
OntoMiner: Bootstrapping and Populating
Ontologies From Domain Specific Web Sites

Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Department of Computer Science and Engineering,
Arizona State University,
Tempe, AZ, 85287, USA

{hdavulcu, svadrevu, nrsaravana}@asu.edu

Abstract. RDF/XML has been widely recognized as the standard for
annotating online Web documents and for transforming the HTML Web
to the so called Semantic Web. In order to enable widespread usability
for the Semantic Web there is a need to bootstrap large, rich and up-
to-date domain ontologies that organize most relevant concepts, their
relationships and instances. In this paper, we present automated tech-
niques for bootstrapping and populating specialized domain ontologies
by organizing and mining a set of relevant Web sites provided by the
user. We develop algorithms that detect and utilize HTML regularities
in the Web documents to turn them into hierarchical semantic structures
encoded as XML. Next, we present tree-mining algorithms that identify
key domain concepts and their taxonomical relationships. We also extract
semi-structured concept instances annotated with their labels whenever
they are available. Experimental evaluation for the News and Hotels do-
main indicates that our algorithms can bootstrap and populate domain
specific ontologies with high precision and recall.

1 Introduction

RDF and XML has been widely recognized as the standard for annotating online
Web documents and for transforming the HTML Web to the so called Semantic
Web. Several researchers have recently questioned whether participation in the
Semantic Web is too difficult for “ordinary” people [1–3]. In order to enable
widespread usability for the Semantic Web there is a need to bootstrap large, rich
and up-to-date domain ontologies that organizes most relevant concepts, their
relationships and instances. In this paper, we present automated techniques for
bootstrapping and populating specialized domain ontologies by organizing and
mining a set of relevant taxonomy-directed Web sites provided by the user. A
Web site is said to be “taxonomy-directed” if it contains at least one taxonomy
for organizing its contents and it presents the instances belonging to a concept in
a regular fashion. Notice that, neither the presentation of the taxonomy among
different pages, nor the presentation of instances among for different concepts
need to be regular for a Web site to be classified as “taxonomy-directed”. Almost
all scientific, news, financial, travel, shopping and search/community portals that

2 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

we are aware of are indeed “taxonomy-directed”. As an example application, a
user of the OntoMiner can use the system to rapidly bootstrap and ontology
populated with instances and they can tidy-up the bootstrapped ontology to
create a rich set of labelled examples that can be utilized by supervised machine
learning systems such as the WebKB[4].

The user of the OntoMiner system only need to provide the system the URLs
of the Home Pages of 10 to 15 domain specific Web sites that characterizes her
domain of interest. Next, OntoMiner system detects and utilizes the HTML reg-
ularities in Web documents and turns them into hierarchical semantic structures
encoded as XML by utilizing a hierarchical partition algorithm. We present tree-
mining algorithms that identifies most important key domain concepts selected
from within the directories of the Home Pages. OntoMiner proceeds with ex-
panding the mined concept taxonomy with sub-concepts by selectively crawling
through the links corresponding to key concepts. OntoMiner also has algorithms
that can identify the logical regions within Web documents that contains links to
instance pages. OntoMiner can accurately separate the “human-oriented decora-
tion” such as navigational panels and advertisement bars from real data instances
and it utilizes the inferred hierarchical partition corresponding to instance pages
to accurately collect the semi-structured concept instances.

A key characteristic of OntoMiner is that, unlike the systems described in [5,
6] it does not make any assumptions about the usage patterns of the HTML tags
within the Web pages. Also, OntoMiner can separate the data instances from
the data labels within the vicinity of extracted data and attempts to accurately
annotate the extracted data by using the labels whenever they are available.
We do not provide algorithms for extracting and labelling data from within
HTML tables since there are existing solutions for detecting and wrapping these
structures [7, 8].

Other related work includes schema learning[9–11] for semi-structured
data and techniques for finding frequent substructures from hierarchical semi-
structured data[12, 13] which can be utilized to train structure based classifiers
to help merge and map between similar concepts of the bootstrapped ontologies
and better integrate their instances.

The rest of the paper is organized as follows. Section 2 outlines the hierarchi-
cal partitioning, Section 3 discusses taxonomy mining, and Section 4 describes
instance mining. Experimental evaluation for the News and Hotels domains indi-
cates that our algorithm can bootstrap and populate domain specific ontologies
with high precision and recall.

2 Semantic Partitioning

2.1 Flat Partitioner

Flat Partitioner detects various logical partitions of a Web page. For example, for
the home page of http://www.nytimes.com, the logical partitions are marked in
boxes B1 through B5 in Figure 1. The boxes in snapshot of Web page in Figure 1
correspond to the dotted lines shown in tree view of Web page in Figure 1..

OntoMiner 3

Fig. 1. Snapshot of New York Times Home Page and Parse Tree View of the Home
Page

The Flat Partitioner Algorithm takes an ordered DOM tree of the Web page
as input and finds the flat partitions in it. Intuitively, it groups contiguous similar
structures in the Web pages into partitions by detecting a high concentration
of neighboring repeated nodes, with similar root-to-leaf tag-paths. First, the
partition boundary is initialized to be the first leaf node in the DOM tree. Next,
any two leaf nodes in the tree are linked together with a ”similarity link” if they
share the same path from the root of the tree and all the leaf nodes in between
have different paths. Then the ratio of number of ”similarity links” that crosses
the current candidate boundary to the total number of ”similarity links” inside
the current partition is calculated. If this ratio is less than a threshold δ, the
current node is marked as the partition boundary. Otherwise, current node is
added to the current partition and the next node is considered as the partition
boundary. The above process terminates when the last element in the list of leaf
nodes is reached. A Path Index Tree (PIT) is built from the DOM tree of the
Web page, which helps to determine all the ”similarity links” between the leaf
nodes within a single traversal. The PIT is a tree based data structure which is
made up of all unique root to leaf tag-paths and, in its leaf nodes PIT stores the
”similarity links” between the leaf nodes of the DOM tree.

The tree view in Figure 1 illustrates the Flat Partitioning Algorithm. The
arrows in the tree view in Figure 1 denote the ”similarity links” between the
leaf nodes. Let’s assume the threshold δ is set to 60%. Then, when the current
node is ”Job Market” the total number of outgoing unique ”similarity links”
(out in line9) is 1 and total number of unique ”similarity links” (total in line
10) is 1. Hence the ratio of out to total is 100% which is greater than threshold.
Hence current in line 6 becomes the next leaf node. At node ”International”,
out becomes 1 and total is also 1. Hence the ratio is still greater than threshold.

4 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Algorithm 1 Flat Partition Algorithm
Flat Partitioner
Input: T: DOM Tree
Output: < b1, b2, ...bk >: Flat Boundaries

1: PIT := PathIndexTree(T)
2: current := first leaf node of T
3: Partition Nodes := φ
4: Partition Boudaries := φ
5: for each lNode in Leaf Nodes(T) do
6: current := lNode → next
7: if N = PIT.next similar(Current) exists then
8: Partition Nodes := Partition Nodes

⋃
N

9: end if
10: out = |{path(m)|m ∈ Partition Nodes and m > current}|
11: total = |{path(m)|m ∈ Partition Nodes}|
12: if out/total ¡ δ then
13: Partition Boundaries := Partition Boundaries

⋃
current

14: Partition Nodes := φ
15: end if
16: end for
17: Return Partition Boundaries

When current reaches ”Community Affairs”, out becomes 0 whereas total is 1
and hence the ratio is less than threshold δ. Now, ”Community Affairs” (B2
in Figure 1) is added to the set of partition boundaries in line 12 and all the
”similarity links” are removed from the partition nodes in line 13. The same
boundary detection condition is satisfied once again when the algorithm reaches
”6.22 PM ET” where out becomes 1 and total is 3. Hence ”6.22 PM ET” (B3 in
Figure 1) is added to the partition boundaries.

2.2 Hierarchical Partitioning

Hierarchical Partitioner infers the hierarchical relationships among the leaf nodes
of the HTML parse tree where all the page content is stored. The Hierarchical
Partitioner achieves this through sequence of three operations: Binary Semantic
Partitioning, Grouping and Promotion.

Binary Semantic Partitioning The Binary Semantic Partitioning of the Web
page relies on a dynamic programming algorithm which employs the following
cost function. The dynamic programming algorithm determines the nodes that
need to be grouped together, by finding the grouping with the minimal cost. The
cost for grouping any two nodes in the HTML parse tree is recursively defined
as follows.

OntoMiner 5

Cost(Li, Lj) =

{
0 if i=j
mini≤k<j{Cost(Li, Lk) + Cost(Lk+1, Lj)
+Grouping Cost(Li...k, Lk+1...j)} if i < j

where Li, Lj are two leaf nodes in the HTML parse tree.

The cost function calculates the measure of dissimilarity between two nodes
i.e. a high value of cost indicates that these two nodes are highly dissimilar.
Hence the dynamic programming algorithm finds the lowest cost among the
various possible binary groupings of nodes and parenthesizes them into a
binary-tree. The cost for grouping two consecutive sub trees is calculated as the
sum of four sub-cost factors. Let A, B be the least common ancestor of nodes
Li to Lk and Lk+1 to Lj respectively. Then,

Grouping Cost(A, B) =
Sum of distances of A and B to their LCA, CLCA(A,B) +
Similarity of the paths from A and B to their LCA, CPSIM (A,B) +
Similarity of the paths in the sub trees of A and B, CSTSIM (A,B) +
Order similarity of the paths in the sub trees of A and B, CORD(A,B)

The first cost factor CLCA(A,B) calculates how far the two nodes are apart
from their least common ancestor. The cost for similarity between paths to the
least common ancestor is determined by the second cost factor CPSIM (A,B).
The third CSTSIM (A,B) and fourth CORD(A,B) cost factors computes the cost
for similarity in the sub trees of the two nodes, former computes the similarity
in the paths whereas the later computes the ordering of paths in the sub tree.

Let S1 be the set of all paths in the sub tree of A, S2 be the set of all paths
in the sub tree of B, d1 be the number of tags on the path from LCA to A, d2 be
the number of tags on the path from LCA to B and max depth be the maximum
depth of the DOM tree.

CLCA(A,B) =

√
d1 + d2

2 ∗max depth

CPSIM (A,B) = 1− Similarity between Paths P1 and P2

max(d1, d2)

CSTSIM (A,B) = 1−max(Separation, Overlap),

where Separation =
|(S1−S2)

⋃
(S2−S1)|

|S1

⋃
S2| and Overap =

S1

⋂
S2

S1

⋃
S2

CORD(A,B) = 1− Sim(A, B),

where Sim(A,B) = Number of Paths similar in order in Sub Trees of A and B
Max of No of Paths in Sub Trees of A and B

For example, let a /b / c be the three tags on the path from LCA to A and
a / b / d be the tags on the path from LCA to B. Let P1, P2, P3 be the set of

6 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

paths in the sub tree of A and P1, P2, P4 be the set of paths in the sub tree of
B.

Fig. 2. Sample Tree

d1 = |a, b, c| = 3, d2 = |a, b, d| = 3

S1 = P1, P2, P3, S2 = P1, P2, P4

CLCA(A,B) =
√

3 + 3
2 ∗max depth

CPSIM (A,B) = 1− |{a, b, c}⋂{a, b, d}|
max(d1, d2)

=
1
3

Separation =
|{P3}

⋃{P4}|
|{P1, P2, P3, P4}| =

1
2

Overlap =
|{P1, P2}|

|{P1, P2, P3, P4}| =
1
2

CSTSIM (A,B) = 1−max(Separation,Overlap) =
1
2

Sim(A,B) =
|{P1, P2}|

max(|S1|, |S2|) =
1
2

CORD(A, B) = 1− Sim(A,B) =
1
3

These cost functions are adjusted to fit for different cases in the HTML Parse
Tree. The three different cases that may arise during the cost function evaluation
are shown in Figure 2.

OntoMiner 7

– Case 1: LCA of the two nodes which are to be grouped in one partition is
one of the nodes itself and the other node is not a leaf node.

– Case 2: LCA of the two nodes which are to be grouped in one partition is
one of the nodes itself and the other node is a leaf node.

– Case 3: the LCA nodes for the ranges are identical.

Fig. 3. Different Cases during Cost Function Evaluation

In all the three cases, the second and fourth cost factors are irrelevant and
hence they are ignored. For Case 3, first cost factor is also ignored. Accordingly,
the first and third cost factors are modified as follows. For Case 1,

CLCA =
d

maxdepth
CSTSIM = 1−max(Separation, Overlap)

For Case 2,

CLCA =
d

maxdepth
, CSTSIM = 1− |S1

⋂
S2|

S1

⋃
S2

where S2 is {P1}

For Case 3,
CST

SIM = 1−max(Separation, Overlap)

The total cost is divided by the number of applicable cost factors to normalize
the cost to a value between 0 and 1. The above dynamic programming algorithm
takes the DOM tree as input and produces semantic binary-tree partitions of its
leaf nodes. The Column 1 of the Figure 4 represents the DOM tree of the HTML
page and Column 2 represents the binary Partition Tree. For example the nodes
68 through 82 are grouped into one partition which has internal binary partitions
as shown in Figure 3.

Grouping The next step in the Hierarchical Partitioning is grouping of simi-
lar binary partitions into group nodes. Grouping Algorithm first finds pairs of

8 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Fig. 4. Dynamic Programming

partitions which are similar by post order traversal of semantic binary partition
tree. Intuitively the grouping step creates ”Group” nodes made up of ”Instance”
nodes as its children. The Instances are identified during the post order traversal
of the semantic binary partition tree whenever the ”similarity” between a right
sibling and its left sibling is above a certain threshold δ. The ”similarity” between
siblings is based on the Grouping Cost explained in Binary Semantic Partition
section. Then, the parent of the ”Instance” nodes is marked as ”Group” node.
During the rest of the post order traversal the similarity between an internal
node and a ”Group” node is calculated by evaluating the similarity between the
unmarked node and the first Instance of the ”Group” node.

The Grouping Algorithm first initializes the type of the leaf nodes in the bi-
nary partition tree as ”simple”. While traversing the tree, if it finds two ”simple”
sibling nodes and if the cost for grouping these two nodes is less than a threshold
δ, then it marks these nodes as ”Instances” and their parent as ”Group” node.
For example, in Figure 5, nodes ”Sports” and ”Health” are sibling nodes and
the cost for grouping these two nodes is also less than the threshold δ. Hence
both are marked as ”Instance” node and their parent is marked as ”Group”
node. Similarly, if it finds two sibling nodes that are marked as ”Group” and
if the cost for grouping their instances is less than threshold δ, then it marks
the parent of these sibling nodes as ”Group”. For example, the parent of nodes

OntoMiner 9

Fig. 5. Grouping

”Health” and ”Sports” is already marked as ”Group” node. Similarly, the parent
of ”Science” and ”Technology” is also marked as ”Group” nodes. Then, if the
cost for grouping all the instances ”Technology” through ”Sports” is also less
than threshold δ, then grand parent of these instances is marked as ”Group”
node and their instances are merged as seen in Column 3 of Figure 4. Next, if
one of the sibling nodes is ”simple” and the other node is ”Group” and the cost
for grouping the ”simple” node with the instances of the group node is also less
than threshold δ, then it changes the type of ”simple” node to ”Instance” and
marks their parent as ”Group” and merges the ”Instance” node with instances of
the ”Group” node. This operation is continued until the root of the binary Par-
tition tree is reached and all markings are done. Figure 4 shows the conversion
of binary partition tree to Group Tree. The Column 2 and Column 3 represent
the binary partition and Group trees.

Promotion After Grouping, the final step in Hierarchical Partitioning is promo-
tion. The promotion algorithm identifies the leaf nodes that should be promoted
above their siblings. A node is considered for promotion only if it applies to the
following rules.

10 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Fig. 6. Promotion

– Rule 1: A node can be marked as BOLD and it is the first child of its parent
and the parent is not marked as ”Group” node. A node is marked as BOLD,
if it satisfies any of the following conditions.
1. If there is a bold tag like , <bold> etc. on its path from the root

node
2. If any bold tag is defined for the ”class” attribute value of this node.
3. If the labelled text of the node is fully capitalized.

– Rule 2: A node can be promoted if it is the first child of its parent and
its parent is not marked as ”Group” node and the only other sibling to this
node is a ”Group” node.

The nodes which satisfy the bold conditions are marked as BOLD nodes (in-
dicated by letter (B) in column 3).The BOLD node replaces its parent ”Partition
Node”. If the promotion rules can be applied again, the BOLD node is promoted
once more. Figure 6 illustrates the Promotion Algorithm. Column 3 represents
the Group Tree and Column 4 represents the Hierarchical Partition Tree. The
Node ”News” is marked as BOLD and it is the first child of its parent as shown
in Column 3 of Figure 6. Hence it is promoted on top of all the nodes ”Interna-
tional” through ”Corrections”. Similarly the nodes ”Opinion”, ”Features” and
”Services” are also promoted.

OntoMiner 11

Experimental Results In order to calculate precision and recall for the gen-
erated Hierarchical Partitioning Trees, Ideal Hierarchical Semantic Partitioned
Trees are manually generated for every page. Next, transitive closure of all
parent-child relationships implied by each tree is generated. The Precision and
Recall are calculated as follows.

The algorithm is applied for home pages of the following 13 Websites and
the experimental results are shown in the Table 1.

3 Taxonomy Mining

The taxonomy mining involves several tasks including separating important con-
cepts (the categories that define the context) from instances (the content that
are members of each concept), identification of similar concepts, and mining
relationships among the concepts. Our goal is to automatically mine the taxon-
omy for a domain given relevant web pages from the domain. To demonstrate
the efficacy of our algorithms we implemented and tested our approach with two
separate domains; News Web pages and Hotel Web pages. The key ideas in tax-
onomy mining are illustrated in Figure 7. Various phases involved in taxonomy
mining are explained in the following subsections.

3.1 Frequency Based Mining

The inputs to our system are the Home Pages of the co-domain Websites. We
first preprocess the HTML documents using “Hierarchical Partitioning” (as de-
scribed in Section 2) to generate semi-structured XML documents. We use these
XML documents to mine the taxonomy. We exploit the observation that im-
portant concepts in a given domain are often frequent. Using this observation,

12 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Semi−structured Documents

(XML Trees)

by integrating

Taxonomy obtained

the semantic trees

Mine the taxonomy

from semantic trees

and expanding the taxonomy (depth−wise)

Following Links from all the nodes

(Raw HTML Documents)

Relevant Home Pages

Hierarchical Partitioning

The Taxonomy obtained

after following links

from one node

Expand the tree

Fig. 7. Main Idea of the algorithm

our system mines frequent labels in the input XML documents among Home
Pages of co-domain Websites. By using an experimentally determined threshold
for support (the minimum number of times a label should occur in order to
be frequent), we separate concepts from the rest of the document. For example
in News domain, our system identifies Business, Sports, Politics, Technology,
Health, Entertainment, etc. as important concepts as they are frequent across
various news home pages.

3.2 Candidate Label Extraction Phase

In our simple frequency based mining, our system may miss some labels that
are relevant but are not frequent (not present in many Home Pages pages
for the domain). For example in http://www.washtimes.com/, our system
identified “Entertainment” to be a frequent label but it missed “Civil War”,
“Culture, etc.”. To identify such relevant labels our system learns attributed
tag paths to the labels in the obtained from frequency based mining and
applies these paths on the corresponding regions of the Home Pages to retrieve
more labels. An attributed tag path of a label has XPath syntax and it is
made up of HTML tag names along its path from the root of the HTML
tree to the label itself with attributes and their values. For example the

OntoMiner 13

attribute tag path for “Entertainment” in http://www.washtimes.com/ is
//HTML//BODY[@bgColor]//TABLE[@cellpadding=0 and @cellspacing=0
and border=0 and @width=760]//TR//TD[@width=140 and @rowspan=8
and @valign=top]//TABLE[@cellpadding=0 and @cellspacing=0
and @border=0 and @width=140]//TR//TD[@height=20 and
@class=twt-menu1a]//A//SPAN[@class=twt-mentext1]//#TEXT.

3.3 Abridgment Phase

During the extraction phase, it is possible to identify some labels that are irrel-
evant to the domain (for example, “NYT Store” in http://nytimes.com/). To
eliminate these irrelevant labels, we adopt the following rules.

– Eliminate a label if it does not have a URL or if the URL goes out of the
domain.

– Eliminate a label if its URL does not have new frequent labels and valid
instances (as described in 4).

3.4 Grouping the Labels into Concepts

From the above phases, we collect the important labels (keywords) from the rele-
vant Home Pages. But the same label may appear different in various documents
and this introduces redundancy. To accommodate for this, we group them ac-
cording to their lexicographic similarity. First our system stems the labels using
Porter Stemming Algorithm [14] and then it applies Jaccard’s Coefficient [15]
(calculated as (|A ∩ B|

|A ∪ B| , where A and B are stemmed vectors of words in two la-
bels) on them to organize into groups of equivalent labels. We denote each such
group of corresponding labels as a concept. This simple similarity measure is
able to group the labels that are only lexicographically related (like “Sport” and
“Sports”) but does not identify labels that are semantically related (like “World”
and “International”). The issue of identifying and merging semantically related
labels is beyond the scope of this paper and we plan to investigate it later.

3.5 Mining Parent-Child Relationships From Hierarchically
Partitioned Web Pages

The concepts obtained from the grouping phase are flat (there are no is-a re-
lationships among them). In order to organize the concepts in a taxonomy, we
need ’is-a’ relationships among the concepts. These relationships are mined from
the hierarchically partitioned web pages generated from “Semantic Partitioning”
(Section 2 using the algorithm described in Algorithm 2. After this phase, we
have a taxonomy of concepts that represents the input home pages.

14 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Algorithm 2 Mine is-a Relationchips
is-aMiner
Input: C: Set of Concepts, S: Set of Semantically Partitioned Web Pages, Sup: Support
Output: Tree representing the hierarchy of concepts

1: Compute parent-child relationships R among set of concepts C along with their
frequencies: a − b is a direct parent-child relationship if a and b are concepts and
b is immediate child of a

2: Separate frequent relationships (those that satisfy the minimal support Sup), FR
from the non-frequent ones, NFR.

3: Identify the grand-parent relationships from NFR: for all non-frequent relationships
a− b and b− c, increment the count for a− c in R.

4: Populate frequent relationships FR from R again based on the support, Sup.
5: Construct a tree, T from the relationships FR
6: Return the tree T

3.6 Expanding the Taxonomy beyond Home Pages

The taxonomy obtained from the previous phase represents only the Home Pages
in the domain. In order to expand the domain taxonomy, we follow the links
corresponding to every concept c, find sub concepts and expand the taxonomy
depth-wise and repeat the above phases (from Section 3.1 to 3.5) to identify
sub concepts of c. For example, “Sports” is a concept in the taxonomy obtained
from the previous phase. If we follow these links corresponding to “Sports” and
repeat the above procedure we get taxonomy for “Sports”, that contains concepts
like “Baseball”, “Tennis”, and “Horse Racing”. After this phase, we will have
a complete taxonomy that represents the key concepts in the domain along
with their taxonomical relationships. The entire Taxonomy Mining algorithm is
detailed in Algorithm 3.

Experimental Results for Ontology Mining
The mined ontology is evaluated in the same way as explained in the experimen-
tal section for the semantic partitioning. An ideal ontology is manually created
and the parent/child relationships for both the ontologies are determined. The
precision for the mined ontology is 75% and the recall is 92%.

A fragment of the taxonomy that we mined from the news domain is shown
in Figure 8.

4 Instance Extraction

This section describes our approach to extract instances from Web pages. In-
stances correspond to members of concepts. Our system can extract flat instances
made up of list attribute name-value pairs as well as complex, semi-structured in-
stances. Our system is able to extract the labels whenever they are available. We
first present our approach to extract appropriate instance segments from HTML
documents. Later we describe our instance extraction algorithm and conclude
with discussion on experimental results.

OntoMiner 15

Algorithm 3 Algorithm to Mine Hierarchy of Concepts From Home Pages
TreeMiner
Inputs: N: The Root Node, H: Set of Pages, Sup: Support
Output: The Taxonomy of concepts

1: Semantically Partition the input Pages to obtain semi-structured XML documents
and add them to S

2: Collect all the labels along with their URLs and their base URLs from all the XML
documents (each label l has a text value, its URL and its base URL, the URL of
the web page that it is present in)

3: Frequency Based Mining: Separate frequent labels, L (frequent ones are those that
satisfy the support, Sup) from the non-frequent ones.

4: Label Extraction Phase: Learn the attribute paths to each label in L and apply
these paths to the document in which it is present and get the candidate labels
and add them to L

5: for each element l in L do
6: Remove l from L if it does not have a valid url
7: Get instances for l by invoking instance miner, l.Instances = InstanceMiner(l, S,

Sup)
8: if l.Instances = φ then
9: Remove l from L

10: end if
11: end for
12: Grouping: Group the frequent labels FL according to their lexicographic similarity

into concepts C.
13: Mine Relationships: Get the taxonomy of concepts in home pages by invoking

relationship miner with the set of concepts C, T = RelationshipMiner(C, S, Sup).
14: for each concept c in the taxonomy T do
15: Follow the links corresponding to the labels in this concept, fetch the Web pages

and add them to S′.
16: Invoke the taxonomy miner to get sub taxonomy for c, T’ = TaxonomyMiner(c,

S′, Sup)
17: Attach the sub taxonomy T ′ under the concept c in the taxonomy T.
18: end for
19: Return N

4.1 Instance Segments Extraction

The HTML documents usually contain many URLs and we describe an approach
to extract the appropriate URLs that point to the instances in this section. To
extract the correct instance URLs that point to instances, we adopt the following
algorithms. Our system first partitions the Web page using the flat partitioning
algorithm described in Section 2.1 and selects the segments of URLs that point
to instances. A collections of links from a segment point to instances if the target
pages contain similarly structured distinct instances. Our system first extracts
the dissimilar regions from each of the collections of urls. This is done by flat
partitioning each URL in the collection and aligning the segments based based
on the content similarity in the segments. Our system uses Levenstein Distance

16 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Business

World

Entertainment

Sports

Weather

Technology

Education

Health

Privacy Policy

Home Sports

Soccer

Golf

Tennis

Horse Racing

College Basketball

Hockey

Olympics

Olympic Sports

Pro Hockey

Tennis

TV Schedule

Women

Men

2003 Wimbledon

Fig. 8. A fragment of the taxonomy obtained using the approached described for the
News domain

Fig. 9. Finding the segment that contains collection of instance URLs. Each candidate
segment in the web page is examined. Each URL in the candidate segment is flat par-
titioned and the segments are aligned according to their content similarity. The green
segments in the URL pages indicate the similar segments and they will be eliminated.
The black segments which correspond to dissimilar segments are used to extract at-
tributed tag paths. If the path sets are similar (have more common paths) then the
candidate segment in the web page is chosen as the one with instances in it.

(aka edit distance) Measure to align the segments, by making use of Jaccard’s
Coefficient [15] (calculated as the ratio of the common words to the total number
of words in the two segments). After aligning the segments, our system finds the
dissimilar segments that are not aligned properly (the places where an insertion,
deletion or a replacement has occurred). Next it utilizes Hierarchical Partitioning
algorithm described in 2.2 to convert these dissimilar regions into semi-structured
XML documents. Later it extracts the attributed tag paths from the LCA (lowest
common ancestor) of the leaf nodes in the segment to leaf nodes themselves.

OntoMiner 17

Fig. 10. A Sample Hotel Page that we used in our experiments and the attributes that
we extracted from the page encoded as XML. The attribute name labels are capitalized
in the XML file to distinguish them from attribute value labels

These path sets extracted from dissimilar regions (instance segments) represent
the signature of the instances and our system chooses those instance segments
for which these path sets are similar. This process is illustrated in Figure 9 for
News Websites.

4.2 Instance Extraction for Labelled and Unlabelled Attributes

From the previous phase we have the hierarchically partitioned instance segments
of the instance URLs. To extract instances from these segments, we use the tree
miner algorithm described in Section 3. The tree miner algorithm provides us
with the hierarchy among the frequent concepts among the instance segments.
These frequent concepts correspond to the names of the attributes of the seg-
ments. For example, in hotels domain our system identified “Room Amenities”,
“Hotel Services”, “Local Attractions”, etc. as frequent labels. These labels cor-
respond to the attribute names and we extract the values for these attributes
by finding the children of these labels in the hierarchically partitioned instance
segments. We organize these labelled attributes along with their hierarchy in
XML documents. Figure 10 shows one of the hotel pages that we used in our
experiments and the attributes that we extracted from that hotel page.

But some of the labels may not have any frequent label above or below
them. For example in our experiments with News domain, we found that there
are no frequent labels across News instance segments. Therefore the labels in
these segments correspond to the values of attributes (such as the title of the
article, body of the article, author of the article, city, etc.) whose names are
not explicitly available in the instance segments. In this case we organize the
attributes according to their paths, i.e., we maintain a table of attributes where
columns correspond to the paths and rows correspond to each instance segment.
Here we the attribute names are unknown and we plan to investigate techniques
to mine the attributes by training classifiers for each path.

18 Hasan Davulcu, Srinivas Vadrevu, and Saravanakumar Nagarajan

Experimental Results for Instance Extraction
The precision and recall for the Instance mining for unlabelled attributes is 64%
and 97% respectively. Similarly, for the hotel pages the precision and recall values
are 80% and 91% respectively.

References

1. Luke McDowell, Oren Etzioni, Steven D. Gribble, Alon Halevy, Henry Levy,
William Pentney, Deepak Verma, and Stani Vlasseva. Evolving the semantic web
with mangrove.

2. B. McBride. Four steps towards the widespread adoption of a semantic web. In
International Semantic Web Conference, 2002.

3. S. Haustein and J. Pleumann. Is participation in the semantic web too difficult?
In International Semantic Web Conference, 2002.

4. Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom M.
Mitchell, Kamal Nigam, and Seán Slattery. Learning to extract symbolic knowl-
edge from the World Wide Web. In Natl. Conf. on Artificial Intelligence, pages
509–516, Madison, US, 1998. AAAI Press, Menlo Park, US.

5. Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards
automatic data extraction from large web sites. In Proceedings of 27th International
Conference on Very Large Data Bases, pages 109–118, 2001.

6. A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In
ACM SIGMOD, 2003.

7. William Cohen, Matthew Hurst, and Lee Jensen. A flexible learning system for
wrapping tables and lists in html documents. In Intl. World Wide Web Conf.,
2002.

8. Y. Wang and J. Hu. A machine learning based approach for the table detection
on the web. In Intl. World Wide Web Conf., 2002.

9. Svetlozar Nestorov, Serge Abiteboul, and Rajeev Motwani. Extracting schema
from semistructured data. In ACM SIGMOD, 1998.

10. Minos Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. Xtract: A
system for extracting document type descriptors from xml documents. In ACM
SIGMOD, 2000.

11. Yannis Papakonstantinou and Victor Vianu. Dtd inference for views of xml data.
In ACM PODS, 2000.

12. Gao Cong, Lan Yi, Bing Liu, and Ke Wang. Discovering frequent substructures
from hierarchical semi-structured data. In Proceedings of the Second SIAM Inter-
national Conference on Data Mining, 2002.

13. M. Zaki. Efficiently mining frequent trees in a forest, 2002.
14. M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
15. R.R. Korfhage. Information Storage and Retrieval. John Wiley Computer Publi-

cations, New York, 1999.

