur
throughput loss.

Our incast detection has two main parameters, N and
EINthreshold. These parameters are not independent —
smaller N values demand relatively larger EINthreshold and
vice versa (i.e., if the queue builds up either rapidly over a
short duration or gradually over a long duration, senders must
slow down). Further, these parameters depend on the nature of
incast (i.e., incast duration). If incasts last for a short duration,
we need a small N to quickly react to incasts. Conversely, if
incasts last for a long duration, a larger N would provide a
more accurate detection (a small N would lead to many false
positives and cause loss of throughput). A good rule of thumb
is to set these parameters to be close to the duration of typical
incasts. A recent study from Facebook [6] reported that 80% of

incasts are shorter than 60µs. Accordingly, we pick N = 50
(dequeuing 50 MTU size packets on a 10 Gbps link takes
60µs) and EINthreshold = 0.25×LineRate as default values.
We performed a sensitivity study for these paramters. While
we do not show these plots due to space constraints, we found
our performance to be robust for a range of incast degrees, load
values, and traffic patterns. Our studies also showed stable
performance for N values from 10 to 100.

B. Congestion control

We design Pulser’s congestion control by leveraging EIN
bit. If a Pulser sender gets a packet with EIN mark, the sender
reduces its congestion window to a configurable, safe value
after saving the current congestion window. Such a drastic
response to incast congestion would likely ease congestion.
Once incast finishes, the sender would stop receiving EIN
marks. If the sender does not observe any EIN marked packets
for the current batch of packets, then the sender restores the
window to its previous saved value. Equations 1 and 2 show
how we modify the congestion window at the beginning and
end of an incast episode, which we infer via EIN marks.

cwndprev ← cwnd

cwnd← cwndsafe
(1)

cwnd← cwndprev (2)

We empirically found that setting cwndsafe = 4 ×MSS
provides optimal performance (MSS stands for maximum
segment size) across various loads. Thus, Pulser requires only
handful lines of code change over DCTCP and is deployment
friendly.

IV. EXPERIMENTAL METHODOLOGY

We use ns-3 [8] to simulate a leaf-spine datacenter topology,
which is commonly used in today’s datacenters [10]. In our
topology, the fabric interconnects 400 servers using 20 leaf
switches with each leaf switch connecting to 20 servers. The
leaf switches are connected to 10 spines, resulting in an
over-subscription factor of 2. The servers and switches are
connected by 10 Gbps links with an unloaded link delay of
10 µs; the unloaded Round-Trip Time (RTT) for the longest
path (i.e., 4 hops) is 80 µs.

We model our workloads based on reported results in [11],
with a mix of short and long flows. Flow arrivals follow a
Poisson distribution and the source and destination for each
flow is chosen uniformly randomly. Our short flows’ sizes are
randomly chosen from 8 KB to 32 KB and we set long flow
sizes to 1 MB. Our long flows contribute to 80 % of the
overall network load, which we vary in our experiments [12].
We also model incast traffic as per [13]. The flows and
their destinations are chosen randomly and are varied during
the experiment. We generate at least 100,000 flows in each
experiment. Our default incast degree is 24 but we vary it in
our sensitivity analysis in section V-D.

We compare four schemes: DCTCP, ICTCP, Pulser, and
Ideal. Our DCTCP and ICTCP implementations use their

Figure 2: Median flow completion time

recommended parameter settings (e.g, ECN threshold) and
our results match their reported numbers. We implemented
Pulser on top of DCTCP [2]. We implemented algorithm 1
in switches and our congestion control in end-hosts. We set
cwndsafe = 4×MSS, EINthreshold = 0.25×LineRate, and
N = 50 as default values, as discussed in Section III-A. We
also implemented an Ideal congestion control scheme where
senders have oracular global knowledge and send at optimal
(safe) sending rate. While the Ideal scheme is not practical, we
show its results to set a loose upper bounds on performance.

V. RESULTS

We summarize our evaluation of Pulser as follows:
• Flow Completion Time (FCT): We compare the median

and 99th percentile short-flow completion times of Pulser
with DCTCP, ICTCP, and Ideal. Pulser achieves 10%
reduction in median and 50% reduction in 99th percentile
FCT than DCTCP and ICTCP, on average, for loads
greater than 20%. At higher loads, Pulser achieves up to
25% and 70% reduction in median and 99th percentile
FCT, respectively.

• Throughput: We compare the long-flow throughput of
Pulser with DCTCP, ICTCP, and Ideal. Pulser achieves
20% higher long-flow throughput than DCTCP and
ICTCP, on average, for loads greater than 20%. Pulser
achieves up to 20% higher throughput at higher loads.

• Queue length analysis: We analyzed how the queues
buildup in Pulser and DCTCP. Pulser reduces queue
lengths drastically (by up to 2x) compared to DCTCP.

• Sensitivity to incast: Pulser’s improvements increase
with increasing incast degree and is robust across a range
of typical incast degrees.

We provide a more exhaustive analysis below.

A. Flow Completion Time

Figure 2 and Figure 3 compare the median and tail
(99th percentile) flow completion times of DCTCP, ICTCP,
Pulser, and Ideal. We show flow completion times along Y-
axis versus network load on X-axis. As load increases, all
schemes incur more queuing and their FCTs degrade. Ideal
has perfect knowledge of future flow arrivals, and therefore,
holds back packets without injecting them into the network if
they would end up being queued. In other words, Ideal does
not incur queuing in the network, at all loads. Because Figure 2

Figure 3: 99th %-ile flow completion times

Figure 4: Throughput comparisons

and Figure 3 capture only network queuing delays (not source
queuing delays), Ideal’s FCT is the same as the minimum
FCT, for all loads. While Pulser achieves reduction in both
median and tail FCT, Pulser achieves a better reduction in tail
flow completion times than in median flow completion times.
Because datacenter applications are more sensitive to tail FCT
than median, Pulser makes the right trade-off.

Because incast congestion is not an issue at lower loads,
Pulser does not significantly outperform other schemes at
lower loads. Compared to DCTCP, Pulser reduces tail flow
completion time by about 51% at loads greater than 40%
(typical operating point of most datacenters). Compared to
ICTCP, Pulser reduces flow completion time by about 46%
at higher loads.

B. Throughput

In this section we compare Pulser’s throughput with ICTCP
and DCTCP. Long flow throughput decreases with load due
to increased congestion (including incast). As we see from
figure 4, Pulser achieves higher throughput across all loads.
First, Pulser reduces the number of packet drops of those
background flows whose paths suffer high incast congestion.
Second, when incast finishes, Pulser simply restores the pre-
incast congestion window, instead of a slow window increase
(e.g., slow start or congestion avoidance). In other words,
Pulser’s ON/OFF window modulation helps both at the be-
ginning and at the end of incast congestion. Overall, Pulser
achieves 16% and 22% higher throughput compared to ICTCP
and DCTCP, respectively.

C. Queue length

In this section, we analyze the queuing behavior of Pulser
and relate it to Pulser’s congestion control (i.e., evolution of

Figure 5: Queue length over time

Figure 6: Congestion window at a long flow sender

congestion window over time). For this experiment, we run
our workload with 60% load. Figure 5 shows the queue length
at an aggregator switch’s output port (Y-axis) over time (X-
axis). We analyze DCTCP (red) vs. Pulser (green). We see
that, Pulser reduces the queue buildup by as much as 50%
(2x).

To connect Pulser’s queuing behavior to our congestion
control, we compare the congestion window evolution versus
time (at the sender) for DCTCP and Pulser in figure 6.
At time = 120µs, incast starts. While DCTCP gradually
reduces the congestion window and oscillates around due to
the absence of a precise signal that indicates incast, Pulser
leverages a more precise EIN to backup almost instantly.
When the incast finishes at time = 300µs, Pulser instantly
recovers. By instantly backing off, the Pulser’s long-flow
sender minimizes queuing delay, which helps short flows. By
restoring its previous sending rate after incast, Pulser sender
achieves better throughput.

D. Sensitivity to incast degree

We analyze the sensitivity of our results to different incast
degrees. For this study, we compare Pulser’s tail flow comple-
tion time to those of DCTCP and ICTCP for varying incast
degrees. We vary incast degree as 24 (default), 32, and 40.
Figure 7 shows the 99th percentile flow completion times for
varying incast degrees, normalized to our default case (i.e.,
incast degree of 24).

All schemes experience increasing tail flow completion
times with load increments, irrespective of incast degree.
Pulser outperforms DCTCP and ICTCP with a substantial
margin of at least 2X for 60% and 80% loads, for both the
two incast degrees. At lower loads, there is not a significant
amount of incast congestion, and, therefore, there is limited

Figure 7: Sensitivity of 99th %-ile FCT to incast degree

opportunity for improvement. High incast degrees, similar to
high loads, provide more opportunity for Pulser. Nevertheless,
Pulser’s relative performance improvement remains robust for
a range of typical loads and incast degrees.

VI. REAL IMPLEMENTATION

Our real testbed consists of three Dell 7040 Optiplex servers
with 32 GB of memory, Intel Quad core processors (3.4 GHz
i7) and 1 Gbps NICs. Two servers act as clients and generate
traffic to the third server, which acts as an aggregator (leaf
server). Because EIN requires switch support, we use another
server with two network interfaces as a software switch (kernel
version 4.4.0). The two client servers are connected by a
physical Netgear Prosafe switch to our software switch, which
connects to the aggregator. Further, to generate a realistic
incast scenario with only two servers, we place 8 VMs in
each of the two client servers; the VMs run Ubuntu 12.04 LTS
(kernel version 3.2.18) with 2GB of memory. We rate limit the
client VM’s NICs to 50 Mbps. The two client machines each
generate 50× 8 = 400 Mbps of traffic to the physical switch,
which connects to the software switch over a 1 Gbps link (i.e.,
there is no bottleneck). However, the link between the software
switch and the aggregator is rate limited to 50 Mbps, creating
a realistic incast (i.e., there is 800 Mbps of incoming traffic
into the software switch but the outgoing port is only 50 Mbps,
which creates a realistic incast degree of 16). We use iperf3 to
generate traffic. We generate a background 40 MB long flow
from one of the client VMs. The other 15 client VMs generate
synchronous bursts of short 100KB flows, with random jitter.
We run the experiment for 80 minutes and measure the flow
completion times of short flows and throughput of long flows.

Table I shows the flow completion times – both average
and 99th percentile flow completion times – and throughput
for DCTCP and Pulser in our real testbed. Because our real
testbed is smaller in scale, the intensity of incast and the
corresponding tail effects are somewhat less pronounced than
in our at-scale simulations. Nevertheless, Pulser outperforms
DCTCP by about 20% and 26% in average and 99th percentile
flow completion times, respectively. Similarly, Pulser achieves
about 25% higher throughput than DCTCP. While we do
not have access to a datacenter-scale testbed, our substantial
performance gains in the small testbed show the potential of
Pulser in a more realistic setting.

Metric DCTCP Pulser
Avg. flow completion time (s) 1.99 1.59

99th percentile flow completion time (s) 13.32 9.85
Throughput (Mbps) 28 35

Table I: Real implementation results

VII. RELATED WORK

While Internet Congestion control is a well-studied research
area, datacenter congestion control continues to garner interest
in the networking community. There are a number of recent
papers on datacenter congestion control. We have discussed
DCTCP and ICTCP in earlier sections. We will summarize
other related work in this area.

Rate Control Protocol (RCP) [14] is an alternative to
window-based TCP protocols in which switches directly in-
form the senders of their fair share sending rate by observ-
ing the rates of all intervening flows. But, RCP does not
isolate incast. Further, RCP requires substantial modifications
to commodity switches, which impedes deployment. Similar
to Pulser, TIMELY [15] uses a gradient-based approach.
However, unlike Pulser, TIMELY is RTT-based, its detection
logic is not customized for incast, and it is implemented at end-
hosts. Therefore, TIMELY’s detection is likely not as fast, and
not as accurate, as Pulser. DCQCN [16] leverages ECN for
RDMA and performs rate-based congestion control. Our incast
detection and congestion control ideas are complementary to
DCQCN and they would likely improve DCQCN’s incast
performance. QCN [17] provides congestion control based on
network feedback (similar to DCTCP/ECN) but operates at
the Ethernet layer and doesn’t isolate incast. Because QCN
operates at layer-2 and most large datacenters rely on IP
routing, QCN is not applicable to large datacenters. Extending
QCN to layer 3 is not straightforward. S-ECN [18] probabilis-
tically marks packets based on instantaneous gradient of queue
length at switches and aggregates several marks at the end-
hosts to gradually reduce the congestion window. In contrast,
Pulser relies on a more accurate incast detection using average
gradient at switches, and therefore, Pulser can achieve a near
instantaneous throttling and restoring of sending rates. Num-
Fabric [19] provides other more flexible bandwidth allocations
other than TCP’s fair share. ExpressPass [20] and NDP [21]
provide receiver-driven congestion control; Pulser, in contrast,
is switch-driven and isolates incast congestion from other
forms of congestion (e.g., congestion in network caused by
flow collisions). A number of proposals [12, 22–27] focus
on flow scheduling and prioritizing critical flows (e.g., short
flows) whereas our main focus is on incast congestion control.
Finally, load balancing proposals [10, 28] are complementary
to Pulser.

VIII. CONCLUSION

Incast congestion is a dominant form of congestion in data-
center networks. Prior approaches do not explicitly detect and
isolate incast in the network, and, therefore, existing end-host

congestion control mechanisms cannot aggressively respond
to incast without losing throughput. We proposed Explicit
Incast Notification (EIN), a gradient-based incast detection at
network switches, which is both fast and accurate. Leveraging
EIN, we introduced our congestion control scheme, called
Pulser, which quickly backs off during incast for short time
intervals without hurting latency and restores the rate after
incast without losing throughput. Using simulations and a real
implementation, we showed that Pulser outperforms DCTCP
and ICTCP. As data and traffic intensity continue to grow
exponentially, incast is likely to become even more dominant
in datacenters, requiring an incast-specific AQM such as EIN
and an associated congestion-control scheme such as Pulser.

REFERENCES
[1] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,

no. 2, Feb. 2013.
[2] M. Alizadeh et al., “Data center tcp (dctcp),” in SIGCOMM, 2010.
[3] A. Singh et al., “Jupiter rising: A decade of clos topologies and

centralized control in google’s datacenter network,” in SIGCOMM, 2015.
[4] S. Kandula et al., “The nature of data center traffic: Measurements &

analysis,” in IMC, 2009.
[5] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ecn in multi-service

multi-queue data centers,” in NSDI, 2016.
[6] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution

measurement of data center microbursts,” in IMC, 2017.
[7] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “Ictcp: Incast congestion control

for tcp in data center networks,” in CoNEXT, 2010.
[8] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in

Modeling and tools for network simulation, 2010.
[9] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of dctcp:

Stability, convergence, and fairness,” in SIGMETRICS, 2011.
[10] M. Alizadeh et al., “Conga: Distributed congestion-aware load balancing

for datacenters,” in SIGCOMM, 2014.
[11] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in IMC, 2010.
[12] M. Alizadeh et al., “pfabric: Minimal near-optimal datacenter transport,”

in SIGCOMM, 2013.
[13] V. Vasudevan et al., “Safe and effective fine-grained tcp retransmissions

for datacenter communication,” in SIGCOMM, 2009.
[14] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown, “Pro-

cessor sharing flows in the internet,” in IWQoS, 2005.
[15] R. Mittal et al., “Timely: Rtt-based congestion control for the datacen-

ter,” in SIGCOMM, 2015.
[16] Y. Zhu et al., “Congestion control for large-scale rdma deployments,”

in SIGCOMM, 2015.
[17] R. Pan, B. Prabhakar, and A. Laxmikantha, “Qcn: Quantized congestion

notification an overview,” IEEE802, 2007.
[18] D. Shan et al., “Micro-burst in data centers: Observations, analysis, and

mitigations,” in ICNP, 2018.
[19] K. Nagaraj et al., “Numfabric: Fast and flexible bandwidth allocation in

datacenters,” in SIGCOMM, 2016.
[20] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded conges-

tion control for datacenters,” in SIGCOMM, 2017.
[21] M. Handley et al., “Re-architecting datacenter networks and stacks for

low latency and high performance,” in SIGCOMM, 2017.
[22] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter

tcp (d2tcp),” in SIGCOMM, 2012.
[23] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with

preemptive scheduling,” in SIGCOMM, 2012.
[24] D. Zats et al., “Detail: Reducing the flow completion time tail in

datacenter networks,” in SIGCOMM, 2012.
[25] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling mix-flows in

commodity datacenters with karuna,” in SIGCOMM, 2016.
[26] H. Rezaei et al., “Slytherin: Dynamic, network-assisted prioritization of

tail packets in datacenter networks,” in ICCCN, 2018.
[27] H. Rezaei, M. U. Chaudhry et al., “Icon: Incast congestion control using

packet pacing in datacenter networks,” in COMSNETS, 2019.
[28] K. He et al., “Presto: Edge-based load balancing for fast datacenter

networks,” in SIGCOMM, 2015.

