
Ether: Providing both Interactive Service and
Fairness in Multi-Tenant Datacenters

Mojtaba
Malekpourshahraki

University of Illinois at Chicago
mmalek3@uic.edu

Brent Stephens
University of Illinois at Chicago

brents@uic.edu

Balajee Vamanan
University of Illinois at Chicago

bvamanan@uic.edu

ABSTRACT
Multi-tenant datacenters and cloud networks must provide
both isolation and interactive service to tenant applications,
many of which are sensitive to tail flow completion times.
Network operators must also ensure high utilization of net-
work capacity to reduce cost. Existing approaches that stat-
ically partition network capacity, in either time or space,
provide good isolation but suffer from under-utilization. Ex-
isting schemes that dynamically allocate capacity to tenants
incur either decreased fairness or high tail flow completion
times. To overcome these limitations, we propose Ether . Ether
is able to overcome these limitations because it can prioritize
bursty flows during short congestion episodes while still en-
suring fairness at long timescales. In this paper, we present
a preliminary design of Ether and discuss its feasibility in
today’s programmable switches. Our evaluations show that,
at high loads, Ether achieves 23% improvement in tail flow
completion times (FCT) when compared with idealized fair
queueing (FQ) while still providing similar fairness as FQ. In
contrast, pFabric, which optimizes FCT, worsens fairness by
a factor of 1.8 when compared with Ether .

CCS CONCEPTS
•Networks→Packet scheduling;Data center networks;
Packet classification.

KEYWORDS
Datacenter, Fairness, Optimal FCT, Multi-tenant datacenter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet ’19, August 17–18, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7635-8/19/08. . . $15.00
https://doi.org/10.1145/3343180.3343187

ACM Reference Format:
Mojtaba Malekpourshahraki, Brent Stephens, and Balajee Vamanan.
2019. Ether : Providing both Interactive Service and Fairness inMulti-
Tenant Datacenters. In 3rd Asia-Pacific Workshop on Networking
2019 (APNet ’19), August 17–18, 2019, Beijing, China. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3343180.3343187

1 INTRODUCTION
Modern cloud datacenters host several tenants with diverse
application characteristics [16, 17]. To meet the stringent Ser-
vice Level Agreements (SLAs), network operators must iso-
late tenant applications and provide fairness among tenants
within the network. Further, the SLAs for some applications
require tight bounds on network delay (e.g., 99th percentile
flow completion times must be less than 2–30 ms [25]). Fi-
nally, it is important for operators to ensure that the overall
network utilization is high [18].
Unfortunately, today’s networks struggle to simultane-

ously provide multi-tenant isolation, minimize Flow Comple-
tion Times (FCT), and drive high utilization [10]. Many cloud
datacenters isolate tenants by statically partitioning the net-
work resources [1, 20]. However, such approaches are not
work conserving and reduce resource utilization. Although a
few recent proposals provide good fairness and high resource
utilization, they do not minimize tail FCTs [9, 17, 21, 24]. Sim-
ilarly, while there has been a significant focus on reducing
tail FCTs in datacenter networks to meet the requirements of
Online Data Intensive (OLDI) applications (e.g., Web Search),
most existing systems for doing so do not provide multi-
tenant isolation [6, 8, 19, 23, 27]. One way of providing in-
teractive performance guarantees to tenants is to limit the
burst size of applications, in addition to rate (bandwidth)
limits [16]. However, many OLDI applications cause syn-
chronized bursts, known as incasts and limiting the burst
size of those applications would adversely affect the overall
response time [25].

Our goal in this paper is to improve the tail (e.g., 99th) Flow
Completion Time (FCT) of tenant applications while provid-
ing isolation (fairness) between tenants, without imposing
limits on traffic bursts or limiting network throughput. We
achieve this goal by relying on the following key insights:
(1) Fairness is a relatively long-term concern, and it is often

50

https://doi.org/10.1145/3343180.3343187
https://doi.org/10.1145/3343180.3343187

APNet ’19, August 17–18, 2019, Beijing, China M. Malekpoursharaki, et al.

sufficient to enforce fairness at a coarse time granularity; (2)
Incast and minimizing flow completion times are problems
that occur at very small timescales. For example, a recent
study found that most congestion events are shorter than a
single RTT [28].
We present the design of Ether , a system that leverages

the two preceding insights. Crucially, Ether includes two
building blocks: a fairness optimizer, which ensures that ten-
ants share the bottleneck capacity in a fair manner, and a tail
optimizer, which implements Least Slack Time First (LSTF)
scheduling among flows within short intervals. Our key con-
tributions include the following:

• We present the design of Ether , which prioritizes crit-
ical flows (e.g., short flows or flows with least slack)
during short congestion episodes such as incasts while
ensuring fairness over longer timescales.

• We discuss the feasibility of Ether in the context of
multiple of today’s programmable switches and other
network devices and argue that the design of Ether is
implementation friendly.

• Using ns-3 simulations [2], we show that Ether achieves
23% improvement in tail FCT while providing similar
fairness as fair queuing (ideal), whereas pFabric, which
optimizes FCT, worsens fairness by a factor of 1.8.

The paper is organized as follows. We start with an oppor-
tunity study and motivate our work in Section 2. We analyze
our design, provide guidance for setting the design parame-
ters based on broad workload characteristics, and we provide
a brief sketch of an implementation using programmable
switches in Section 3. We present detailed evaluations that
show bottomline performance, isolation of our techniques,
and parameter sensitivity in Section 4. Finally, we conclude
with open questions and future work in Section 6.

2 MOTIVATION

Table 1: A summary of existing approaches to network
isolation or reducing tail flow completion times (Tail FCT).
A ∗ implies that there are limitations to the design that are

discussed in Section 5

Network Tail FCT
Isolation Reduction

pFabric [6] ✓

PIAS [8] ✓

UPS [19] ✓

EyeQ [17] ✓

AFQ [24] ✓

Silo [16] ✓

pHost ∗ [13] ✓ ✓

Trinity ∗ [14] ✓ ✓

Utopia ∗ [26] ✓ ✓

Ether ✓ ✓

(a) Jain’s fairness index (b) 99 percentile FCT

Figure 1: FQ vs. pFabric.

In today’s datacenters, it is important to both fairly share
the network and minimize tail FCTs. For fairness, recent
systems for multi-tenant datacenters either use some form
of bandwidth reservations [16, 17] or employ some form of
Fair Queuing (FQ) at switches [24] for bandwidth isolation
(fairness) among tenants. Unfortunately, neither of these
approaches reduce tail FCTs, and reservations can hurt over-
all utilization. For applications that are sensitive to Flow
Completion Times (FCT), recent work has used Shortest Job
First (SJF) and Least Slack Time First (LSFT) scheduling be-
cause these approaches have been shown to reduce average
FCTs [6, 8, 13, 19, 23]. However, these approaches can also be
prone to extreme unfairness, especially in situations when
competing tenants have different messages sizes or are trying
to game the system.

Ideally, it is desirable to both provide isolation among ten-
ants and reduce flow completion times for application flows.
Unfortunately, as Table 1 summarizes, no existing projects
are able to successfully accomplish both of these goals with-
out significant limitations. When tenants have diverse flow
distributions, as is often the case, approaches that optimize
FCT favor tenants (applications) with a higher number of
short flows and violate fairness. While FQ provides fairness,
it hurts FCT because of its inflexibility to prioritize short
flows during short periods of intermittent congestion (e.g.,
incasts).

To demonstrate these problems with existing systems, we
performed an experiment with ns-3 [2] to compare systems
that use fair queuing to isolate tenants with those that use
scheduling/prioritization to improve FCT. In this experiment,
there are two tenants, and we use idealized FQ to represent
systems that provide multi-tenant fairness and pFabric to
represent systems that use prioritization to improve FCT.
The second tenant generates three times more short flows
than the first tenant while both tenants generate the same
number of long flows. Figure 1(a) shows the Jain’s fairness
index [15] among the two tenants, and Figure 1(b) shows
the 99th percentile FCT of the two tenant flows. This figure
shows that that pFabric’s improved FCT comes at the cost
of reduced fairness while FQ improves fairness at the cost of
FCT.
It is desirable to provide the benefits of both FQ and im-

proved FCT. However, it is non-trivial to combine existing

51

Ether : Providing both Interactive Service and Fairness in Multi-Tenant Datacenters APNet ’19, August 17–18, 2019, Beijing, China

Fairness Optimizer Tail Optimizer

Hf(idflow)

Window

wmin wmax

Delay

Ht(idtenant)

Figure 2: Ether’s architecture
approaches that provide either fairness or improved FCT
but not both. For example, a straightforward solution to
providing both fairness and improved FCT is to employ FQ
scheduling among tenants and LSFT or SJF scheduling among
flows within each tenant, in a hierarchical fashion. However,
this approach would require a prohibitively large number
of queues (e.g., With 32 queues at each level, we require
32 ∗ 32 queues). Further, FQ is inflexible and does not allow
for prioritizing critical flows during periods of congestion.
To overcome these challenges, we make the key insight

that fairness is a relatively long-term concern and it is suffi-
cient to enforce fairness at a coarse time granularity. This
insight enables us to prioritize critical flows (e.g., short flows
or flows with least slack) during short periods of intermittent
congestion (e.g., incast). Building on this insight, we propose
Ether and discuss our design in the following section.

3 DESIGN
3.1 Overview
Instead of hierarchically composing FQ and LSTF schedulers,
which would require a large number of queues, Ether de-
couples the enforcement of fairness among tenants and the
FCT optimization of tenant flows. Specifically, Ether enforces
fairness at a coarse granularity of windows of tenant packets,
whereas packets belonging to different tenants within the
same window are scheduled purely based on their critically
(e.g., slack).

Figure 2 shows the high-level overview of Ether . Ether is
composed of two stages: fairness optimizer and tail optimizer.
The fairness optimizer fetches the tenant ID and maps the
packet to one of its queues; we derive the number of queues
required to avoid hash collision in Section 3.2.3. Next, a win-
dow of packets from each queue is transferred to the tail
optimizer queues by hashing on the flow ID (e.g., five tuples).
It is important to note that while fairness optimizer hashes
using tenant IDs, tail optimizer hashes based on flow IDs.
The tail optimizer finally picks the queue to dequeue based
on slack. By maintaining the invariant that the next window
of packets is fetched from the fairness optimizer into the tail
optimizer only after all the packets in the previous window
have been dequeued, Ether provides fairness among tenants.
However, within a window, packets are scheduled purely

qmin w

wmin wmax

w=qmin

wmin wmax

qmin w

wmin wmax

(a) (b) (c)

Figure 3: Different conditions for fairness queue set.

based on slack, thereby optimizing FCT. In other words, we
sacrifice some fairness and allow tenants that have critical
flows to steal bandwidth from tenants that do not have criti-
cal flows only within a window; we enforce fairness among
tenants across windows. Because our tail optimizer needs to
track distinct flows only within a window, which is much
smaller than the total number of flows, we require only a
handful number of queues (i.e., not one queue per-flow). In
the following sections, we describe our fairness optimizer
and tail optimizer in detail.

3.2 Fairness optimizer
When a packet arrives at the switch, the fairness optimizer
fetches the tenant ID and maps the incoming packet to one
of its queues by hashing on tenant ID (see Figure 2). The
fairness optimizer transfers a window of packets to the tail
optimizer in rounds. In each round, it dequeues packets from
each queue and maps it to one of the tail optimizer queues
by hashing on flow ID.

3.2.1 Window size. To provide fairness among tenants, we
must dequeue an equal number of packets (i.e., window size
ofw) from each tenant queue at the fairness optimizer. Fur-
ther, to provide opportunity for the tail optimizer in the
next stage, we must choose the largest window size that
allows us to dequeue an equal number of packets from every
queue. Thus, setting the window size to equal the minimum
queue length (qmin) allows us to maximize opportunity for
the tail optimizer without violating fairness (see Figure 3b).
But, there are two other corner cases:
(1) If some, not all, of the tenant queues are (near) empty

because they do not have enough data to send, allow-
ing a window size larger than the minimum queue
length would provide sufficient opportunity for the tail
optimizer without violating fairness (see Figure 3a). To
handle this case, we have a configurable lower bound,
wmin .

(2) If all tenant queues are close to being full, setting
the window size to equal the minimum queue length,
which is quite large, would overwhelm the tail op-
timizer with a large number of packets (flows) and
may cause rampant hash collisions (see Figure 3c). To
handle this case, we have a configurable upper bound,
wmax .

52

APNet ’19, August 17–18, 2019, Beijing, China M. Malekpoursharaki, et al.

Putting it all together, equation 1 shows the window size
(w) as a function of the minimum queue length (qmin), the
upper bound of the window size (wmax), and the lower bound
of the window size (wmin).

w = min(wmax ,max(wmin ,qmin)) (1)

Therefore, by having a dynamic window size, Ether is able
to prioritize short flows’ by increasing the window size dur-
ing during short periods of congestion but quickly reduces
the window size as congestion subsides to provide fairness.

3.2.2 Window boundaries. Recall from Section 3.2.1 that
wmax prevents the window from becoming too large and
cause hash collisions in the tail optimizer. We now derive
the relationship between the window bounds and the num-
ber of queues to avoid hash collisions. Assuming that the
packet size is s bytes, average flow size is E[S], and number of
queues at the fairness optimizer is nf , then the total number
of flows contained in the window w is given by nf × w × s

E[S] .
To minimize hash collisions at the tail optimizer, the total
number of flows contained in the windoww should not ex-
ceed the number of queues at the tail optimizer (nt). Thus,
we have the following equation:

nf × w × s

E[S]
≤ nt (2)

=⇒ w ≤
E[S] × nt
s × nf

=⇒ wmax =
E[S] × nt
s × nf

(3)

Equation 3 provides guidance on how to setwmax , given
the number of queues in fairness optimizer and tail optimizer.

3.2.3 Number of queues. While we require wmin ≥ 1 to
guarantee forward progress, in practice, we setwmin to be
a larger value. Because wmax is greater than or equal to
wmin by definition, we have the following condition for the
number of queues:

wmax ≥ wmin =⇒
E[S] × nt
s × nf

≥ wmin (4)

nt
nf

≥
s

E[S]
wmin (5)

Equation 5 is intuitive and provides guidance on how to
pick the number of queues in fairness optimizer and tail opti-
mizer. We require more queues at the tail optimizer if either
the average flow size (E[S]) is small or if wmin is large be-
cause we will transfer a large number of flows from fairness
optimizer to tail optimizer.

3.3 Tail Optimizer
In each round, Ether dequeues all packets within the window
from the fairness optimizer to the tail optimizer’s queues.
Another hash function (Ht (.)) is used to map the packets
to the tail optimizer’s queues. The tail optimizer emulates
LSTF scheduling. Instead of slack, each packet contains the
queue length, a proxy for delay, that the packet incurred
in previous hops. Because slack is defined as the difference
between deadline and delay, LSTF scheduling is equivalent to
scheduling the packet with the largest delay as flow deadlines
are often unknown [11, 19, 23].
Ether updates the slack in packet header during the fair-

ness optimizer’s packet enqueue. Our estimation of slack
is the total number of packets that gets service before the
current packet. Equation 6 calculates an estimation of the
total number of packets before enqueuing a packet to the
queue i .

slack = qmin × (nf − 1) + Si + St (6)

In which Si is the size of the queue i , and St is the total
queue size of the tail optimizer.
Ether keeps a delay value for each queue (flow) in the

tail optimizer (see delay field in figure 2). During the packet
enqueue, Ether adds the slack value of the packet to the
queue delay. Similarly, during the packet dequeue, the delay
of the queue reduces by the slack value of the packet.

Tail optimizer dequeues packets with the maximum delay
first. In each round, instead of finding the maximum slack
among all queues, which is an operation with O(loд(n)), we
keep track of the maximum slack in a separate temporar-
ily variable and update the changes during enqueue and
dequeue.

3.4 Implementation
Ether has the following implementation challenges: (1) track-
ing the dynamic control parameters (e.g., window bound-
aries); (2) mapping the incoming packets to the correspond-
ing queues; and (3) two levels of the queue set in the data
path. Fortunately, the programmable switches provide fea-
tures that enable us to address these challenges. Configurable
switches provide meta-data to keep the dynamic variables.
For the mapping tenant/flow id, p4 provides a wide range
of hashing algorithm that could map header fields to the
queue-id. PSA does not support two layers of queue sets;
however, it is possible to emulate the same behavior by clone
from egress to egress (CE2E), described in [3]. CE2E provides
a line-rate, packet resubmit feature to the egress pipelines.
PSA could resubmit packets back to the single queue set,
instead of using two levels of queues in the path of packets.
We are exploring the implementation of our proposal on

53

Ether : Providing both Interactive Service and Fairness in Multi-Tenant Datacenters APNet ’19, August 17–18, 2019, Beijing, China

programmable switches for our future extended version of
Ether .

4 EVALUATION
4.1 Methodology
4.1.1 Topology and Workload. We evaluate the Ether’s over-
all performance using ns-3 simulator [2]. We simulate a
leaf-spine datacenter topology with 400 servers, 10 spine
switches, and 20 leaf switches, connected using 10 Gbps links.
The unloaded RTT of the longest path with 4 hops is 80 µs .
Our workload, based on existing empirical studies [7, 24],
generates a heavy-tailed flow distribution. Specifically, we
consider 16 KB short flows and 1 MB long flows, with long
flows, which are much fewer than short flows, contributing
to a larger fraction (e.g., 80%) of network load. We also model
incast traffic, with the average fan-in degree of 32.

4.1.2 Compared schemes. Because existing schemes opti-
mize either fairness or tail FCT but not both, we compare
Ether to two strong baselines, which optimize either fairness
or tail FCT. We use Fair Queuing (FQ) as the baseline for fair-
ness and pFabric as the baseline for tail FCT. Switches in our
FQ implementation perform per-packet round robin sched-
uling among tenant flows and the end hosts use DCTCP [5].
Our pFabric implementation implements the shortest job
first scheduler at the switches and uses the end host con-
gestion control as presented in their paper [6]. While FQ
achieves close-to-ideal ideal fairness, pFabric is the current
state-of-the-art for optimizing FCT.

4.1.3 Parameters. Ether has four main parameters: (1) nf ,
the number of queues in fairness optimizer; (2) nt , the num-
ber of queues in tail optimizer; (3)wmax , the maximum pos-
sible window; and (4)wmin , the minimum possible window
size in each round. Because 16–32 queues is typical, we use
nf = nt = 16. We choose wmin = 1 (limit from Sec-
tion 3.2.3) andwmin = 570 (Equation 3).

4.1.4 Comparison metrics. First, we show our bottomline
performance by comparing Ether’s fairness and 99th per-
centile FCTwith systems that are known to optimize fairness
and tail FCT. Then, we perform sensitivity studies on the
number of queues — the number of queues in fairness opti-
mizer affects fairness, whereas the number of queues in tail
optimizer affects FCT. Finally, we quantify our sensitivity to
workload, specifically to the fraction of short flows. We leave
real implementation, evaluation using real applications, and
exhaustive quantitative evaluations to future work.

Figure 4: Fairness and tail FCT of Ether

4.2 Bottomline performance
Figure 4 compares the bottomline performance of the three
schemes (i.e., FQ, pFabric, and Ether), in terms of both fair-
ness and tail FCT. In this experiment, we have 10 tenants,
each generating a mix of short and long flows as per our
workload model (see Section 4.1.1).

Figure 4(a) shows the Jain’s Fairness Index (JFI) among
tenants (i.e., we aggregate the throughput per tenant and
compute JFI among them) for different loads, along X axis.
A JFI value of 1 is ideal and fairness decreases as values get
smaller than 1. Because our implementation of FQ is ideal,
it achieves perfect fairness. Fairness of pFabric suffers as
load increases. For loads higher than 60%, pFabric’s fairness
suffers by about 20%. Ether achieves better fairness than
pFabric. Specifically, Ether achieves similar fairness as ideal
(within 5%) and outperforms pFabric by about 18% (JFI of
0.95 for Ether vs. 0.8 for pFabric). While our fairness opti-
mizer ensures each tenant gets a fair share of capacity during
each window by transferring an equal number of bytes from
the tenants’ queues, it also provides opportunity to the tail
optimizer to improve FCT, which we show next.
Figure 4(b) shows the tail FCT across all tenant flows.

While all schemes perform well at low loads, their perfor-
mance starts to diverge as load increases. At high network
load, Ether outperforms the FQ and performs closer to pFab-
ric. Because FQ does not consider criticality of flows (e.g.,
slack), tail packets from short flows incur additional queuing
due to long flows. pFabric and Ether dequeue packets with
the largest slack and improve tail. In summary, unlike pFab-
ric, which improves tail FCT at the cost of worsened fairness,
Ether improves the tail FCT while achieving close-to-ideal to
fairness.

4.3 Sensitivity to number of queues
Today’s commercial switches support a limited number of
queues. We study the effect of the number of queues in fair-
ness optimizer and tail optimizer on the performance of Ether
using targeted experiments. In each experiment, we fix the
number of queues to 16 for one module and vary the number
of queues in the other module. In these experiments, we
simulate multiple tenants, and each tenant generates a mix
of short and long flows. All other parameters are set as per
Section 4.1.3.

We study the sensitivity of Ether’s fairness to the number
of queues in fairness optimizer in Figure 6(a). Because the

54

APNet ’19, August 17–18, 2019, Beijing, China M. Malekpoursharaki, et al.

Figure 5: Sensitivity to short flows
queues in fairness optimizer is sensitive to the number of
tenants, we simulate a large number of tenants and vary the
number of queues in the fairness optimizer. We observe that
the performance improves with the number of queues, as
expected. While the experiment proves that the number of
queues in fairness optimizer is proportional to the number of
tenants, we will explore optimizations to reduce the number
of queues in our future work.

Figure 6(b) shows the sensitivity of Ether’s 99th percentile
FCT to the number of queues in tail optimizer. Because the
number of queues in the tail optimizer is independent of the
number of tenants, we simulate only two tenants. When the
number of queues is small, collision among flows increases
and the tail optimizer performs sub-optimally. However, as
the number of queues increases, the tail optimizer is able to
distinguish the flows and schedule them based on least slack.
As such, we achieve optimal performance for 16–32 queues.

4.4 Sensitivity to short flows
Ether is sensitive to the (average) flow size and flow mix
because of our windowing idea. For this study, we simulate
two tenants. Figure 5 shows the effect of the traffic pattern
(i.e., fraction of the overall load from short flows, shown on X
axis) on the 99th percentile FCT of the two tenants. We vary
the fraction of short flows but we keep the total network
load at 80%. As the fraction of short flows increases, there is
increased burstiness (i.e., qminincreases). Further, the num-
ber of distinct flows that fit within a window increases as the
fraction of short flows increases, which leads to increased
collision at the tail optimizer (see Figure 6b). As a result, the
tail FCT increases with the fraction of short flows, for both
tenants. Fortunately, the heavy tailed nature of datacenter
workloads imply that a large fraction of the overall network
load comes from a few long flows (i.e., the typical operat-
ing point is towards the left side of X axis), in which Ether
achieves shorter tail FCT with a handful number of queues.

5 RELATEDWORK
Our work is closely related to existing work on improving
flow completion times and network isolation. Several exist-
ing papers employ Shortest job first (SJF) and least slack-time
first (LSTF) scheduling, both at the end hosts and in-network,

(a) Fairness optimizer (b) Tail optimizer
Figure 6: Sensitivity to number of queues

to optimize flow completion times. pFabric [6] and PIAS [8]
schedule packets based on their deadlines or flow sizes to op-
timize flow completion times; we have extensively discussed
and evaluated pFabric [6]. UPS [19] performs LSTF sched-
uling to reduce the tail flow completion times. DeTail [27]
leverages PFC to reduce network queuing delay. While these
approaches provide vast improvements in flow completion
times, they do not provide good isolation and often favors
tenants with a larger fraction of short flows.

Existing work on network isolation provide good fairness
but do not explicitly optimize for the tail flow completion
times. EyeQ [17] provides bandwidth sharing between ten-
ants by employing a combination of rate limiting and Rate
Control Protocol [12]. Silo [16] provides stronger delay guar-
antees for tenants by limiting the burst size of tenant flows,
in addition to rate limiting. AFQ [24] approximates provides
per-flow fair queuing but it is not easily extensible to multi-
tenant systems. However, unlike Ether , EyeQ, Silo, and AFQ
do not leverage short periods of intermittent burstiness to
optimize tail FCT. Both pHost [13] Utopia [26] optimize flow
and coflow completion times, respectively, as well as pro-
vide support for multi-tenancy. However, they assume that
congestion happens only at the network edge, and there-
fore, require non-blocking network, which is prohibitively
expensive; existing networks use over-subscription factors
of 4–8 [4, 22]. Further, Utopia needs the status of all links.
Trinity [14] uses ECN marks to calculate the rate for each
VM-2-VM channel to achieve full utilization of bottleneck
links, and also provides work conservation and bandwidth
guarantees. However, Trinity’s reaction to incast is slow as
it relies on ECN marks [23]. Other centralized coflow sched-
uling approaches require real-time link status to schedule
coflows, and, therefore do not scale well to large datacen-
ters [14, 26].

6 CONCLUSION
We presented Ether , which prioritizes critical flows during
short periods of congestion and ensures that such prioritiza-
tion does not affect fairness. Our design is light-weight and
is implementable in today’s programmable switches. Our
evaluations show that Ether achieves both high fairness and
low queuing (i.e., low 99th percentile FCT).

55

Ether : Providing both Interactive Service and Fairness in Multi-Tenant Datacenters APNet ’19, August 17–18, 2019, Beijing, China

REFERENCES
[1] [n.d.]. Amazon Virtual Private Cloud. https://aws.amazon.com/vpc.
[2] [n.d.]. NS-3 network simulator. http://www.nsnam.org/.
[3] [n.d.]. Portable Switch Architecture (PSA). https://p4.org/specs/.
[4] Mohammad Al-Fares et al. 2008. A scalable, commodity data center

network architecture. In SIGCOMM.
[5] Mohammad Alizadeh et al. 2010. Data Center TCP (DCTCP). In SIG-

COMM.
[6] Mohammad Alizadeh et al. 2013. pfabric: Minimal near-optimal data-

center transport. In SIGCOMM.
[7] Mohammad Alizadeh et al. 2014. CONGA: Distributed congestion-

aware load balancing for datacenters. In SIGCOMM.
[8] Wei Bai et al. 2015. Information-agnostic Flow Scheduling for Com-

modity Data Centers. In NSDI.
[9] Hitesh Ballani et al. 2011. Towards predictable datacenter networks.

In SIGCOMM.
[10] Mosharaf Chowdhury et al. 2016. {HUG}: Multi-Resource Fairness

for Correlated and Elastic Demands. In NSDI.
[11] David D Clark et al. 1992. Supporting real-time applications in an

integrated services packet network: Architecture and mechanism. In
SIGCOMM.

[12] Nandita Dukkipati et al. 2005. Processor Sharing Flows in the Internet.
In IWQoS.

[13] Peter X Gao et al. 2015. phost: Distributed near-optimal datacenter
transport over commodity network fabric. In CoNEXT.

[14] Shuihai Hu, Wei Bai, Kai Chen, Chen Tian, Ying Zhang, and Haitao
Wu. 2018. Providing bandwidth guarantees, work conservation and
low latency simultaneously in the cloud. IEEE Transactions on Cloud
Computing (2018).

[15] Rajendra K Jain et al. 1984. A quantitative measure of fairness and
discrimination. Eastern Research Laboratory, Digital Equipment Corpo-
ration (1984).

[16] Keon Jang et al. 2015. Silo: Predictable Message Latency in the Cloud.
In SIGCOMM.

[17] Vimalkumar Jeyakumar et al. 2013. EyeQ: Practical network perfor-
mance isolation at the edge. In NSDI.

[18] David Lo et al. 2015. Heracles: Improving Resource Efficiency at Scale.
In ISCA.

[19] Radhika Mittal et al. 2016. Universal packet scheduling. In NSDI.
[20] Jayaram Mudigonda et al. 2011. NetLord: A Scalable Multi-tenant

Network Architecture for Virtualized Datacenters. In SIGCOMM.
[21] Lucian Popa et al. 2013. ElasticSwitch: Practical Work-conserving

Bandwidth Guarantees for Cloud Computing. In SIGCOMM.
[22] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C Mogul,

Yoshio Turner, and Jose Renato Santos. 2013. Elasticswitch: Practical
work-conserving bandwidth guarantees for cloud computing. In ACM
SIGCOMM Computer Communication Review, Vol. 43. ACM, 351–362.

[23] Hamed Rezaei et al. 2018. Slytherin: Dynamic, network-assisted prior-
itization of tail packets in datacenter networks. In ICCCN.

[24] Naveen Kr Sharma et al. 2018. Approximating fair queueing on recon-
figurable switches. In NSDI.

[25] Balajee Vamanan et al. 2015. Timetrader: Exploiting latency tail to
save datacenter energy for online search. In MICRO.

[26] Luping Wang, Wei Wang, and Bo Li. 2018. Utopia: Near-optimal
coflow scheduling with isolation guarantee. In IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 891–899.

[27] David Zats et al. 2012. DeTail: reducing the flow completion time tail
in datacenter networks. In SIGCOMM.

[28] Qiao Zhang et al. 2017. High-resolution Measurement of Data Center
Microbursts. In IMC.

56

https://aws.amazon.com/vpc
http://www.nsnam.org/
https://p4.org/specs/

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 Overview
	3.2 Fairness optimizer
	3.3 Tail Optimizer
	3.4 Implementation

	4 Evaluation
	4.1 Methodology
	4.2 Bottomline performance
	4.3 Sensitivity to number of queues
	4.4 Sensitivity to short flows

	5 Related Work
	6 Conclusion
	References

