
Protean: Adaptive Management of Shared-Memory
in Datacenter Switches

Hamidreza Almasi
Department of Computer Science
University of Illinois at Chicago

USA
halmas3@uic.edu

Rohan Vardekar
Department of Computer Science
University of Illinois at Chicago

USA
rvarde2@uic.edu

Balajee Vamanan
Department of Computer Science
University of Illinois at Chicago

USA
bvamanan@uic.edu

Abstract—Datacenters rely on high-bandwidth networks that
use inexpensive, shared-buffer switches. The combination of high
bandwidth, bursty traffic patterns, and shallow buffers imply that
switch buffer is a heavily contended resource and intelligent man-
agement of shared buffers among competing traffic (ports, traffic
classes) becomes an important challenge. Dynamic Threshold
(DT), which is the current state-of-the-art in buffer management,
provides either high bandwidth utilization with poor burst
absorption or good burst absorption with inferior utilization, but
not both. We present Protean, which dynamically identifies bursty
traffic and allocates more buffer space accordingly—Protean
provides more space to queues that experience transient load
spikes by observing the gradient of queue length but does not
cause persistent unfairness as the gradient cannot continue to
remain high in shallow buffered switches for long periods of time.
We implemented Protean in today’s programmable switches and
demonstrate their high performance with negligible overhead.
Our at-scale ns-3 simulations show that Protean reduces the tail
latency by a factor of 5 over DT on average across varying loads
with realistic workloads.

Index Terms—computer networks, datacenters, buffer man-
agement, burst absorption

I. INTRODUCTION

Datacenters perform the core computation in most of the
Internet-scale applications that we have come to rely on a
day-to-day basis such as social media, web search, video
streaming, and gaming. Datacenter operators require both high
utilization and low, predictable latency from the network while
relying on low-cost commodity hardware [1]. As network
bandwidth keeps growing at a rapid pace while network delays
cannot reduce substantially due to hard physical limits, the
amount of on-chip memory (i.e., SRAM) needed for packet
buffers also grows proportionally [2]. However, designing
large on-chip memory that also operates at high speed is
an engineering challenge and is disproportionately expensive,
modern datacenter routers (switches) operate with shallow
buffers that are shared among ports, as opposed to large buffers
that are dedicated per port [3]. Therefore, how to share the
buffer space among competing ports has become one of the
important research challenges for the networking community.

The current state-of-the-art switches use Dynamic Threshold
(DT) for determining whether to allow a packet or drop it
based on the current per-port queue size and spare capac-

ity [4]. More precisely, DT allows a port (queue) 1 to grow
proportional to spare capacity— as spare capacity reduces,
each port can only have a proportionally smaller queue and
thus favors ports with small queues while penalizing ports with
long queues. DT has a parameter that allows operators to tune
its performance to achieve a trade-off between utilization and
burst absorption but our experiments show that it is hard to
achieve a good trade-off. At one extreme, DT behaves very
close to greedy complete sharing with good utilization but
some ports can potentially monopolize the buffer space. In
practice, we observe that long-lasting flows tend to occupy
most of the buffer space and hurt high-performant short
flows (e.g., incast flows) that arrive sporadically. On the other
extreme, DT can be configured to reserve a good fraction of the
buffer unoccupied to be used for bursts but such reservation
hurts network utilization because it exacerbates the shallow
buffer problem further. Note that the primary function of
packet buffers is to act as shock absorbers—avoid overflows
during periods of link over-subscription and avoid underflows
during periods of under-subscription, thus smoothing out the
spikes to provide close to maximum throughput. Because
shallow buffered switches are already at a disadvantage when
it comes to the function of smoothing out spikes to provide
high throughput (utilization), reserving more space is not an
attractive option. Indeed, today’s operators set this design
parameter to optimize utilization (i.e., first extreme) but suffer
from its pitfalls.

We propose Protean, which resolves DT’s shortcomings.
We make the key observation that DT does not discriminate
between ports (queues) based on traffic dynamics. As a result,
DT is forced to make a static choice between utilization
and burst absorption, globally for all ports. However, in
reality, we observe that some ports (or queues) experience
transient bursty traffic (e.g., incast) while others experience
smoother traffic (e.g., long-lasting flows). Therefore, if we
can selectively enable some ports to absorb such transient
bursts while allowing non-bursty traffic to use as much buffer
capacity as possible at other times, we can achieve both high
burst tolerance and high utilization.

1It may appear as if we assume only one queue per port, but our idea gen-
eralizes to multiple (priority) queues per port. Our design and evaluation use
multiple queues per port. We simplify our exposition for ease of readability.

A straightforward way to identify ports that experience
bursty traffic is to observe their queue lengths. However, queue
length is a lagging indicator. Therefore, we rely on the first
derivative of queue length, which is a leading indicator. Our
idea is to enhance DT such that we allow a queue (port) to
grow proportional to the product of spare capacity and the
gradient of its queue length. Thus, ports that experience bursty
traffic can grow their queues at the expense of other queues
during periods of over-subscription (i.e., during an incast).
In practice, Protean allocates more buffer space selectively
to some ports during periods of transient load spikes when
links get over-subscribed. By relying on the gradient, which
is unlikely to stay high for long periods to time due to
shallow buffers, Protean ensures that long-term fairness is not
negatively impacted. In other words, we do not let some ports
monopolize buffer space at the expense of other ports over
long periods of time. Our experiments clearly demonstrate
that Protean is able to achieve low tail latencies (less latency
variation) without worsening network utilization (goodput).

An attractive feature of Protean is that it lends itself to
easier hardware implementations. As proof of concept, we
implemented Protean on Intel’s Tofino switches in P4 [5]–
[7]. We implement Protean as a packet admission logic
that compares queue length to a threshold. We periodically
generate probe packets that convey queue lengths from the
egress pipeline to the ingress pipeline.

We summarize our contributions as follows:
• Identify the key problem in DT: because DT does not

discriminate between ports (queues) based on traffic
dynamics, it is forced either to keep a large headroom for
all ports or to greedily allocate space based on demand
on a first-come, first-served basis

• Propose Protean, which quickly identifies ports that expe-
rience transient load spikes and allocates space to absorb
those spikes without causing long-term unfairness and
starvation

• Present a feasible design and show proof-of-concept
implementation in today’s programmable switches

• Demonstrate the benefits of our proposal using exhaustive
evaluations: analyze the real implementation as well as
study the performance/overhead in realistic scenarios at
scale using ns-3 simulations.

To highlight key results, Protean improves tail latency (i.e.,
99.9th percentile flow completion time) by a factor of 5x on
average across loads (up to a factor of 6x at high loads) over
the current state-of-the-art (DT) while achieving similar or bet-
ter network utilization (goodput). Further, our implementation
on the Tofino switch demonstrates the feasibility of Protean’s
deployment and incurs negligible overheads— Protean uses
ten stages with an average of 3% SRAM and 3.5% TCAM
usage.

The paper is organized as follows: We start with a brief
background on Dynamic Threshold (DT) and present opportu-
nity studies to demonstrate its pitfalls in Section II. Then, in
Section III, we unveil our key ideas and dive into design and

implementation details. Section IV discusses our evaluation
methodology and our key findings. Section V enumerates
related work in this area and Section VI concludes our paper
with closing remarks and future work.

II. BACKGROUND AND MOTIVATION

High fan-in traffic patterns are prevalent in datacenters
and impose challenges on network protocol and architecture
design. Incast is an example of such a scenario where a burst
of (usually short) flows synchronously arrives at a switch port
connected to the receiver. Large incasts cause congestion and
buffer overflow that lead to packet drops that are only de-
tected by timeouts [8], [9]. Achieving low-latency goal while
maintaining high throughput is tightly coupled to avoiding
persistent packet drops. There are two main schemes that
provide control over packet drops and help achieve this goal
in datacenters. (1) End-to-end congestion control protocols
like DCTCP [3] and TIMELY [10], are able to infer the
extent of congestion based on in-network signals such as ECN
and RTT variation. End-hosts will then apply rate control
mechanisms such as adjusting the size of sending window to
ease the congestion. (2) Dynamic shared-memory management
schemes can provide a cushion during transient periods by
reserving a fraction of the buffer. This reduces packet drops
when a port suddenly becomes overloaded because its share
can grow temporarily before reaching a steady-state [4].

Although congestion control methods try to maintain short
queue lengths at switches while keeping the throughput high,
they have no control over the relative allocation of the shared-
memory pool between incast and non-incast ports. Also, these
methods are effective when congestion episodes last a few
RTTs but they cannot help much if there are many short flows
that last less than an RTT, which is the common case in today’s
datacenters [11]. Buffer provisioning schemes, though, can
have more insight into how the shared-memory is allocated
among contending ports and how bursty the arriving traffic at
each port is. Therefore, they can respond to congestion events
earlier than the delayed end-host reactions and are preferred
for providing burst absorption.

We now explain the state-of-the-art approaches for manag-
ing the shared-memory in datacenters. In the most intuitive
approach, called complete partitioning (CP) [12], the total
buffer is statically divided among the ports. Therefore each
port is allowed to use up to a fixed amount of the shared
buffer space and the sum of these amounts is equal to the total
memory. CP is fair but it provides no sharing mechanism. It
wastes a lot of the shallow buffers prevalent in datacenters
which is a scarce and expensive resource. Also, large bursts
create load imbalance at ports and since they can occur at
any port, they would need more than the static per-port cap
determined by CP to be absorbed. Therefore, CP does not
provide burst absorption.

The other intuitive extreme is complete sharing (CS) where
the entire buffer is shared among ports and a packet is admitted
if there is any space left for it in the memory. CS is good

for burst absorption if the buffer can accommodate the burst
size but it has no mechanism to prevent a highly utilized
port from monopolizing most of the buffer. In a scenario
where multiple ports are busy transferring long flow bytes,
the remaining buffer space may become smaller as TCP
increases the sending window size. This could easily reach
a point where an incoming burst cannot fit in the buffer and
experiences packet drops. As such, long-lasting TCP flows,
by construction, will fill up all the available buffer space and
starve other flows.

Dynamic Threshold (DT) is the current state-of-the-art and
is deployed by several switch vendors. When a packet destined
for an output port queue arrives, the queue length is compared
with a threshold and if it’s larger, the packet is dropped. At
time t, the control threshold T (t) in DT is calculated as:

T (t) = α · (B −
∑
i

Qi(t)) (1)

where α is a static parameter, B is the total buffer size, and
Qi(t) is the length of the output queue i at time t. If the
port loads change, DT will go through a transient state but
eventually, all queues will reach their steady-state allocation
which is less than or equal to a new control threshold and
it robustly adapts to the change. If Q is the total amount of
buffer occupied in the steady-state, Q = S · T + Ω where S
is the number of very active queues, T is the threshold in the
steady-state and Ω is the amount of buffer occupied by those
queues that are less than the threshold in length, also known as
uncontrolled queues. The steady-state allocation of controlled
queues in DT is:

Qi = T =
α · (B − Ω)

1 + α · S
(2)

If there are different α values for queues with different
priorities, the allocation will be proportional to their α values.
In this case if αi is the alpha associated to queue i, equation 2
will generalize to:

Qi =
αi · (B − Ω)

1 +
∑

j∈C αj
(3)

where C is the set of controlled queues. As more ports
become congested, each port is allocated a smaller share.
DT is simple to implement and variants of it are used in
today’s switches [13]–[15] but it is not efficient in datacenters
because the threshold only depends on the statically configured
α parameter and the remaining buffer size. Indeed, although
bursty traffic is frequent in datacenters and the tail latency of
incast flows is important, the threshold calculated by DT is not
sensitive to how bursty the arriving traffic to a queue is and
therefore is unable to dynamically set the threshold to absorb
it. Moreover, fixed alpha values cannot differentiate between
buffer demands of bursts with different severities. This be-
comes critical in datacenters because the load is unbalanced
and simultaneous bursts use the buffer non-linearly. There are
workloads that utilize all ports of the switch more than 50%
[11]. In these settings, it is important to set the thresholds

proportional to the burstiness observed at ports. This is what
Protean does when it detects some ports would need a larger
share of buffer since they drastically build up the queues in a
short time. Protean first monitors how fast the queues build
up on arrival of bursts. It then uses this measure as the burst
signature to proportionally set a higher threshold for larger
ones when they need more buffer space to be absorbed. For
large bursts that were previously admitted but are not anymore
building up their queue, Protean relies on DT’s threshold to
provision more buffer for other bursts on their onset.

To illustrate the problems with DT, we simulate a simple
experiment where several end-hosts are connected to a single
shared-memory switch with 3 MB of total buffer size. In
Fig. 1(a), 16 senders S1..S16 are going to create a burst
of 100 KB flows to receiver R1 connected to port P1 with
αincast = 1 and two other senders S17, S18 are sending long
ongoing background flows to receiver R2 connected to port P2

with αnon−incast = 0.5. Fig. 1(b) and Fig. 1(c) respectively
show how DT and Protean allocate the buffer to ports P1 and
P2. In these figures, the left y-axis shows the gradient of the
queue length (with respect to time) for each queue and the
right y-axis shows what percentage of the occupied buffer is
used by that queue. During the period t0−t1 the only existing
traffic is the background flows and Q2 is in its steady-state
where it is allocated 1 MB. At the time t1 the burst arrives
at the buffer and Q1 starts to build up. At this time 2MB
of the buffer is unoccupied and the burst (~1.6 MB) could
fit, but because DT has a static alpha and is not sensitive
to the burst severity, it cannot increase the threshold for Q1

just high enough to avoid costly packet drops from the burst.
Note that the arrival of the burst would introduce a highly
utilized port, P1, and would naturally drop the threshold for
the Q2 at P2. However, Protean admits more burst packets
due to setting a threshold proportional to its gradient, and
thus the threshold for Q2 drops more than that of DT. This
is because admitting more packets from the burst by Protean,
would quickly decrease the remaining buffer space and since
alpha is fixed for background flows, their threshold would drop
even more. In other words, after the burst arrives, Protean
would drop packets only from the background flows while DT
would drop from both the burst and background flows. This
difference is reflected at t2 where the burst is fully absorbed
by Protean with Q1 having a higher relative occupancy while
it experiences many packet drops with DT leading to a smaller
occupancy for Q1 and a larger one for Q2. During the period
t2 − t3 both queues are draining their admitted bytes and at
time t3 the background flows recover from their packet losses.
During the period t3−t4, Q1 continues to drain more while Q2

returns back to its steady-state allocation. For t > t4, there are
no more Q1 bytes for Protean but for DT, the Q1 packets that
are supposed to be retransmitted are triggered by the timeout
at some point.

In summary, because background flows do not need a lot of
buffer to reach a high throughput, it makes sense to increase
the threshold for a short incast which needs a lot of the

𝑄!

𝑄!

…

𝑆!
𝑆"

𝑆!#

𝑅!

𝑅"𝑆!$
𝑆!%

𝑃!

𝑃"

16 → 1

2 → 1

(a) Scenario

t0 t1 t2 t3 t4
Time(s)

0

30

60

90

120

150

Gr
ad

ie
nt

 (G
bp

s)

Q1/ t
Q2/ t

Q1 Len.
Q2 Len.

0

25

50

75

100

%
 O

cc
up

an
cy

(b) DT

t0 t1 t2 t3 t4
Time(s)

0

30

60

90

120

150

Gr
ad

ie
nt

 (G
bp

s)

Q1/ t
Q2/ t

Q1 Len.
Q2 Len.

0

25

50

75

100

%
 O

cc
up

an
cy

(c) Protean

Fig. 1: Burst absorption

buffer to be absorbed and hence decrease the threshold for
the background flows to free up some space during the time
the incast lives. The amount of increase in the threshold for
the queue that experiences an incast should be proportional to
the severity of the incast. In the next section we describe how
we identify the severity of an incast.

III. PROPOSED WORK

After explaining DT’s inability to dynamically absorb
bursts, in this section we first describe high-level insights we
used in designing Protean. Then we describe Protean’s ingress
and egress algorithms in detail. Finally, we describe how we
realized Protean in hardware using programmable switches.

A. High-level Idea

In datacenters, ports that are connected to incast aggregators
are more likely to receive large bursts and should be allocated
more buffer space. However, predicting the time a burst arrives
is not trivial. Our high-level idea is to detect a burst by
measuring the gradient of the burst’s queue length and allocate
the buffer space proportional to that value.

During an incast episode, multiple senders are sending to
one receiver. The data from these senders arrive at different
input ports of a top-of-rack switch and get forwarded to the
same output port. This drastically increases the output port’s
queue length in a short period of time because the input rate
is amplified but the output rate remains fixed. We know that
most of the flows in an incast are short flows [11], [16], and
they usually have less than RTT × BW bytes. Therefore,
factors like flow size or congestion control protocol are not
major predictors of the incast’s buffer demand. However, there
exists a clear correlation between fan-in (incast degree) and
the amount of buffer an incast needs to be absorbed. This
observation enables us to allocate buffer space to incasts with
respect to their fan-in. Still, fan-in is not known by the network
switches because the application in the upper layer divides the
query between servers and changing the protocol stack to carry
this information in the network layer is difficult.

We make the key insight that the gradient of the queue
length can be effectively used as a representative for fan-in.
This is because of two reasons: (1) It is proportional to the

aggregate input rate, i.e., average sending rate × fan-in.
(2) It is switch-local information. Therefore, instead of using
fan-in, we use the gradient of queue length to set the threshold
for large bursts. However, if we directly use this metric, our
approach would be susceptible to noisy switch measurements,
so we propose to smooth the gradient using exponentially
weighted moving average (EWMA) with a weight β to the
current gradient sample and 1−β to the previously calculated
average. We use this metric as a coefficient for calculating the
threshold for bursts.

The value of β serves as a knob to tune the smoothness
of the gradient. It should be large enough to ensure that
the presence of back-to-back packets is captured but also
small enough to filter outliers and improve accuracy. To better
understand the effect of β, we simulated an experiment with
two bursts of different fan-in values sending data to two output
ports. The scenario for this experiment is shown in Fig. 2(a).
Here, 16 senders S1..S16 are sending to receiver R1 connected
to port P1 and 4 other senders S17..S20 are sending to receiver
R2 connected to port P2. Each flow is 100 KB, the buffer size
is 2 MB, and we use Protean for buffer allocation. We measure
instantaneous and smoothed gradients over time at port queues
with different values of β. Setting β to a small value like
in Fig. 2(b), filters outliers and smoothes the gradient but
any decision for buffer allocation based on that would be too
late. This is because by setting a small β the averaging time
window would be too large and bursts are usually short-lived,
so Protean would miss the burst and a decision for its threshold
would lag behind to warrant its absorption. On the other hand,
setting β to a large value like in Fig. 2(c) would make the
smoothed gradient closely track the instantaneous one and
ensure that burst packets would not be missed, but because
measurements are noisy, it would be inaccurate. Here around
the time t = 175µs a similar threshold would be calculated
for both bursts during their onset whereas clearly, one burst is
larger and more packets should be admitted from it. Finally,
a proper value for β like in Fig. 2(d) provides smoothness,
accuracy, and agility at the same time and can be considered
a reliable signature for burst that can be used in the threshold
calculation. Later in Section IV we discuss the robustness of
Protean to this design parameter.

…

𝑆!
𝑆"

𝑆!#

𝑅!

𝑅"
𝑆!$

𝑆"%

𝑃!

𝑃"

…

16 → 1

4 → 1

(a) Scenario

125 150 175 200 225 250
Time (s)

0

50

100

150

200

Gr
ad

ie
nt

 (G
bp

s)

P1 EWMA(q/ t)
P1 Inst. q/ t
P2 EWMA(q/ t)
P2 Inst. q/ t

(b) β = 1
32

125 150 175 200 225 250
Time (s)

0

50

100

150

200

Gr
ad

ie
nt

 (G
bp

s)

P1 EWMA(q/ t)
P1 Inst. q/ t
P2 EWMA(q/ t)
P2 Inst. q/ t

(c) β = 3
4

125 150 175 200 225 250
Time (s)

0

50

100

150

200

Gr
ad

ie
nt

 (G
bp

s)

P1 EWMA(q/ t)
P1 Inst. q/ t
P2 EWMA(q/ t)
P2 Inst. q/ t

(d) β = 1
4

Fig. 2: Smoothness vs. Accuracy

Protean classifies flows into two main categories, incast
flows and non-incast flows. It considers higher (proportional
to the gradient) thresholds for the queues that incast flows use
during their life. Non-incast flows are further classified into
long and short flows. For long flows, Protean falls back to
DT and for short flows, because tail latency is also important
to them, it falls back to CS as a best-effort allocation attempt.

B. Protean

After explaining the insights that led us to Protean’s design,
we now describe Protean’s functionality at switch ingress
and egress pipelines. An abstract model for a switch pipe is
shown in Fig. 3. Protean decides whether a packet should
be admitted based on thresholds calculated for each queue.
Admission checks are performed in the ingress pipeline. If
Protean decides to admit a packet, it delivers it to the traffic
manager to place it in the right queue, otherwise, it marks
the packet for drop. Protean calculates the thresholds for each
queue at the egress pipeline and feeds this information as input
to the ingress.

PH
Y/

Se
rd

es PHY/
SerdesM

AC

M
ACIngress

Parser
Ingress

Deparser
Egress
Parser

Egress
Deparser

Ingress
Match-
Action

Pipeline

Egress
Match-
Action

Pipeline

Traffic
ManagerQ

ueues

Protean Ingress Pipeline Protean Egress Pipeline

Pipe 0

Packet Flow

Wire Wire

Switch ASIC (showing 1 pipe)

Fig. 3: Protean’s abstract switch model

Algorithm 1 shows the details of Protean at the ingress.
When a packet arrives, we assume that the output port and the
output queue within that port for the packet is known based
on routing table entries and packet priority. We periodically
synchronize the size of the output queue, remaining buffer
size, and incast queue threshold from the egress logic with
the ingress. Therefore we assume this information is available
at the ingress. At line 1 we extract the packet’s priority. Line 2,
specifies that Protean’s admission block at the ingress assumes
a packet is inadmissible unless determined otherwise. Lines 3-
4 of Algorithm 1 check if the packet belongs to a short flow. In
that case, if the remaining buffer space is enough, the packet
is admitted. This is the policy CS would take for all packets.
Lines 5-6 check if the packet belongs to a long flow. In that

case, Protean would behave similarly to DT, i.e., if the current
output queue length is smaller than DT’s threshold (alpha ×
remaining buffer size) it would admit the packet. Otherwise,
the packet is using an incast queue in port P for which, at
lines 7-8, Protean checks if the queue length is smaller than
the threshold calculated by Algorithm 2 then it admits the
packet.

Algorithm 1: Protean Ingress
Input: Packet: pkt, OutputPort: P,

QueueSize: Qlen, RemainingBuffer: Rem,
ShortPriority: ps, LongPriority: pl,
LongAlpha: αl, IncastThresh: thri[P]

Output: bool Admit
1 prio← pkt.priority
2 Admit← False
3 if prio = ps and pkt.size < Rem then
4 Admit← True

5 else if prio = pl and Qlen < αl ×Rem then
6 Admit← True

7 else if Qlen < thri[P] then
8 Admit← True

Protean’s egress logic is shown in Algorithm 2. Here the
total buffer size and total occupied buffer space (derived
from probe packets coming out of the traffic manager) are
inputs to the algorithm. We consider an input parameter,
buildup_threshold, that serves as a measure to detect large
bursts since not all bursts are incasts. If buildup_threshold is
positive, it means the queue is building up, i.e., the enqueue
rate is greater than the dequeue rate. However, for incasts,
there is a sharp increase in queue length. Therefore we set
the buildup_threshold to a multiple of linerate. The outputs
of Algorithm 2 are the threshold set for the queue at port
P, as well as the remaining buffer space. To calculate the
threshold, whenever a packet is dequeued from an output
port, we perform a series of operations. First, we calculate the
remaining buffer space at line 2. Then we capture the dequeue
time, and the length of the queue at lines 3-5. At lines 6-9 we
calculate the instantaneous and smoothed gradients. Note that
before the switch starts operating, Gradientprev and Tprev are
initialized to zero for all queues. Finally, at lines 10-13, if the

Algorithm 2: Protean Egress
Input: BufferSize: Total, OccupiedBuffer: Occ,

BuildupThresh: buildup_threshold, Weight: β,
IncastAlpha: αi

Output: RemainingBuffer: Rem,
IncastThresh: thri[P] for output port P

1 for each pkt dequeue at port P do
2 Rem = Total −Occ
3 T ← pkt.timestamp
4 prio← pkt.priority
5 Qlen← P [prio].len
6 Gradient = (Qlen−Qlenprev)/(T − Tprev)
7 Qlenprev ← Qlen, Tprev ← T
8 Gradient = β×Gradient+(1−β)×Gradientprev
9 Gradientprev ← Gradient

10 if Gradient > buildup_threshold then
11 thri[P] = Gradient× αi ×Rem

12 else
13 thri[P] = αi ×Rem

smoothed gradient is greater than the buildup_threshold, we
use it as a coefficient in DT’s threshold calculation formula,
otherwise we rely on DT’s original threshold. We set β = 1

4
and buildup_threshold = 2 · Linerate. Later in Section IV
we discuss the robustness of Protean to these design parame-
ters.

C. Implementation on Programmable Switches

Considering the mathematical complexity of the algo-
rithm for programmable switches, Protean’s implementation
on Tofino Native Architecture (TNA) is challenging due to
hardware limitations. For our experiments we used a Tofino
Wedge 100BF-32X switch [17]. Since the traffic manager is
not programmable, workarounds impose approximations in the
implementation. Queue Id and forwarding port information
are pushed in form of table entries. Challenges faced in the
implementation are as follows:

• Acquiring the queue length and timestamp in ingress
pipeline: Whether to accept a packet or to drop it, is
decided in the ingress pipeline by comparing the queue
length to a determined threshold. Queue length is not
accessible in the ingress pipeline, but it is available in
form of metadata in the egress pipeline. Tofino has a
packet generator that we trigger using a timer to create
and recirculate customized probe packets which synchro-
nize this information for each queue every RTT. From the
egress intrinsic metadata, details such as queue id, queue
length and time stamp are filled in the header fields of
these custom packets. After recirculation, this information
is stored in the registers of the ingress pipeline.

• Calculating the total buffer occupied in Tofino: In
order to calculate the total buffer occupied, the lengths
of different queues (i.e., their contribution to the buffer)

should be aggregated. Tofino does not allow accessing
multiple indices of a register array at once. Our solution
assigns a register for the remaining buffer and uses
the probe packets generated for queues in every RTT
to subtract their corresponding queue length from the
remaining buffer. We also assign another register that
counts the number of probe packets accounted for the
current RTT and once all queue length contributions
towards the buffer are considered, the remaining buffer
and the counter are reset in the next RTT.

• Floating point operations with Tofino: Multiplication
and division are not supported by Tofino. We use loga-
rithm lookup tables to reduce multiplication and division
to addition and subtraction and instead of the operands,
we use their logarithm and exponent values [18]. There-
fore, line 6 of the Algorithm 2 is realized using:

Gradient = 2log2 (Qlen−Qlenprev)−log2 (T−Tprev) (4)

Also, since we pick α and β values as powers of two,
their multiplication or division into another operand is
realized using shift operation which is supported. As an
example, line 11 in Algorithm 2 is realized using:

thri[P] = 2log2 (Gradient)+log2 (Rem≫x) (5)

where x is a constant value we shift by and is chosen de-
pending on the specific power of two we are multiplying.
Therefore, we approximate multiplication/division with a
mean error of less than 1%.

• Creating buffer pressure in a small physical deploy-
ment: Our switch has 20 MB of total buffer space
designed to be shared among 32 × 100 Gbps links.
Filling the buffer enough to create a buffer pressure
for evaluation with a few servers connected to it is
challenging. We use the runtime API to shape the output
ports inside of the traffic manager in order to fill up the
buffer.

Later in Section IV-C, we describe our physical testbed details
and evaluation.

IV. EVALUATION

A. Methodology

We evaluate Protean’s performance with large-scale simu-
lations as well as a real implementation scenario.

For large-scale experiments, we use ns-3 [19] and simulate a
leaf-spine topology with 4 spine switches, 4 leaf switches, and
16 servers connected to each leaf switch. The oversubscription
factor is 4 and all links are 10 Gbps with a 10µs unloaded
delay. We set the TCP RTOmin to 10ms and set DCTCP
ECN threshold to 65 following the guidelines in [3]. Switches
have 2 MB of shared buffer space according to a Trident II
model [15], [20] proportional to number of used ports. As in
Section II, we set αincast = 1 and αnon−incast = 0.5 for

0 5 10 15 20
FCT (ms)

0.80

0.85

0.90

0.95

1.00
CD

F DT
CS
Protean

(a) DCTCP, Load=40%

0 5 10 15 20 25
FCT (ms)

0.80

0.85

0.90

0.95

1.00

CD
F DT

CS
Protean

(b) DCTCP, Load=80%

0 5 10 15 20 25 30
FCT (ms)

0.80

0.85

0.90

0.95

1.00

CD
F DT

CS
Protean

(c) TCP, Load=40%

0 5 10 15 20 25 30 35
FCT (ms)

0.80

0.85

0.90

0.95

1.00

CD
F DT

CS
Protean

(d) TCP, Load=80%

Fig. 4: CDF of incast flow completion times

20 40 60 80
Load(%)

2.5

5.0

7.5

10.0

12.5

15.0

FC
T

(m
s)

DT
CS
PROTEAN

(a) 99.9th %-ile with DCTCP

20 40 60 80
Load(%)

10

20

30

FC
T

(m
s)

DT
CS
PROTEAN

(b) 99.9th %-ile with TCP

20 40 60 80
Load(%)

1.1

1.2

1.3

1.4

1.5

1.6

FC
T

(m
s)

DT
CS
PROTEAN

(c) Average with DCTCP

20 40 60 80
Load(%)

1.0

1.5

2.0

2.5

3.0

FC
T

(m
s)

DT
CS
PROTEAN

(d) Average with TCP

Fig. 5: Incast flow completion times

both DT and Protean according to [4]. We set β = 1
4 and

buildup_treshold = 2 · Linerate following the insights in
Section III-A. We generate background flows using the flow
size distribution in [3]. For a given load, background flow
arrivals follow a Poisson distribution and the source and the
destination for each flow is chosen uniformly randomly. We
generate the incast traffic following the model in [21] where
all 16 servers under a randomly chosen leaf switch send 1

16 of
a given incast size to an incast aggregator under another leaf
switch. Incast flows arrival times are according to a Poisson
process with an average rate of 1 incast per second per each
incast aggregator. Incast size is set to 75% of the buffer size
in all experiments unless otherwise specified.

We evaluate Protean for various performance metrics, both
when an active queue management scheme (e.g., RED [22]) is
in place, and when it is not. We assume three queues per-port
and use round-robin scheduling for dequeueing. We compare
Protean with DT and CS when paired with TCP Cubic and
DCTCP as congestion control scheme. Here when we mention
short flows, we mean non-incast flows with a size smaller than
Linerate×RTT .

B. Simulation Results

We summarize our at scale evaluation of Protean as follows:

• Flow Completion Time (FCT): We compare average and
tail (99.9th percentile) flow completion times of Protean
with DT and CS for both incast and short flows:
– Tail Incast FCT: With TCP, Protean improves tail

incast FCT by a factor of 5x (on average across loads)
compared to DT and 6.9x compared to CS. When
paired with DCTCP, it improves tail incast FCT by

a factor of 5x on average compared to DT and 4.6x
compared to CS.

– Average Incast FCT: With TCP, Protean improves
average incast FCT up to 1.26x over DT and 2.61x over
CS at high loads. With DCTCP, it improves average
incast FCT up to 1.25x over DT and 1.11x over CS.

– Tail Short FCT: Protean also improves tail FCT of
short flows by a factor of up to 5x and 3.6x compared
to DT and CS respectively when paired with DCTCP.
With TCP, it improves tail FCT of short flows up to
3x and 5x for DT and CS respectively.

– Average Short FCT: For both TCP and DCTCP, Pro-
tean improves average short FCT up to 1.18x compared
to DT, and for TCP, it improves short average FCT up
to 1.6x compared to CS.

• Goodput We compare network goodput of Protean with
DT and CS for the long flows. Protean’s goodput is
always similar to that of DT or CS and in high load
with TCP it gets slightly better. In other words, Protean
does not sacrifice throughput to obtain better FCT.

1) Flow completion times: Fig. 4 compares the CDF of
incast flow completion times for different buffer management
schemes under two different loads, when TCP and DCTCP are
used for congestion control. As we can see both DT and CS
have long tails that signifies packet drops leading to timeouts.
This is especially true for TCP, because it lacks active queue
management (AQM) that reacts to ECN signal. Protean on the
other side has a short tail and outperforms other approaches
in both lower and higher loads under TCP and DCTCP.

To have a closer look at flow completion times under
different loads, we plot incast tail and average FCT across load

20 40 60 80
Load(%)

2

4

6

8

10

12
FC

T
(m

s) DT
CS
PROTEAN

(a) 99.9th %-ile with DCTCP

20 40 60 80
Load(%)

5

10

15

20

25

FC
T

(m
s)

DT
CS
PROTEAN

(b) 99.9th %-ile with TCP

20 40 60 80
Load(%)

0.60

0.65

0.70

0.75

0.80

FC
T

(m
s)

DT
CS
PROTEAN

(c) Average with DCTCP

20 40 60 80
Load(%)

0.6

0.8

1.0

1.2

1.4

FC
T

(m
s)

DT
CS
PROTEAN

(d) Average with TCP

Fig. 6: Short (non-incast) flow completion times

in Fig. 5. As seen in Fig. 5(a) and Fig. 5(b), Protean’s tail FCT
performance remains almost invariant across various loads for
both TCP and DCTCP and it significantly outperforms DT and
CS. Fig. 5(c) and Fig. 5(d) study the average incast FCT and
show the performance of average incast flow is also better
under Protean. This is because Protean relies on accurately
isolating incasts from other traffic and ensuring that they are
absorbed by providing buffer proportional to their fan-in.

We study the performance of Protean for non-incast short
flows in Fig. 6. In Fig. 6(a), both DT and CS incur timeouts
to short flows at higher loads. For DT, this is due to reserving
a fraction of buffer and not being able to accommodate short
flow packets. For CS, this is due to letting the long flows
occupy as much buffer as they can. However, since DCTCP
still tries to maintain the queues short by reacting to ECN,
long flows cannot completely monopolize the buffer which
benefits short flows and therefore CS performance is slightly
better than with DT. With TCP and lack of AQM, CS loses
this benefit at high load as depicted in Fig. 6(b). Protean does
not sacrifice short flows for incasts and tries to adhere to a
best-effort policy for them. This can be seen for both tail as
well as average FCTs (as seen in Fig. 6(c) and Fig. 6(d)) across
all loads.

2) Goodput: Prioritizing incast occupancy in buffer may
lead to throughput loss if performed naïvely. Too strict thresh-
olds for long flows and drastic drops from them can easily
degrade network throughput. However, Protean reduces the
threshold for long flows only when it detects a large incast.
Because incasts are usually short lived, drastic packet drops
from the long flows during that time would not deteriorate
Protean’s throughput. In fact as soon as Protean senses that
the gradient is small, it falls back to DT for its threshold and
that indirectly helps long flows. This is shown in Fig. 7 where
we change the load and measure network goodput for long
flows. Protean achieves similar goodput to both DT and CS
under TCP and DCTCP.

3) Robustness to buffer pressure: To show Protean’s ro-
bustness to various burst sizes, we run an experiment with
loads 40% and 80%. We fix the number of senders as before
but we change incast size as a percentage of buffer size and
measure the tail FCT. The results are shown in Fig. 8. For
both loads, as the incast size increases, there is a point that
either DT or CS incur losses leading to timeouts but Protean’s

20 40 60 80
Load(%)

0

20

40

60

80

100

Go
od

pu
t (

Gb
ps

)

DT
CS
PROTEAN

(a) DCTCP

20 40 60 80
Load(%)

0

20

40

60

80

100

Go
od

pu
t (

Gb
ps

)

DT
CS
PROTEAN

(b) TCP

Fig. 7: Goodput

12.5 25 37.5 50 62.5 75
Incast Size (% of buffer)

0.0

2.5

5.0

7.5

10.0

12.5

FC
T

(m
s)

DT
CS
PROTEAN

(a) Load=40%

12.5 25 37.5 50 62.5 75
Incast Size (% of buffer)

0

5

10

15

FC
T

(m
s)

DT
CS
PROTEAN

(b) Load=80%

Fig. 8: The effect of burst size on buffer pressure

FCT increases almost linearly.
4) Robustness to design parameters: We also evaluate

Protean’s robustness to design parameters, namely β and
buildup_threshold. As mentioned in Section III-A, β should
be large enough to capture consecutive packets in a burst
and small enough to filter out noisy switch measurements. In
Section III-B we also mentioned that in order to isolate small
bursts from large ones, Protean threshold should override that
of DT only if the gradient is large enough that we determine
by comparing to buildup_threshold. We run an experiment
to test the sensitivity of Protean to these parameters. In
this experiment, we set the load to 50% and change these
parameters over a range of reasonable values according to our
discussion in Fig. 9 shows the tail FCT remains robust to a
combination of values for parameters.

C. Hardware Testbed Evaluation

Following our solutions to challenges listed in Section III-C,
we implemented a prototype of Protean on a Wedge 100BF-
32X switch with Tofino chipset in P4 language [7]. In this

0.0625 0.125 0.25 0.5
Beta

2.6

2.8

3.0

3.2

FC
T

(m
s)

Buildup Thresh.
(Linerate)

0.5
1
2
3
4

Fig. 9: Protean’s sensitivity to its design parameters. Tail FCT
for Load=50%

section we present the overheads and experimental results with
the hardware testbed.

We connect the switch to three Linux servers in a star
topology as shown in Fig. 10. Each server has 16 cores
of Intel(R) Xeon(R) Silver 4108 CPU @ 1.80GHz, 64GB
RAM, a Mellanox ConnectX-5 100Gbps NIC, and has Linux
4.15.0-188. We set the total application pool usage of the
buffer to 21,000 cells and as mentioned in Section III-C, to
fill up the switch buffer we rate limit the output ports to
100 Mbps with the traffic manager API. Tofino supports a
limited set of alpha values from which we pick αincast = 0.8
and αnon−incast = 0.5. Using iperf [23], we first start a
background UDP flow from S1 to S2 and then create 100
short TCP flows, 16 KB each, in parallel from S3 to S1 with
TCP RTOmin = 200ms.

1) Results: We measure the FCTs for TCP flows and
throughput for the UDP flow under DT and Protean and show
the results in Fig. 11 and Fig. 12. Protean improves tail FCT
by a factor of 2.3x and average FCT by a factor of 1.7x while
maintaining the same throughput for the background flow.

2) Switch resource overhead: In Algorithm 2, there is one
division (line 6) and one multiplication (line 11) operation
that cannot be performed only by shifting. For each of them
we use two ternary match table lookups to approximate
logarithms and one exact match table lookup to approximate
exponentiation. Ternary matches use TCAM and exact matches
use SRAM memory. Overall, with 32 bit operands and with
a mean error of less than 1%, Protean uses less than 8.2
KB of SRAM and less than 18.8 KB of TCAM, i.e., a total
of less than 27 KB of memory specifically for floating point
operations. In summary, our program occupies ten stages with
an average of 3% SRAM and 3.5% TCAM usage per stage,
i.e., a negligible overhead considering that modern commodity
switches have a few tens of megabytes of on-chip memory
[24], [25].

V. RELATED WORK

We discussed CS and DT [4] buffer allocation policies in
detail in previous sections. Among other buffer allocation
schemes, EDT [26] detects whether a port is experiencing
microburst (incast), temporarily relaxes the fairness constraint,
and behaves similar to CS during the period microburst exists,
i.e., it allows the port to use as much of the buffer as it can.

Wedge
100BF-

32X UDP Flow

TCP Flows

S1

S2

S3

Fig. 10:
Hardware testbed

0.0 0.1 0.2 0.3
FCT (s)

0.25
0.50
0.75
1.00

CD
F

DT
Protean

Fig. 11:
CDF of TCP flow
completion times

0.0 0.5 1.0
Time (s)

25
50
75

100

Ba
nd

wi
th

 (M
bp

s)

DT
Protean

Fig. 12:
UDP bandwidth

However, it has a major drawback since it cannot differentiate
between bursts of different sizes and cannot cap the threshold
proportionally when more than one port experiences burst
which is frequent in datacenters [11]. FAB [27] maps flows to
several α values per port based on their size, with short flows
having a higher value and therefore higher threshold. Yet,
these α values do not represent burst signatures and cannot be
dynamically adjusted for optimal burst absorption. Smartbuf
[28] focuses on learning upper bounds for buffer occupancy of
bursts, i.e., their demand, and capping the ports that experience
similar gradients at those levels. However, it has parameters
that need to be tuned when workloads change and its extension
for multiple priorities per port is not obvious. Protean, on
the other hand, dynamically sets the threshold based on burst
gradient. It also embeds static (set by the network operator
or end-hosts) alphas in its formula for any other notion of
priority both across bursts and long flows, while doing a best-
effort allocation for non-burst short flows.

Congestion control algorithms [3], [10], [29]–[31] that react
to network signals, try to keep the queue lengths small, but
still need at least one RTT for response. They also have
no visibility into the share of other ports out of total buffer
occupancy. Scheduling algorithms [32]–[35] work within the
domain of ports and enable preferential dequeueing policies
for queues with different priorities. These algorithms provide
control over queueing delays and are complementary to buffer
allocation policies but they cannot control burst absorption
because it needs broader knowledge of switch’s other flows.
Active queue management schemes [22], [36], [37], work
in conjunction with packet scheduling algorithms. Similar to
buffer management schemes, they try to reduce the conges-
tion by performing admission control and dropping packets
probabilistically but their scope is limited to queues.

VI. CONCLUSION

We present Protean, an adaptive buffer management scheme
in shared-memory datacenter switches that detects and absorbs
large bursts based on switch-local information while providing
low flow completion times for other short flows and high
throughput for long flows. We evaluate Protean and show
it outperforms the state-of-the-art buffer management policy,
dynamic thresholds, as well as complete sharing both with
TCP and DCTCP. We also build a prototype for Protean on
programmable switches and show its implementation feasibil-
ity.

REFERENCES

[1] L. A. Barroso, U. Holzle, P. Ranganathan, and M. Martonosi, The
Datacenter As a Computer: Designing Warehouse-Scale Machines,
3rd ed. Morgan & Claypool Publishers, 2018.

[2] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. NY, USA:
Association for Computing Machinery, 2004, pp. 281–292.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 Conference, NY, USA, 2010,
pp. 63–74.

[4] A. Choudhury and E. Hahne, “Dynamic queue length thresholds for
shared-memory packet switches,” IEEE/ACM Transactions on Network-
ing, vol. 6, no. 2, pp. 130–140, 1998.

[5] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, NY,
USA, 2013, pp. 99–110.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, jul 2014.

[7] P4 language specification. [Online]. Available: https://p4.org/p4-spec/
docs/P4-16-v1.2.2.pdf

[8] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh: A
large-scale system for data center network latency measurement and
analysis,” in Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, NY, USA, 2015, pp. 139–152.

[9] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-level telemetry in
large datacenter networks,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, NY, USA, 2015, pp.
479–491.

[10] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, NY,
USA, 2015, pp. 537–550.

[11] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proceedings of the 2017
Internet Measurement Conference, NY, USA, 2017, pp. 78–85.

[12] M. Arpaci and J. A. Copeland, “Buffer management for shared-memory
atm switches,” IEEE Communications Surveys & Tutorials, vol. 3, no. 1,
pp. 2–10, 2000.

[13] Cisco nexus 3000 series nx-os qos configuration guide.
[Online]. Available: https://www.cisco.com/c/en/us/td/docs/
switches/datacenter/nexus3000/sw/qos/93x/configuration/guide/
b-cisco-nexus-3000-nx-os-quality-of-service-configuration-guide-93x/
b-cisco-nexus-3000-nx-os-quality-of-service-configuration-guide-93x_
chapter_011.html

[14] Cisco nexus 9000 series nx-os quality of service configuration
guide. [Online]. Available: https://www.cisco.com/c/en/us/td/
docs/switches/datacenter/nexus9000/sw/93x/qos/configuration/guide/
b-cisco-nexus-9000-nx-os-quality-of-service-configuration-guide-93x/
b-cisco-nexus-9000-nx-os-quality-of-service-configuration-guide-93x_
chapter_01000.html

[15] packet buffers. [Online]. Available: https://people.ucsc.edu/~warner/
buffer.html

[16] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, NY,
USA, 2015, pp. 123–137.

[17] Edgecore wedge 100bf-32x. [Online]. Available: https://www.edge-core.
com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335

[18] N. K. Sharma, A. Kaufmann, T. Anderson, C. Kim, A. Krishnamurthy,
J. Nelson, and S. Peter, “Evaluating the power of flexible packet
processing for network resource allocation,” in Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation.
USA: USENIX Association, 2017, pp. 67–82.

[19] The ns3 network simulator. [Online]. Available: https://www.nsnam.org

[20] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One more config
is enough: Saving (dc)tcp for high-speed extremely shallow-buffered
datacenters,” in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, 2020, pp. 2007–2016.

[21] M. Alizadeh and T. Edsall, “On the data path performance of leaf-spine
datacenter fabrics,” in 2013 IEEE 21st Annual Symposium on High-
Performance Interconnects, 2013, pp. 71–74.

[22] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

[23] iperf - the ultimate speed test tool for tcp, udp and sctp. [Online].
Available: https://iperf.fr/

[24] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the 26th Symposium on Operating Systems Principles.
NY, USA: Association for Computing Machinery, 2017, pp. 121–136.

[25] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“Incbricks: Toward in-network computation with an in-network cache,”
in Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
NY, USA: Association for Computing Machinery, 2017, pp. 795–809.

[26] D. Shan, W. Jiang, and F. Ren, “Analyzing and enhancing dynamic
threshold policy of data center switches,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 9, pp. 2454–2470, 2017.

[27] M. Apostolaki, L. Vanbever, and M. Ghobadi, “Fab: Toward flow-aware
buffer sharing on programmable switches,” in Proceedings of the 2019
Workshop on Buffer Sizing. NY, USA: Association for Computing
Machinery, 2020.

[28] H. Rezaei, H. Almasi, and B. Vamanan, “Smartbuf: An agile mem-
ory management for shared-memory switches in datacenters,” in
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS), 2021, pp. 1–7.

[29] H. Almasi, H. Rezaei, M. U. Chaudhry, and B. Vamanan, “Pulser:
Fast congestion response using explicit incast notifications for datacen-
ter networks,” in 2019 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN), 2019, pp. 1–6.

[30] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. An-
tichi, and M. Wójcik, “Re-architecting datacenter networks and stacks
for low latency and high performance,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, NY, USA,
2017, pp. 29–42.

[31] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “Hpcc: High precision
congestion control,” in Proceedings of the ACM Special Interest Group
on Data Communication, NY, USA, 2019, pp. 44–58.

[32] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “Pfabric: Minimal near-optimal datacenter transport,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
NY, USA, 2013, pp. 435–446.

[33] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Pias: Prac-
tical information-agnostic flow scheduling for commodity data centers,”
IEEE/ACM Trans. Netw., vol. 25, no. 4, pp. 1954–1967, aug 2017.

[34] Z. Yu, C. Hu, J. Wu, X. Sun, V. Braverman, M. Chowdhury, Z. Liu,
and X. Jin, “Programmable packet scheduling with a single queue,” in
Proceedings of the 2021 ACM SIGCOMM 2021 Conference, NY, USA,
2021, pp. 179–193.

[35] N. K. Sharma, C. Zhao, M. Liu, P. G. Kannan, C. Kim, A. Kr-
ishnamurthy, and A. Sivaraman, “Programmable calendar queues for
high-speed packet scheduling,” in Proceedings of the 17th USENIX
Symposium on Networked Systems Design and Implementation. USA:
USENIX Association, 2020, pp. 685–700.

[36] K. Nichols and V. Jacobson, “Controlling queue delay: A modern aqm
is just one piece of the solution to bufferbloat.” Queue, vol. 10, no. 5,
pp. 20–34, may 2012.

[37] R. Pan, B. Prabhakar, and K. Psounis, “Choke - a stateless active queue
management scheme for approximating fair bandwidth allocation,” in
Proceedings IEEE INFOCOM 2000. Conference on Computer Commu-
nications. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies (Cat. No.00CH37064), vol. 2, 2000, pp.
942–951.

