Aims and Scope

Urban computing [1] is a process of acquisition, integration, and analysis of big and heterogeneous data generated by a diversity of sources in urban spaces, such as sensors, devices, vehicles, buildings, and human, to tackle the major issues that cities face, e.g., air pollution, increased energy consumption, and traffic congestion. Urban computing connects unobtrusive and ubiquitous sensing technologies, advanced data management and analytics models, and novel visualization methods, to create win-win-win solutions that improve urban environment, human life quality, and city operation systems. Urban computing also helps us understand the nature of urban phenomena and even predict the future of cities.

This workshop provides the professionals, researchers, and practitioners who are interested in sensing/mining/understanding urban data with a platform, where they can discuss and share the state-of-the-art of urban computing development and applications, present their ideas and contributions, and set future directions in emerging innovative research for urban computing. Representative projects and literatures can be found on this website.

Topics of Interests

Topics of interest include, but not limited to, the follows:

- Urban informatics: acquisition, aggregation, and analysis of big data
- City-wide traffic modeling, analysis, and prediction
- City-wide human mobility modeling, visualization, and understanding
- Urban computing for urban planning and city configuration evaluation
- Urban environment/pollution/energy consumption monitoring and data analysis
- City-wide intelligent transportation systems
- Anomaly detection and event discovery in a city
- Social behavior modeling, understanding, and patterns mining in urban spaces
- Discover regions of interests and of different functions
- Mining public transportation data, such as ticketing data in bus and subway systems and taxi data
- City-wide mobile social applications in urban areas
- Location-based social networks enabling urban computing scenarios
- Smart recommendations in urban spaces
- Intelligent delivery services in cities
- Mining data from the Internet of Things in urban areas

Program Chair

Yu Zheng, Microsoft Research, China

General Co-Chairs

Steven E. Koonin, New York University
Ouri E. Wolfson, University of Illinois at Chicago
Charlie Catlett, University of Chicago
Jiawei Han, University of Illinois at Urbana-Champaign

Program Committee

- Alexandre M. Bayen, U. C. Berkeley, USA
- Licia Capra, University College of London, UK
- Sanjay Chawla, University of Sydney, Australia
- Baoquan Chen, Institute of Advanced Computing and Digital Engineering, China
- Francesco Calabrese, IBM Research & Development
- Giannotti Fosca, University of Pisa, Italy
- Marta C. González, MIT, USA.
- Ralf Hartmut Guting, University of Hagen, Germany
- Yan Huang, University of North Texas
- Patrick Jaillet, MIT, USA
- Samuel Madden, MIT, USA
- Wen-Chih Peng, National Chiao Tung University, Taiwan
- Daniele Quercia, Yahoo! Lab. Spain.
- Alexei Pozdnoukhov, National Centre for Geocomputation
- Claudio T. Silva, New York University, USA
- Hui Xiong, Rutgers, the State University of New Jersey
- Hai YANG, The Hong Kong Univ. of Science and Technology
- Daqing Zhang, Institute TELECOM SudParis, France

Important Dates

Paper submission due: June 1, 2014
Paper notification: June 20, 2014
Camera-ready due: July 1, 2014

Submissions

We solicit submissions up to 9 pages (the last page can only hold references) in a single PDF file including all content, figures, tables, and references, following ACM templates at http://www.acm.org/sigs/pubs/proceed/template.html, via the submission website before the submission deadline. Each paper will be assigned to three reviewers for a peer review. The paper accepted in this workshop can be submitted to other venues in the future. This is not considered a double submission. The copyright of each workshop paper is owned by their authors.