
An L∞ Norm Visual Classifier

Anushka Anand
University of Illinois at Chicago

Chicago, IL
aanand2@lac.uic.edu

Leland Wilkinson
SYSTAT Inc.
Chicago, IL

leland.wilkinson@systat.com

Dang Nhon Tuan
University of Illinois at Chicago

Chicago, IL
tdang@cs.uic.edu

Abstract—We introduce a mathematical framework, based on
the L∞ norm distance metric, to describe human interactions
in a visual data mining environment. We use the framework to
build a classifier that involves an algebra on hyper-rectangles.
Our classifier, called VisClassifier, generates set-wise rules from
simple gestures in an exploratory visual GUI. Logging these
rules allows us to apply our analysis to a new sample or batch
of data so that we can assess the predictive power of our visual-
processing motivated classifier. The accuracy of this classifier
on widely-used benchmark datasets rivals the accuracy of
competitive classifiers.
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I. INTRODUCTION

Visual data mining(VDM) is described as “the integration
of the human mind’s exploration abilities with the processing
power of computers to form powerful knowledge discovering
environments” [1]. The advantages of such visual data explo-
ration over automatic data mining techniques that function as
black boxes needing specialized tuning per use, are twofold
[2]:
• it is intuitive, so tools would not impose knowledge

requirements (about the data or machine learning tec-
nhiques) on the users while providing them insights into
their data.

• such exploration would be general or adaptable to inho-
mogenous data.

Many have pointed out the unique strength of exploiting
the highly evolved pattern-detection capabilities of the eye
[3]. However, it is difficult to construct a visual tool that can
be used to identify similar structure in different datasets. The
research presented here explores a new approach that marries
VDM and inference. Our focus was to study the pattern
recognition and cognitive processing skills of humans for
use in the design of algorithms embedded in a classifier. We
propose a novel VDM environment framework that captures
human interactions in visual processing of data as math-
ematical structures. And we present a novel classification
algorithm that is based on the proposed framework.

A. The Supervised Classification Problem

We begin with a set of training data

T = {(x1,y1), . . . ,(xn,yn)} (1)

with real feature vectors xi = [xi1, . . . ,xip]⊂Rp and positive
integer class labels yi ∈ {y1, . . . ,yg} ⊂ N. The problem
involves finding a classification function

X #→ Y (2)

that maps x ∈ X to ŷ ∈Y with minimum classification error
given by

E[
n

∑
i
(yi− ŷi)2] (3)

II. RELATED WORK

Approaches to the classification problem must deal with
some serious obstacles. First, there is the curse of di-
mensionality. The second problem is computational com-
plexity. Polynomial time algorithms are hopeless in high-
dimensional spaces. The third problem is nonlinearity and
the fourth is handling categorical variables.
There have been numerous approaches to overcoming

these problems. One approach is to use hybrid classifiers
[4][5]. Another is to reduce dimensionality through principal
components, k-means clustering [6], or random projections
[7][8].
Our algorithm is, to the best of our knowledge, the only

integrated solution that addresses all of these problems
satisfactorily. Our idea is similar to that of describing a
mathematical learning model based on the visual system [9].
We use random projections in a novel way to create a VDM
environment. The resulting algorithm goes beyond plugging
a visualizer into an existing classification algorithm, as in
[10] [11] [12].
Our framework is based on using rectangular description

regions to capture human interactions with data. Perhaps the
most widespread use of rectangular description regions is in
recursive partitioning trees [13] [14]. These methods parti-
tion a space into nested rectangular regions that are relatively
homogeneous over the values of a predicted variable. Our
approach is not restricted to a partitioning, as our regions
need not be disjoint or exhaustive. Although combinations
(unions and products) of rectangles have been used recently
to define clusters in data mining [15] [16] [17], this is
the first paper that we are aware of that uses covering (as
opposed to partitioning) rectangles efficiently in supervised
classification.



III. THE VISUAL DATA MINING (VDM) ENVIRONMENT
FRAMEWORK

Our idea is neither statistical model nor probability dis-
tribution based. It is based on what we call Visual Model
Based Transformations (VMBT).

A. Visual Model Based Transformations

To explain the motivation behind this idea, we use an
analogy to the way the Fourier Transform is used in data
analysis. In the Fourier Transform, we map a real-valued
point to the complex plane in order to discover patterns that
would be difficult to detect in the real domain. To interpret
our results, we invert the transformation. With VMBTs, we
map a point to a visual context, analyze structure in that
world to obtain a visual model, and then back-transform our
visual model to apply the result. This idea was introduced
in [18] and an analytic application was demonstrated in
[19]. Our system is based on Hypercube Description Regions
that provide the basis for a formal description of structures
suitable for VDM.

B. Hypercube Description Regions

In this paper, we employ the L∞ or sup metric:

||x||∞ = sup(|x1|, |x2|, . . . |xn|)

when we search for nearest neighbors in L∞ space. Because
we restrict our model to a finite-dimensional vector space,
we will use max() instead of sup() from now on.
We define a hypercube description region (HDR) as the

set of points less than a fixed distance from a single
point (center) using the L∞ norm. A weighted hypercube
description region is an HDR that uses the weighted L∞

norm:
||x||∞ = max(w1|x1|,w2|x2|, . . .wn|xn|).

We will assume the term HDR refers to this more general
case (capturing rectangles) from now on.

C. Composite Hypercube Description Regions

We define local structure as the set of points defined by a
single hypercube (an L∞ ball); these points are members of
an HDR.
We define large-scale structure as the set of points defined

by two or more hypercubes under the operations of union, in-
tersection and difference (set-theoretic complement). We call
this large-scale structure a composite hypercube description
region (CHDR).
CHDRs have the following three properties which are

fundamental for this approach:
1) CHDRs are closed under the operations of union,

intersection, and difference.
2) These operations can be provided with simple, intuitive

user interfaces.

3) Complex structures in data are well approximated by
CHDRs. This assertion is formalized and argued in [16].

The benefits of this alternative view of data structures are:
• It simplifies the specification of neighborhoods because

they are product sets of intervals. Our specifications can
be expressed in a basic algebra on intervals.

• It allows us to specify in simple expressions or rules
relatively complex geometric objects through CHDRs.

Interval selection for set inclusion is faster than Euclidean-
distance-based selection. Using intervals enables us to sim-
plify the set-wise algebra on the original variables.

IV. THE VISCLASSIFIER ALGORITHM

Our visual classifier algorithm, called VisClassifier, imple-
ments the VDM environment for the supervised classifica-
tion task enabling human interactions to be captured into
CHDRs (and consequently rules made up of intervals). The
flow of the steps in VisClassifier is described in Algorithm
1 with each step described in detail in subsections below.

A. Step 1: Coding
There are two ways to handle categorical variables:
• dummy code them (create a separate binary variable for

each category value). This is how most classifiers handle
them.

• code them as unordered strings.
We do the second. This method has the advantage over tree
classifiers as there is no need to make pairwise comparisons
of categories. The viewer will make those comparisons
visually without assistance because each categorical value
ultimately appears in a display at a different discrete location
(see Fig. 1). The viewer can select multiple categorical
values in one rectangle or in several; the result is the same.

B. Step 2: Transforming
All numerical variables are checked for potential transfor-

mation. The purpose of a transformation is to reduce over-
plotting in our displays caused by long-tailed distributions.
Our transformation is a reflected log:

f (x) =
{

0 x = 0
sgn(x)log(1+ |x|) x &= 0 (4)

If the transform alleviates extreme skewness or kurtosis, we
work from this point on with the transformed variable. After
transforming, we rescale all columns of the data to the unit
interval.

C. Step 3: Choosing
At each iteration, we choose the target class, Ck (k =

1, . . . ,g), as the one with the most remaining points, display
its data points as yellow dots (see Fig. 1) and visually
classify it. This is repeated until all points are classified or
the user chooses to stop. Steps 4-7 work with the chosen
Ck. Our classifier is a one-against-all classifier.



Algorithm 1: The sequence of steps of the VisClassifier
algorithm
Data: Data set X with N records, P variables and G

groups or classes
Result: Error rate on prediction results of VisClassifier

on the testing data (a random sample from the
input data)

//** IV-A Step 1: Coding **
foreach Categorical variable CV do

Code values of CV as integers
//** IV-B Step 2: Transforming **
foreach Numerical variable NV do

Check NV for potential transformation to reduce
extreme skewness

TrainingData← RandomSample(X ,N/2)
TestingData← RandomSample(X ,N/2)

while TotalNumberO f RemainingUnclassi f iedPoints > 0
AND StoppingCondition = FALSE do

//This iteration is done when the user hits the “Next
Plot” button
//** IV-C Step 3: Choosing **
Ck ← Group with
max{NumberO f RemainingUnclassi f iedPoints}
foreach v=1 to 100 do

//** IV-D Step 4: Projecting **
Compute 1000 random projections
//** IV-E Step 5: Binning **
Bin 2D plots of the two best projections (based
on the Separation Index)

//** IV-F Step 6: Ranking **
Rank the 100 binned 2D plots on the Purity of Ck
//** IV-G Step 7: Displaying **
Draw the “purest” plot with data from Ck as Yellow
dots and everything else as Gray dots
Add the user-selected-rectangle (from interaction in
the GUI) to the list of CHDRs

//Training ends when all data is classified or the user hits
the Stop button making the StoppingCondition = T RUE

//** IV-H Step 8: Scoring **
foreach Record ti ∈ TestingData do

if ti inside some c ∈CHDRs then
if ti.Group &= c.Group then Increment
NumO f Misclassi f ications

else
closestC← minc∈CHDRs{In f inityDistance(c, ti)}
if ti.Group &= closestC.Group then Increment
NumO f Misclassi f ications

ErrorRate← NumO f Misclassi f ications/(N/2)

D. Step 4: Projecting

We will be computing binned plots of pairs of variables in
order to do visual classification. Binning all possible pairs
of variables is impractical for more than, say, 100 variables.
Furthermore, orthogonal pairwise projections are unlikely to
reveal separation between classes, even for well-separated
convex distributions. Consequently, we compute a list of
random projections and derive our plots from that list.
1) Generating Projections: The projections we use are

unit-weighted projection matrices. This approach follows a
recent finding that using “database-friendly” unit weights
instead of Gaussian weights does not result in a substantial
loss of accuracy in approximating distances [20]. Our goal
is to improve robustness of our scoring in new samples.
Wainer [21] proved that, under very general circumstances,
a prediction model based on replacing regression coefficients
with unit weights will result in smaller expected loss in new
samples and greater robustness against outliers. We assign
our weights with the following probabilities:

w j =






1 with probability 1/4
0 with probability 1/2
−1 with probability 1/4

(5)

Here w j is the projection matrix weight of the jth variable.
2) Selecting Projections: To generate a plot for a class Ck,

we compute 1000 candidate random projections [20]. We
evaluate each candidate random projection by computing a
separation measure on the centroids of each class.
Let x̄k be the centroid vector of instances in Ck. For each

projection wm, (m = 1, . . . ,1000), we compute the projected
mean of Ck, namely, x̄m,k = x̄kwm. We take the L∞ distance
between x̄m,k and the closest of the other projected class
means. The Separation Index for a candidate projection wm
for class Ck is given by:

Sm,k = minl=1,...,g;l &=k|x̄m,k, x̄m,l | (6)

From the list of candidate projections, we select the one with
the greatest shortest distance because we want a projection
that has the best chance of separating a class from all the
other classes. So the selected projection wk for class Ck is
given by:

wk = argmaxwm,m=1,...,1000{Sm,k} (7)

Our method is close in spirit to [22]. It is different, however,
because we want to find 2D projections that separate class
Ck from the other classes; not separate all the classes in a
plot.

E. Step 5: Binning

We 2D bin our data in order to plot the projected densities
on large datasets without overlaps. We compute 100 binned
plots, in each case using the two best projections on our
Separation Index. For each bin, we store the count of points



Figure 1. A rendering of the UCI Adult dataset. A categorical variable
is plotted against a projection of several continuous variables. The yellow
symbols highlight the current target class and the gray symbols highlight
the non-target class. Yellow circles with gray centers and gray circles with
yellow centers reveal the overlapping densities between the two classes.

in the bin as well as the centroid of the points in the bin. In
our displays, we plot the centroids, not the bins themselves.
We base the number of bins on a formula in [23]. Given

a dataset with n rows, we compute the marginal number of
bins b using

b =
3log2(n)

2
(8)

There are b2 bins per 2D plot. We use our binning to
produce scatterplots with symbols located at the centroid
of the points within each bin, so users are able to perceive
contours of densities more sensitively.

F. Step 6: Ranking

Next, we rank our binned plots on a purity measure so that
plots where Ck is well-separated from all other classes are
seen first by the user. For a given target class value Ck, our
purity measure is

Pk =
b

∑
i=1

b

∑
j=1

ni jI(ci jk) (9)

where

I(ci jk) =
{

1 ni j = ni jk
0 otherwise (10)

In other words, we sum the counts across all bins whose
total counts of points falling in them (ni j) are due only to
class Ck counts (ni jk).

G. Step 7: Displaying

Figure 1 shows how we display our results. After some
experimenting with different types of displays, we chose to
use 2D scatterplots, as most users are familiar with reading
them and they make it easy to see contours of densities of the
data. We use filled yellow and gray circles to represent the
centroids of the bins. The symbols are sized according to the
count within each bin, like a bubble plot. A gray circle inside
a yellow indicates the presence of other classes as a minority.
And a yellow circle inside a gray indicates a majority of
other classes and a minority of the target class. The interior
circle size varies based on the amount of overlap.
The display contains three buttons and a rendering area as

seen in Fig. 1. The Next Plot button causes the program to
move to the next target (yellow) class. This begins a new
iteration, in which the user is shown fresh projections and
can begin to construct a CHDR. The Undo Rectangle is a
recursive rectangle remover for users to undo bad selections.
The Stop button ends the training phase. We encourage users
to stop when there appears to be only noise remaining. If
the user pushes through to classify every single point, the
program will stop. In that case, the score in the testing
sample is likely to be lower. The scoring stage is initiated
as soon as the training phase is done and the classifier’s
performance on a test sample is computed.
Fig. 2 shows how a user highlights a class with rectangles.

When the user draws a blue rectangle and releases the
mouse, all enclosed points turn blue. Users are encouraged
to pick only solid yellows early in the game and to allow
mixed circles later. This strategy clears out as many pure bins
as possible early in the process in order to reveal points that
might have been obscured earlier. We persist the rectangles
so that users can see what they have already drawn. We
ask users to think of the whole CHDR as a general shape.
Note: A CHDR is a collection of rectangles the user creates
in one 2D scatterplot capturing one class. While this shape
can be disjoint, we try to discourage users from making dust
– many tiny rectangles, each covering a point.
The user needs no domain knowledge about the data nor

any statistical knowledge to use VisClassifier. She does not
even need to know that she is classifying points. The display
can be presented to users as a game. The objective is to high-
light as many yellows as possible with only a few rectangles
per plot. The ultimate score is the classification error from
a new sample that is printed when the game concludes. Our
game is simpler than Jawbreaker or Minesweeper. This is an
important factor in our evaluations. We are more interested
in exploring the perceptual and cognitive strategies involved
in discrimination. Expertise would complicate that effort.

H. Step 8: Scoring

We transform and rescale a new point using the training
parameters. Then we pass through the list of CHDRs. For



Figure 2. A rendering of the UCI Satellite dataset. The blue rectangles
are unioned to form one CHDR that covers the blue points.

each CHDR, we project the point using the stored projec-
tions from the training data. Then we pass through the list
of rectangles for that CHDR. The first rectangle to enclose
our projected testing point determines the classification. If
no enclosing rectangle is encountered by the end of the list,
we assign the point to the nearest rectangle in the CHDR list
by computing the L∞ distance from the point to a rectangle.

V. EXPERIMENTAL RESULTS

We conducted an informal experiment to evaluate the
effectiveness of our design. Seven subjects, 5 male and 2
female, classified four datasets. The subjects had varying
backgrounds but all were not familiar with how the al-
gorithm or framework worked. Not all subjects evaluated
every dataset but each dataset was assigned randomly to
subjects in incomplete blocks. Each subject’s classification
was based on a new random generator seed, so it was highly
unlikely that any two subjects saw the same plot. We found
no significant performance differences between subjects.
The datasets were taken from the UCI Machine Learning

Repository [24] and are listed in Table 1. Each represents a
different challenge for classifiers:
• Adult[25] presents a mixture of categorical and contin-

uous variables.
• Optdigits[26] is almost Bayes-optimal for the simple

Linear Discriminant Analysis model and difficult-to-
classify for simple axis-parallel classifiers such as Naive-
Bayes.

• Satellite[27] has relatively non-normal class distributions
that are not well separated.

• Shuttle [28] has groups that vary widely in frequency;
approximately 80 percent of the data belong to class 1.

Table I
CHARACTERISTICS OF DATASETS

Adult Optdigits Satelite Shuttle
# Training 48842 3823 4435 43500
# Testing 45222 1797 2000 14500
# Attributes 14 64 36 9
# Groups 2 10 6 7
Cat. vars. Yes No No No
Cont. vars. Yes Yes Yes Yes

adult optdigits satellite shuttle
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Figure 3. Experimental Results (solid circles = VisClassifier results, hollow
circles = Other classifiers)

Fig. 3 shows the dot plot of the error rates of VisClassifier
and other classifiers. The competitive classifier performance
statistics were culled from papers referenced on the UCI
site. They are based on 15 classifiers, including classification
trees, kernel classifiers, discriminant analysis, KNNs, naive
Bayes and AdaBoost. No classifier is best over all four
datasets. VisClassifier is consistently competitive with the
other classifiers and marginally better on shuttle.

VI. DISCUSSION: WHY DOES VISCLASSIFIER WORK?

It might be asked why we bother developing a classifier that
depends on human observers. The purpose of this research
project is not to produce a “best of breed” classifier. There
is no such classifier, unconditional to a particular process
generating the data [29]. Instead, we proposed and imple-
mented a framework to understand how human perception
might guide algorithm development.
Like classification trees, VisClassifier partitions local den-

sities using rectangles. However, VisClassifier builds a de-
cision list instead of a decision tree. Recursive partitioning
trees are greedy, but VisClassifier is super-greedy. At each
step, VisClassifier removes from the training set as many
members of class Ck as possible. Once a split has been
made, no further splits of that subset are possible. The
set-complement of this subset is all that remains to be
considered at each step. This strategy reduces the overlap



of densities when projected to a low-dimensional space.
Another aspect that distinguishes VisClassifier is its abil-

ity to reveal projected margins in 2D space (like an
SVM). There is no convexity assumption within classes.
Assuming a revealing 2D projection can be found, Vis-
Classifier can handle a wide variety of class distributions.
VisClassifier embeds continuous and categorical variables
in the same space. While categorical variables are un-
ordered, continuous-categorical plots look like stripes and
categorical-categorical look like a rectangular lattice.
Finally, the method we devised for generating random

projections resembles boosting [4]. That is, we select the
best of the 1000 random marginal 1D generated projections
using the Separation Index. Then, we construct 100 binned
scatterplots using these best projections. We pick the best
scatterplot to present using a different purity criterion. We
chose rather large numbers (1000, 100) for this process,
limited by the responsiveness of the system our subjects
would tolerate.

VII. CONCLUSIONS

We have described a novel mathematical framework for
translating human visual data processing interactions into
rules defined by CHDRs. We applied this framework to the
supervised classification problem and described VisClassi-
fier, our novel classifier algorithm; it is not a hybrid or
combination classifier.
Having developed this classifier with humans in the loop,

we now intend to remove them. Specifically, we intend to
replace the display component with a minimum-rectangular-
cover algorithm. If this works and is able to retain the
performance statistics, it will be one of the few instances,
like projection pursuit [30] and principal curves [31], where
visualization provides the foundation for a data mining
algorithm.
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