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Abstract—In-network applications, such as congestion con-
trol, load-balancing, and policy enforcement, require compli-
cated arithmetic operations to track networking parameters.
Unfortunately, programmable switches that implement protocol
independent switch architecture (PISA) support only a limited
set of arithmetic operations, such as addition and subtraction, to
guarantee high packet throughput. Existing work addresses this
problem by implementing unsupported operations (e.g., multipli-
cation) using TCAM match-action tables; they use wildcards to
match over a range of operand values. However, because TCAM
is a scarce resource, operators must make a difficult trade-off
between accuracy and TCAM occupancy. This problem leads to
large and unpredictable errors, and also limits the applicability
of in-network computing to many applications.

In this paper, we propose ADA, a practical, lightweight
approach to reduce TCAM entries without sacrificing accuracy
by exploiting the value distribution of operands. ADA tracks
the operands’ distribution via a simple binning mechanism to
determine the most accessed interval in the domain space of
operands and allocates more (or less) entries based on the
observed distribution. Our proposed mechanism, (1) saves TCAM
space for other applications by aggregating entries that are
unused or less popular, and (2) reduces average error by assigning
more TCAM entries to intervals with a higher probability of
occurrence (and sub-divides these intervals further, if needed).
We implement ADA on P4 on a 100 Gbps Barefoot Tofino switch
and demonstrate its efficacy by deploying it in existing state-
of-the-art in-network applications; ADA imposes a negligible
overhead of less than 2% in the switch data plane and about 5%
in the control plane. We further evaluate ADA using our C++ and
ns-3 simulators over two existing arithmetic-heavy applications
(i.e., Nimble and RCP) to demonstrate that ADA can achieve
performance close to an ideal implementation with unlimited
TCAM space.

Index Terms—Programmable switches, TCAM, p4lang

I. INTRODUCTION

Recent advances in programmable networks enable op-
erators to offload computation from end-hosts to switches.
While protocol independent switch architectures (PISA) en-
able matching on any arbitrary packet field and perform an
associated action, P4 programming language and associated
libraries enable programmers to express a wide range of
computations at line rate in the switch data plane [1, 2].
Today’s PISA Switches use reconfigurable match-action tables
that use simple arithmetic logic units (ALU) to support a
limited set of operations, such as addition, subtraction, and bit
shifts. In addition, RMT switches provide registers that can be

used for stateful operations (e.g., counters). Taken together,
these features can be used to offload some computations to
network switches and design efficient in-network applications.

Despite the flexibility and programmability that PISA pro-
vides, designing high throughput RMT switches is challeng-
ing. Supporting computations at high line rates implies that
all per-packet operations must finish in a small number of
clock cycles. This limitation makes it prohibitively difficult
to design and implement complicated operations in hardware.
For instance, multiplication and division require tens of clock
cycles. Therefore, today’s programmable switches (e.g., Tofino
[3]) do not natively support multiplication and division. Unfor-
tunately, the lack of native support for these operations limits
many important in-network applications such as RCP [4] and
XCP [5]. Table I shows a list of existing work from different
areas that require complicated operations in their design.

Existing proposals use lookup tables to implement opera-
tions that are not natively supported by the switch hardware.
Fortunately, ternary content-addressable memory (TCAM) can
be used for implementing lookup tables at line rate [12, 13].
One advantage of using TCAMs is the ability to encode
a range of operand values with a single entry using wild-
cards. This approach is used in a recent paper to implement
three sample in-network applications [12]. Another paper,
InREC [13], uses this approach to compute a larger set
of arithmetic operations. In addition to multiplication and
division, InREC supports single-operand operations with real
numbers such as radical and logarithm. Both these papers
exploit wildcards to map a range a operand values to one
entry and populate TCAM tables with predefined ranges of
operands along with the associated result of the operation.
During lookups, if there are multiple matching entries, the
longest prefix match (LPM) is used to resolve conflicts and
provide the ultimate answer.

Prior work populates TCAM by using wildcards to rep-
resent a set of ranges for each operand. However, they are
agnostic of the distribution of operand values and use equal-
sized ranges. As a result, they suffer from the following
three shortcomings: First, populating TCAMs with equal-
sized ranges is not optimal when the operands span a long
range. For operations that require two or more operands, such
representation also leads to a combinatorial blowup in the
number of TCAM entries. Further, most network parameters



TABLE I: List of approaches with the in switch arithmetic requirements

Category Work Arithmetic Error
propagation TargetMultiplication

/Division
Floating

point

Congestion Control

RCP [4] 7 0 Yes Converge to the correct rate
XCP [5] 0 4 Yes Converge to the correct rate
QCN [6] 1 0 Yes Quantized congestion notification

s-PERC [7] 1 0 No Calculate Max-Min fair rates
Load Balancing Conga [8] 1 0 Yes Congestion aware load balancing

Measurement Precision [9] 1 0 No Heavy hitter detection

Fairness Nimble [10] 1 0 Yes Tracking buffer size
Ether [11] 1 0 No Providing both fairness and LSTF

cover only a limited range over the domain of operands.
For example, a 32-bit counter counting the queue occupancy
would never exceed the maximum queue size (e.g., 256KB), so
populating the TCAM to cover the entire domain of operand
values is often wasteful. Because TCAM is an expensive and
scarce resource that is needed for core network functions
such as forwarding and switching, equal-sized ranges either
waste TCAM space or provide low accuracy. Second, even
though wildcard matches can reduce the number of TCAM
entries, they cause a large error, especially for larger numbers.
Using LPM, larger numbers usually have a shorter matching
prefix, which leads to low accuracy. Such large errors may
adversely affect the performance of applications, such as
rate limiters, which usually deal with large numbers (e.g,
40 000 Mbps). Finally, in most instances, network parameters
are not uniformly distributed over the operand domain. For
example, queue size in a DCTCP congestion control scheme
is expected to vary between zero and ECN threshold. Our
experiments confirm that many parameters have a narrow op-
erating range and exhibit highly-skewed distributions. This key
insight motivated us to design a system that populates TCAMs
using the knowledge of the operand range and distribution, and
dynamically adapts over time.

We present ADA to address the problem of optimally
populating TCAM tables for implementing operations that
are not natively supported by today’s programmable switches.
The key idea behind ADA is to learn the operating range
and distribution of operand values in their domain, and use
this knowledge to populate the tables to achieve an optimal
trade-off between accuracy and table size. Because learning
the distribution happens over a relatively long duration, it is
done in the slower and flexible control plane. However, the
learned distribution is used to populate the TCAM tables in
the data plane to be used for performing operations at line
speed. ADA includes a lightweight monitoring system that
learns the distribution of the operand values in the control
plane and updates TCAM entries according to the distribution.
Our evaluations, including a real implementation, demonstrate
that ADA dramatically reduces the average error and error
propagation for recursive/iterative functions, and can save
substantial TCAM space without loss of performance. We
make the following contributions:

• An adaptive binning algorithm to learn the distribution
(i.e., PDF) of variables. The algorithm enables us to
intelligently populate TCAM and save space for other

applications.
• A lightweight P4-friendly implementation of the mon-

itoring algorithm to adaptively detect the PDF of the
operands via variable binning without any sampling or
packet resubmit.

• A TCAM entry selection algorithm to generate an optimal
lookup table that is cognizant of the distribution of
operand values (i.e., more entries for intervals with higher
probability of occurrence) to minimize overall average
error.

• Real implementation of ADA on P4 in our testbed and
simulations to evaluate the accuracy and overhead of
our system in two real network applications as well
as a comparison to an ideal implementation that uses
unlimited TCAM space.

In summary, ADA enables the feasibility of in-network appli-
cations with complicated operations in today’s programmable
switches using a small TCAM footprint while also minimizing
error.

The rest of the paper is organized as follows: Section II
provides experimental evidence and motivates the need for
adaptive TCAM population. Section III presents our proposal
and the design details. Section V shows our experimental
results and key findings. Section VI discusses related work.
Section VII concludes our paper with closing remarks.

II. MOTIVATION

PISA architecture has three components: (i) parser, (ii)
match unit, (iii) action unit. When a packet arrives at the
switch port, it is first processed by a programmable parser.
The parser extracts desirable fields from the packet header
and forwards it to an array of pipeline stages. Each stage
contains a matching unit to perform either an exact match
or a longest prefix match on a subset of header fields. Match
units in RMT are designed to match on arbitrary header fields
(i.e., table widths and depths can vary subject only to physical
capacity limits) and the header format is fully customizable.
If the header matches a condition, action units perform the
specified operation as expressed in the P4 language. Allowed
actions include modifying any field of the packet header and
forwarding the packet to the traffic manager or to directly send
it to the deparser/outgoing ports. Action units are also powered
by Arithmetic Logic Units (ALU) to do some operations such
as addition, subtraction, shift bits, and hash functions.



A. Switch Limitations

RMT switches guarantee high throughput (e.g., 12.8 Tbps
on Tofino 2 and 25.6 Tbps on Tofino 3) by keeping the pipeline
stages simple and highly parallelized. This simplification in-
troduces three main challenges for in-network applications:
(i) limited set of operations: RMT ALUs support only a
small set of basic arithmetic (i.e., addition, subtraction) and
logical (i.e., bit shifts) operations. Other operations such as
multiplication and divisions are not supported. (ii) limited
support for branches: Because branches are inherently complex
to pipeline, PISA switches support only a limited number of
branches. Loops are not supported since they may need several
accesses to the memory (i.e., require several clock cycles). (iii)
no sharing of memory between stages: To operate the memory
in each stage at high speed, PISA switches keep the memory
in each stage isolated and stages cannot access memory of
other stages.

Network applications typically monitor and track network
state (e.g., queue occupancy) and generate new signals based
on algorithms that often involve complicated operations. Table
I lists important applications that address various aspects of
networking and shows that these applications require oper-
ations (e.g., multiplication) that are not supported by today’s
switches. Because of the aforementioned limitations of branch-
ing and memory accesses, we cannot emulate these operations
using existing operations (i.e., emulating multiplication as a
series of additions).

Programmable switches support a limited number of TCAM
tables to lookup values at line rate. TCAMs can be used as
lookup tables to emulate arithmetic operations as proposed
in previous papers [12, 13]. Authors in [12] provide a list of
building blocks to address RMT issues and implement existing
applications in programmable switches by populating TCAM
tables with logarithmic values and a reverse logarithm TCAM
population to lookup the result (e.g., for multiplication and
division). Similarly, InREC [13] benefits from using TCAMs
as lookup tables and provides limited floating point support
to emulate more complicated operations such as radical and
logarithm.

However, existing TCAM lookup mechanisms have three
main shortcomings: larger error for larger numbers, error
propagation, and large table size.

Large error for larger values: Existing TCAM population
mechanisms use a wildcard match in the form of 0p1(0|1)s×r,
where s is the number of significant bits to match over, and
p+ s+ r represents the number of bits in the operand value.
Each entry represents a group of values, and the group size
increases with r (i.e., more least significant bits are ignored
using wildcards). In this case, one TCAM entry represents
a group (range) of operand values. Consequently, for large
values of r, the average error is large as they approximate a
large set of values using a single number. For instance, when
calculating 4-bit multiplication with one significant bit i.e.,
(s = 1) and when the median value is used to represent the
entry (similar to the method used in [10]), the worst-case error

to lookup the result of X2 is 8% for X = 4 and 35% for
X = 8.

Error propagation: A small error may cause big problems
in applications that perform iterative operations and error
quickly adds up. Unfortunately, iterative behavior is quite
common in network applications as they often perform stateful
operations. For example, exponential averaging is commonly
used in congestion control or to average out noise in es-
timations. While large errors are a problem, they can be
catastrophic in applications that rely on some notion of conver-
gence to a steady state behavior—the accumulated error may
become large enough to affect convergence and compromise
the stability of the system. For example, errors in congestion
estimation may lead to a congestion control algorithm not
converging to the desired optimal operating point and would
result in under/over-utilization and/or fairness problems.

Large table sizes: Despite using wildcard matches and
limiting the variables’ bounds, existing TCAM population
mechanisms still require large TCAM capacity. When an
application calculates the result of an operation, if one or
both of the operands dynamically change, the TCAM must
have at least one entry to return the result for every com-
bination of operand values. Unfortunately, many switches
support only tens–hundreds of entries as TCAMs are a scarce
resource needed for core network functions such as forwarding
and packet classification. Thus, existing TCAM population
schemes are forced to use fewer but wildcard entries at the
cost of accuracy.

B. Opportunity studies

Ideally, all possible combination of the operand values is
necessary for accurately emulating any arithmetic operation;
however, enumerating all combinations of operand values
will require prohibitively large TCAMs and is not feasible.
Therefore, we make two key observations that enable us to
drastically reduce the number of TCAM entries.

First, we observe that many important network parameters
are not uniformly distributed and their distribution is highly
skewed in the common case (i.e., more opportunity to reduce
space). Queue size is an important network parameter that
is used in many applications (e.g., many congestion control
algorithms). To illustrate this phenomenon, we observe queue
sizes in a realistic scenario. We set up a simple ns3 [14]
data center simulation with 128-node 3-tier fat-tree topology.
Severs generate random all-to-all traffic consisting of short
flows (1-16 KB) and long flows (64 MB). We study the
behavior of both TCP Cubic and DCTCP. Figure 1a shows
the queue size at one of the ports of an edge switch (i.e., we
observed similar behavior at other ports/switches). This graph
clearly shows that queue sizes exhibit a skewed distribution:
queue size is less than 200 KB for 80% and 95% of the time, in
TCP Cubic and DCTCP, respectively. Therefore, if we were to
use queue size in any computation, existing TCAM population
schemes would needlessly waste space and/or achieve poor
accuracy.
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Fig. 1: Variable behaviour in different situations. (a) and (b) Cumulative distribution function (CDF) of two network parameters.
(c) Change in sending rate in a rate limier

Packet inter-arrival time is another important network pa-
rameter that is used in a number of network applications (e.g.,
rate limiters, token bucket, congestion control). Therefore, we
performed measurements to study this parameter. We mea-
sured packet inter-arrival times in a simple dumbbell topology
with 100 Gbps links with rate limiters (the actual limit rate
does not matter to these experiments). We changes the rate
three times during the evaluation and each time we set it to
half of the previous value. Figure 1b shows the CDF of inter-
arrival times. Despite the change in rate limiter parameters,
packet inter-arrivals are largely constrained to a narrow range
of 120 ns–360 ns most of the time. This is not surprising
because several past studies have also observed the exponential
nature of packet inter-arrival times.

Second, in addition to how the values are distributed, many
network parameters are range bound and their working range
is typically much smaller than the domain of the variable (e.g.,
TTL values in IP packets). Thus, if we can estimate their work-
ing range with reasonable confidence, then we can populate the
TCAM accordingly to minimize space as well as to improve
accuracy. To illustrate this, we ran the same experiment with
Nimble again but this time we track only the rate limit values.
Figure 1c shows the result of this experiment. We ran the
traffic for one second with the rate limit set to the line rate
(i.e., 94 Gbps), and after one second we cut the rate in half.
As shown in this figure, for the time interval 0 s–1 s, the rate
is always 94 Gbps. This means that the TCAM always looks
up the operand value of 94 Gbps for estimating the amount of
enqueued bytes (i.e., bytes enqueued = rate limit× δT ).
After one second, we change the rate to half (47 Gbps) and
the TCAM looks up only 47 Gbps. As you can see, instead
of populating the TCAM with all possible operand values, if
we can estimate the working range (e.g., in the control plane)
and populate accordingly, we can save TCAM space and also
improve accuracy.

We build upon these key observations to design ADA. which
we describe in the following section.

III. DESIGN

ADA is an adaptive, P4 friendly, feedback-based system
for efficiently populating TCAM entries to minimize average
error. Figure 2 shows our overall architecture.

Fig. 2: The architecture of ADA for both data and control
plane.

ADA has components in both control and data plane. We
split our design into control and data plane components to
optimize for dual goals of speed and optimality. The data plane
component is a lightweight monitoring system for recording
the frequency of occurrence for a range of operand values. To
record this information, we use a small TCAM to match on
intervals of operand values (using wildcard entries) and we
increment a counter upon a match; we have one counter per
interval to record hits and use registers to store these counter
values. The control plane component reads the monitored
statistics (i.e., register values) to infer the operating range
and distribution of operands, and it uses this information
to populate TCAM entries (to be used during lookups). For
instance, intervals with more hits get more TCAM entries (i.e.,
finer granularity). The control plane component also includes
an algorithm to fine tune the granularity of monitoring. That
is, if a certain range has a high probability of occurrence,
we can divide the range into two sub-ranges to monitor at a
finer granularity and vice versa. We could not implement these
sophisticated algorithms in data plane because of the lack of
adequate support for branching and limited programmability
in data plane [9]. Thus, by monitoring operand values in data
plane, ADA is able to respond faster to changing dynamics; by
using sophisticated algorithms to process the monitored data
and improve the quality of monitored data, ADA is able to
achieve high efficiency.

A. ADA in data plane

An efficient TCAM population requires knowing the dis-
tribution (i.e., PDF) of operands in real time. The PDF



provides two important pieces of information: the range and
the distribution of the variables. ADA uses a monitoring system
to record the histogram of operand values (i.e., find a discrete
PDF of variables). The operand value is divided into smaller
intervals (bins) and ADA assigns one register to a bin to count
the number of hits when the value falls within the bounds of
the interval.

Programmable switches provide limited in-stage branching,
which constrains the implementation [9]. For instance, for
a variable with 32 bits, PDF can be obtained by dividing
the entire interval into 100k bins and assigning the TCAM
space according to the frequency of hits in each bin. This
logic, however, is not implementable in a P4 program due to
the limitations on branching. To address this problem, we use
wildcard matching in TCAMs. Each wildcard entry represents
a smaller interval (bin) and there is a corresponding register
associated with this bin. When a value matches an entry, the
corresponding register is incremented. Figure 3 shows the
general overview of this design in which v1, v2, ..., vn are
target variables, and r1, r2, .., rn are tracking registers. ei are
TCAM entries for matching the values vi. Each TCAM entry
represents a bin and each bin has a separate register assigned.
If a value matches an entry in TCAM (e.g., ei), ADA increases
the corresponding register (ri) by one to indicate that another
hit is observed in this bin. Note that, by using wildcards and
longest prefix match, we can track hits in a sub-interval within
an interval and so on (i.e., deeper than just one level).

Fig. 3: Binning mechanism in data plane ADA

1) Binning abstraction: ADA has an adaptive monitoring
system in the data plane to capture the distribution of operand
values. To efficiently capture the distribution, ADA uses a trie
data structure, implemented using TCAMs, to record hits to
various sub-intervals (bins). Figure 4 shows two examples for
an operand with four bins. In this figure, each leaf (shown as
nodes with shadow) represents a bin. A binning trie is always
a binary tree and starts with the root node (init). Each node
has a reference to the left and the right child and a value that
shows the number of hits. All hit values are initialized to zero.
The path from the root to the leaf represents the TCAM entry.
For example, in Figure 4a, for 3-bit operands, the bins are
00× (0–1), 01× (2–3), 10× (4–5), and 11× (6–7). Similarly, in
Figure 4b, the bins are 00× (0–1), 010 (2), 011 (3), and 1×× (4–
7). Note how Figure 4b has non-uniform intervals (bins). ADA
defines a register for each leaf node in the binning abstraction
model as it is shown in Figure 3. When the value matches one
of the leaves, TCAM returns the register id (column shown as
r) and increases the corresponding value.

2) Binning formation: Initially, ADA generates a trie with
the same wildcard length (i.e., all intervals of the same size).

(a) Binning abstraction in ADA (b) Extended binary abstraction

Fig. 4: Starting point and extended binary abstraction in ADA.

Algorithm 1: Initialization binning tree

1 Definitions:
2 b : Number of significant bits;
3 bit(i) : Convert i to the the binary number;
4 Input:
5 M : Number of available entries;
6 s : Number of bits in operands;
7 Output:
8 Γ : Value set of leaves (ordered set)
9 T : Monitoring trie (binary tree)

10 Initialization:
11 Γ = T = φ;
12 Function binning_table_init():
13 b = log(M);
14 V = {∀ i | i ∈ [0, 2b − 1]}
15 for ∀i ∈ V do
16 i

s−b←−−×; // Left shift with wildcard (×)
17 if i /∈ Γ then
18 Γ.add(i); // populate TCAM entries

19 n = Node(bit(i)); // create a new node

(word) from bits of the number i

20 n.value = 1; // initial value to 1

21 T.add(n); // add a new word to to T

22 end
23 end
24 end

The number of wildcards depends on the number of available
entries and is determined by the network operator based on
TCAM capacity. If the total available entries for monitoring
TCAM is M , the initial value for the significant bits is
b = log(M). For example, if there are only four entries,
the TCAM entries would be 00X, 01X, 10X, and 11X for
3 bit operands (i.e., 2 significant bits). Algorithm 1 shows the
initialization of binning TCAM table. The only input to the
algorithm is available TCAM entries, M , and the length of the
operand (in bits), s. s is also the maximum possible depth of
the trie. The algorithm has a set of leaves (Γ) and the trie (T ).
This algorithm finds the set of leaves and builds the trie based
on that. Figure 4a shows an example trie that this algorithm
generates for 3-bit operands (s = 3) and one wildcard match
(b = s− 1 = 2). The corresponding bin for each leaf (shown
in gray) is shown in the figure and they are all at the same
level.



3) Adaptive binning update: The initial trie divides the
operand space into equal-sized intervals and it measures the
number of hits in each bin; however, if a small sub-interval
generates most of the hits, zooming in on that small sub-
interval will help in capturing the distribution precisely. For
instance, in Figure 4a, the majority of hits are in bin 01× but
the monitoring system has no insight into the distribution of
this bin. To remedy this problem, we propose an algorithm
(Algorithm 2) to selectively grow the tree based on hits. To
keep the number of required entries fixed, ADA eliminates the
bin (trie node) with the smallest hit and breaks the bin with the
maximum number of hits into two sub bins. To avoid frequent
changes in the trie structure, we use a threshold (thbalance)
to identify when ADA needs to modify the trie (see line 16).
Figure 4b is the result of this transition from Figure 4a. In this
figure, node 01× is divided into two smaller bins 010 and 011
while 10× and 11× were merged into one bin as 1××. Thus,
our algorithm modifies the original trie to better capture the
distribution of operand values without wasting TCAM space.

B. ADA in control plane

1) TCAM population: By proportionally allocating TCAM
entries to intervals (bins) based on their frequency, ADA mini-
mizes the average error. We include a control plane algorithm
for performing this allocation. The algorithm performs a top-
down traversal of the trie and allocates entries to the left and
right sub-tree based on hits.

Algorithm 3 shows the TCAM population procedure. The
controller first reads the number of hits in each bin from
the data plane and calculates the aggregated hits for each
node in the trie (i.e., the sum of hits of all nodes below this
node). Then, ADA assigns the available entries to each node in
proportion to the aggregated hits of the subtree rooted at that
node. At the end of the procedure, we know the number of
entries for each bin (leaf). For example, based on Figure 4b,
the bin representing 1×× will get 3/(5 + 7 + 7 + 3) = 14%
of entries.

Finally, we use a recursive function TCAMpopulation to
generate the final TCAM population. In each interval, we
assign the TCAMs based on the simple mechanism shown in
[10]. This function is simply replaceable with the logarithmic
approach proposed in [12]. Note that each bin is independently
used in these approaches to populate the TCAM based on the
assigned number of entries. If there is no frequency data for
any node in the binning tree, the algorithm results in an equal
share of the entries for the entire sub-tree.

2) Trie expansion: ADA uses two main TCAM tables: Mon-
itoring TCAM and calculation TCAM. Monitoring TCAM
is used to model the trie for each variable, whereas the
calculation TCAM is the main lookup TCAM that the P4
program uses to fetch the result of the operation. Both of
these tables use the same TCAM hardware from the switch
which is limited in the number of entries. If the distribution
of the hits for a given variable is uniform, it is better to
assign fewer entries to the monitoring TCAM, whereas if the

Algorithm 2: Adaptive binning tree modification in
TCAM population

1 ] Definitions:
2 int max(i) : Maximum value for wildcard i;
3 int min(i) : Minimum value for wildcard i;
4 Node getMin(i) : Item with minimum value in i;
5 Node leaves(T) : Fetch the leaves of the Tree T ;
6 Input:
7 T : Monitoring tree
8 adjustthreshold : Expanding trie threshold
9 hitthreshold : Dividing monitoring node threshold

10 Output:
11 T Updated optimized binning table
12 Function receivedQuery():

/* Increase the number of monitoring TCAM */

13 if change in depth ≥ thexpansion then
14 devideHighHitNode(T );
15 end

/* Balance the tree before generate the new

TCAM population */

16 if getMax(T )−getMin(T )
getMax(T ) ≥ thbalance then

17 removeLowHitNode(T );
18 devideHighHitNode(T );
19 end

/* Generate TCAM entries */

20 return inorderTraverse(T );
21 end
22 Function removeLowHitNode(T):
23 Γ = leaves(T );
24 list P ; // Create parent list

25 for i = 0; Γ.size() < i; i++ do
26 if Γ[i].parent == Γ[i+ 1].parent then
27 T [i].parent.hits =

T [i].parent.hits+ T [i+ 1].parent.hits
P.add(T [i].parent)

28 end
29 end
30 p = getMin(P );
31 p.left = null;
32 p.right = null;
33 end
34 Function devideHighHitNode(T):
35 Γ = leaves(T );
36 n = max∀i∈Γ(i)
37 m = max(n)−min(n); // Find distance

between max and min in a wildcard

38 m = m
2 + 1; // Find the most significant ×

39 n.left = Node(m ∨ x); // Unwrap left node

40 m = m
⊕

∼0;
41 n.right = Node(m

⊕
x); // Unwrap right node

42 end

distribution is skewed, then it is better to assign more entries
to the monitoring TCAM.



To address this problem, ADA uses the trie depth as an
indicator to detect the type of the variable. If the depth is
increasing at each iteration, the value distribution is skewed
as Algorithm 2 deepens the tree. In this case, the monitoring
TCAM must increase. We use thexpansion to identify when
ADA needs to expand the monitoring TCAM by adding new
entries (see line 13 in Algorithm 2). On the other hand,
if the trie depth is not increasing, this indicates that the
monitoring TCAM size is suitable for tracking the variable
or the distribution follows a uniform PDF. In this case, we do
not add any new entry but ADA might still adjust the table due
to the change in the variable behavior. However, ADA does not
decrease the size of the tree.

IV. METHODOLOGY

To perform a comprehensive evaluation, we implement
ADA in three different platforms: First, we develop our C++
simulator to evaluate the proposed algorithms (Algorithms 1
and 2) without any interfering networking parameters. In this
experiment, we generate numbers based on random variables
with different distributions and run our binning algorithms
in ADA to show they converge to the PDF of the random
variables. In addition, we test the adaptation mechanism in
algorithm 2 by choosing a very small significant bit for the
initial trie. Finally, we study error propagation and the effect
of error propagation on two simple applications.

Second, we implement ADA in P4 [15] on a commercial
PISA switch in our local cluster. We ran ADA as a part of
the P4 program on a Barefoot Tofino [16] Wedge 100BF-32X
Ethernet switch with a line rate of 100 Gbps. The cluster
has three servers forming a star topology. Each server has
an 8-core/16-thread Intel Xeon 1.80 GHz CPU and 64 GB
of memory. These servers run Ubuntu 18.04, and they use
100 Gbps Mellanox ConnectX-5 [17] NIC to connect to one
port of the switch. We code the data plane part of ADA as a
P4 program and we implement the control plane part using a
gRPC-based client to dynamically populate TCAM tables on
the switch.

Finally, we implement ADA in ns3 simulator [14], to mea-
sure the performance of ADA on a large-scale topology. We
implement ADA in ns3 switching module and set up a leaf-
spine topology with 400 servers and 20 ToR switches. In
our experiments, all connections (host-to-switch and switch-
to-switch) are connected using 100 Gbps links with a link
delay of 1 µs. We ran three experiments with TCP (baseline),
RCP [4], and Nimble [10] with precise (ideal, without TCAM
lookups) calculation and with ADA (using our TCAM pop-
ulation and lookup) to demonstrate that ADA performs close
to the ideal approach. In experiments with Nimble, we use
DCTCP senders.

In our experiments, we used switches with a buffer capacity
of 400 KB per port. We also set our expansion threshold
in algorithm 2 as thexpansion = 2—the trie expands if the
depth of the three increases by more than two. We also set the
balance threshold as thbalance = 20%. This means that ADA

Algorithm 3: Operation TCAM population

1 Definitions:
2 T = binning tree;
3 b.left = left child of b;
4 b.right = right child of b;
5 b.val = entry that b represent in trie; // e.g., 01×
6 M = number of available entries;
7 Initialization:
8 ∀b ∈ B,w(b) = 0.5;
9 Output: Optimized table L

10 Function main():
11 updateFreq(T.root); // update all parents’

frequencies

12 for ∀ b ∈ T do
13 w(b.right) = f(b.right.value)

f(b.value) ;

14 w(b.left) = f(b.left.value)
f(b.value) ;

15 end
16 TCAMpopulation(B.root.left,M);
17 TCAMpopulation(B.root.right,M);
18 return
19 Function updateFreq(b):
20 if b is a leaf then
21 return b.value;
22 end
23 b.value =

updateFreq(b.left) + updateFreq(b.right)
24 return b.value;
25 end
26 Function populateTable(b,M):
27 wright = f(b.right.value)

f(b.value) ;

28 wleft = f(b.left.value)
f(b.value) ;

29 populateTable(b.left,M × wleft)
30 populateTable(b.right,M × wright)
31 if b is a leaf then
32 b = min(b | 2b( s−b

2 ) = M)
33 V = {i|i ∈ [2b, 2b+1 − 1]]}
34 T = {i|i ∈ [0, 2b − 1]}
35 while ∀i ∈ V do
36 for j=1;s ≤ j;j++ do
37 i

j←− x; // Left shift with don’t

care (x) as input

38 T.add(i)
39 end
40 end
41 end
42 end

balances the trie if the ratio of the minimum and the maximum
hits is more than 20%.

V. EVALUATION

In this section, we first evaluate ADA with regard to the
algorithm accuracy and convergence using our simulator to
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Fig. 5: Convergence of ADA to different distributions after monitoring system reaches to a steady state.
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(b) Iteration 2

 0

 0.1

 0.2

 0.3

 0  5  10 15 20 25 30 35

N
o

rm
a

la
zi

e
d

 P
D

F

Number of bins

Bins Samples

(c) Iteration 3
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(d) Iteration 4

 0

 0.1

 0.2

 0.3

 0  5  10 15 20 25 30 35

N
o

rm
a

la
zi

e
d

 P
D

F

Number of bins

Bins Samples

(e) Iteration 5

Fig. 6: Iterations in algorithm 2 for b = 1.

show that ADA adapts with any operand distribution (i.e.,
PDF). Second, we provide the result of our testbed with
a barefoot switch [16] to demonstrate the performance and
scalability of both our control and data plane mechanisms.
Finally, we evaluate ADA over a large scale datacenter with a
leaf-spine topology.

A. Network independent C++ simulator

We developed a C++ simulator to determine the accuracy of
our proposed algorithm without any networking parameters.
Our simulator generates different PDFs and uses binning
algorithm proposed in algorithms 1 and 2 to converge to
the original distribution. We use dotted lines to show the
distribution and the boxes to show bins.

1) Accuracy and integrity: To show that ADA can model
a wide range of distributions, we set up our simulation to
generate various distributions. Figure 5 shows the results of
Algorithms 1 and 2 for creating the bins after reaching to a
steady sate (until the condition at line 13 in Algorithm 2 is
not satisfied). We use a bin size of 2000 and we use a 32 bits
integer value with the domain of [0, 650000]. Figure 5a shows
a Uniform distribution with normalized value of 0.03. This
figure shows that the bins can estimate the uniform distribution
accurately. Uniform distribution is common in parameters with
the same probability of hits across the variable. Figure 5b
shows the result of an exponential distribution with λ = 10
with the same bin size and variable range. This experiment can
model the variable with the heavy hits on the lower numbers
and fewer hits when the value is higher. An example of a
variable that can form an exponential distribution is queue
size. Figure 5c shows a Fisher F distribution with parameters
d1 = 100 and d2 = 20. This distribution is used to model
values with a heavy-tail hit.

To evaluate ADA with more complicated scenarios, we
model two other combined distributions. Figure 5d shows the
sum of two independent Gaussian distributions (G1 + G2),

with parameters G1(16000, 10000) and G2(48000, 10000)
with same variance σ = 10000 but different mean µ1 =
16000, µ2 = 48000 on a range of [0, 650000]. The result of
G1 +G2 has two picks and ADA can accurately distribute the
bins to model the targeted distribution. Similarly, in Figure 5e,
we use a sum of an exponential with λ = 10 and a Gaussian
distribution (σ = 10000, µ1 = 16000). The results shows that
the algorithm 2 can model combined and random distribution.

2) Adaptive increment: As we mentioned in section III-B2,
trie starts with a default value for b and ADA increases
the number of entries by adding more nodes to the trie if
the distribution is skewed. To test this procedure, we use a
Gaussian distribution with a median of 4000 and a variance
of 32500 as a random generator and we used 2000 as bin
size. Figure 6 shows this transition from b = 1 to the next five
iterations. Initially, there are two bins in Figure 6a, since we
start with b = 1. In next iteration in Figure 6b, bigger bins
divides into two bins. Iterations continue to the fifth iteration
where there are a total of 6 bins.

As we expect, bins can represent the original distribution
of the variable while the initial trie (Figure 6a) is not able
to capture the character of the Gaussian distribution correctly.
Bins are completely matched after the fourth iteration which
shows that our algorithm in 2 can successfully increase the
TCAM space, assigned to the monitoring so that the bins
match the PDF of the variable. Note that here iteration is
considered a change in trie and not the iteration of the
algorithm, 3, and we did not limit the expansion of the trie to
find the convergence point.

3) Error analysis: ADA decreases the error propagation and
the average error. In this section, we first study an experiment
to show the effect of the significant bit (b) on average
error. Second, we compare the average error of ADA to the
existing state-of-the-art algorithms for the TCAM population.
All charts in this section are drawn on a logarithmic scale.

Increasing the number of significant bits in populating
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Fig. 7: (a) Average error on increasing significant bit for Gaussian and uniform PDFs. (b) Table size on increasing the size of
the significant bit. (c) Average error propagation for two functions x2 and 2x. Y-axes is in logarithmic scale.

TCAMs in algorithm 3 increases the function accuracy; how-
ever, a large significant bit may need a large TCAM size.
To see the effect of error, we use a Gaussian distribution
with a median of 4000 and variance of 32500 and Uniform
distribution in the range of [0, 650000] for our two variables,
and we performed a sum and a multiplication of over two
variables. For instance, U(x) + G(y) represents a sum of
two variables with x with Gaussian and y with Uniform
distribution. Figure 7a shows the result of the average error
with different values with significant bits. In all cases, when
the significant bit increases, the error reduces significantly.
When both variables are Gaussian the error is the maximum
regardless of the number of significant bits.

Similarly, Figure 7b, shows the required table size for
varying numbers of the significant bits (s). When s increases,
the size of the table prohibitively increases, and the table size
increases exponentially by the number of significant bits.

4) Error Propagation: Most in-network algorithms are
iterative and the results of computation are fed back until
some form of convergence is met. In such cases, even small
errors can quickly accumulate, leading to unacceptably large
errors. To understand the effect of error propagation, we run
an experiment comparing two functions f(x) = 2x and
f(x) = x2. In the experiment, we assign the computed
value (e.g., 2x) back to x and iterate 10 times. The effect
is a recursive computation (i.e., f(f(f(...(x))))). Similar to the
previous experiment, we use the same Gaussian distribution
with a median of 10 and a variance of 100 for variable x.
Figure 7c shows the result of our experiment. This figure
shows that the nature of the function plays a critical role in
error propagation; higher order functions tend to suffer more.
As expected, x2 is prone to more error propagation compared
to 2x. At the end of 10 iterations, x2 shows 10813% and
70482% errors for the f(x) without ADA and f(x) with ADA
respectively, while these errors for 2x is only 7% and 21%.
This shows that the error propagation depends on the function
itself more than the population mechanism.

B. Testbed Experiments

In this section, we demonstrate the feasibility of the im-
plementation of ADA in hardware. We also show that ADA is
crucial for in-network applications especially when the number

of TCAM entries is limited. Finally, we show the overhead of
ADA in the programmable data plane and control plane in
terms of the number of stages and number of reads and writes
that the control plane.

1) Experiment with limited entries: We start by evaluating
an in-network rate limiter, Nimble [10], that limits the sending
rate of traffic classes. Nimble requires multiplication of rate to
the packet inter-arrival time. Once the rate is determined, the
control plane populates the TCAM table based on the rate. If
the rate changes at any time, the entire TCAM must be updated
from the control plane again. This prevents approaches like
Nimble from changing the rate from the data plane (e.g., to
design a work-conserving decentralized rate limiter).

To demonstrate this problem, we set up an experiment with
a single flow between two machines. In this experiment, we
use iperf3 to generate traffic from a client to a server at a
full line rate, and we enabled DCTCP on both client and
server. These experiments use 16 parallel iperf3 connections to
fully utilize the link. We also set the rate limiter to 24 Gbps.
After 3 ms we change the Nimble setting to limit the flow
to 12 Gbps. We use a total of 128 entries for approximate
multiplication and 12 entries for the monitoring. We ran the
experiment with Nimble without a TCAM update from the
control plane (In the proposal, the controller updates TCAMs
when it changes the rate), and Nimble with ADA (i.e., includes
TCAM update). In Nimble with ADA, we implement only
monitoring for the rate variable. Figure 8 shows the result
of this experiment. When the rate changes, Nimble generates
the result of the multiplication with an extremely large error,
which causes Nimble to drop packets incorrectly. On the other
hand, Nimble with ADA detects the new value in rate after
a few iterations and updates the TCAM from the control
plane. This experiment shows that applications with dynamic
arithmetic requirements can perform well using ADA without
incurring high TCAM overhead.

2) Scalability Analysis: In this section we analyze the
overhead of ADA on programmable switches and control plane.

Control plane delay ADA uses feedback from the data
plane to adaptively converge to the correct configuration of
the monitoring TCAM and optimal population in calculation
TCAM. However, this process is not instantaneous and re-
quires some time to converge. In addition, reading a trie and
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updating the calculated TCAM entries from the control plane
adds some delay to the the application that runs over ADA. If
the behavior of the application changes rapidly, ADA needs
to change the TCAM population quickly to provide good
performance.

We measured the delay of our control plane program in
generating the optimal TCAM entries upon a new change in
the network state. We ran Nimble at line rate (95Gbps) first
and then after 3 seconds we cut the rate to half. We varied the
number of TCAM entries from 16 to 128 (an increase of 16
entries in each experiment). Figure 9 shows the delay that ADA
takes to converge to the optimal TCAM population for varying
number of TCAM entries. The delay for 128 entries is about
3.15 ms which is sufficient for many in-network applications.

Switch overhead To study the overhead of the ADA on
the switch and the control plane, we analyze our monitoring
system for the TCAM population. We populate the table using
the result of the operations. The first column in Table II
presents an overview of the resources that ADA needs in terms
of the number of RMT stages. ADA(∆T ) means we only use
ADA for ∆T , ADA(R) means we only use ADA for variable
R and ADA(∆T,R) means ADA is used for both variables.
This table shows that ADA needs fewer stages when only one
variable needs to be monitored.

We also measured the average read and write requests that
our control plane program sends to the switch. We set up
Nimble to work at line rate (95 Gpbt) and we reduced the
sending rate to half. We start with 8 entries for monitoring
the values (trie). Table II shows the number of reads and
writes during this evaluation. The average number of reads is
higher than 8 for both ADA(R) and ADA(∆T ) and higher
than 16 for ADA(∆T,R) because adaptively increasing the
monitoring entries increases the number of the register that
ADA needs to read. The number of reads for ADA(R) is
more compared to ADA(∆T ) because ∆T is less skewed
and the hits are more spread across the value range. The
average number of writes for ADA(∆T,R) is the most since
both variables need periodic updates. Similar to reads, we
see the number of writes is always more for ADA(R) than
ADA(∆T ) because R is more skewed.

C. Large scale simulation

To show that ADA works as expected in reducing the error
at scale, we implement the complete version of ADA for both

TABLE II: Resource usage of ADA and control plain overhead.

Variables No. of stages No. of reads No. of writes
ADA(R) 2 12.32 73.31
ADA(∆T ) 2 9.27 32.63
ADA(∆T,R) 3 24.54 98.43

RCP and Nimble in ns3 simulator and evaluate it for a large
network. We used a leaf-spine topology with 10 spine and 20
leaf switches and 400 servers. All links are 100 Gbps and RTT
of the longest path with 4 hops is 80 µs. We used two types of
flows: long flows which are 1024 KB and short flows which
vary from 16 − 64 KB. The workload consists of a mix of
80% of short flows and 20% of long flows, and an incast traffic
with the average fan-in degree of 32. The generated traffic
is based on a typical heavy-tailed flow distribution and we
vary the network load from 20% to 80%. Figure 10 shows the
flow completion time (FCT) of all short flows in the network
for TCP (baseline), and Nimble, and RCP, with and without
ADA (uses exact/ideal computation). We clearly observe that
short flow FCTs achieve similar delay using ADA in both RCP
and Nimble as they would in an idealized system that always
produces 100% accurate results. This experiment shows that
ADA’s performance is close to ideal while requiring a small
number of TCAM entries.

VI. RELATED WORKS

Sharma et al. provide building blocks to address the lack
of complicated arithmetic in ALU [12]. The authors pro-
vide a formulation to populate the TCAM entries using the
total number of bits in variables and desired accuracy. This
approach, however, does not consider any variable limit or
variable distribution to populate the table. Similar to the
formula in [12], Nimble [10] provides an algorithm to calculate
the TCAM population. This algorithm also does not consider
the variables’ range and distribution.

PRECISION [9] is a heavy hitter detection algorithm that
uses probabilistic re-circulation to detect elephant flows on
programmable switches. This approach requires calculation of
Mean Square Error (MSE), and the authors used the same
technique from [12] to populate the TCAM table for their
calculation. Similar to [12] this approach also does not exploit
variable range or distribution to populate the table.

InREC enables programmable switches to support in-
network real-value operations [13]. The main motivation
of InREC is to offload CPU-demanding operations to pro-



grammable switches and to reducing the end-host load. InREC
provides a tree abstraction for arbitrary formulation to reduce
repetitive calculations. Authors also considered the variables’
bounds, but they do not consider variable distribution. This
approach requires large TCAMs, which is costly.

Our proposal, ADA, is complimentary of existing works
in this problem space. ADA learns the operands’ range and
distribution, and populates the TCAM accordingly. Existing
TCAM population schemes such as logarithmic population and
naive population can be used in conjunction with our system.
In all of our experiments for Algorithm 3, we used a naive
population scheme similar to [12].

VII. CONCLUSION

Today’s programmable switches have the potential to im-
prove existing applications and enable new applications by
providing customized packet processing in the network. How-
ever, realizing their potential requires us to sidestep some of
the architectural bottlenecks in these switches. The lack of sup-
port for common arithmetic operations, such as multiplication
and division, is a major limitation for several important in-
network applications. While using TCAMs for lookup tables
to realize these operations is a good first step, TCAMs are
also a scarce resource.

In this paper, we introduced ADA that exploits the operands’
range and distribution to drastically reduce the number of
TCAM entries while minimizing error. Further, ADA dynam-
ically adapts to changes in the operands’ range and distri-
bution. Lastly, by exploiting the strengths of both control
and data plane, ADA is able to scale well without incurring
high overheads. As programmable switches become more
mainstream, approaches such as ADA will be needed to expand
the applicability of programmable switches to a wider set of
applications.
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